SlideShare a Scribd company logo
Naïve Bayes Classifier
Ke Chen
http://intranet.cs.man.ac.uk/mlo/comp20411/
Extended by Longin Jan Latecki
latecki@temple.edu
COMP20411 Machine Learning
COMP20411 Machine Learning 2
Outline
• Background
• Probability Basics
• Probabilistic Classification
• Naïve Bayes
• Example: Play Tennis
• Relevant Issues
• Conclusions
COMP20411 Machine Learning 3
Background
• There are three methods to establish a classifier
a) Model a classification rule directly
Examples: k-NN, decision trees, perceptron, SVM
b) Model the probability of class memberships given input data
Example: multi-layered perceptron with the cross-entropy cost
c) Make a probabilistic model of data within each class
Examples: naive Bayes, model based classifiers
• a) and b) are examples of discriminative classification
• c) is an example of generative classification
• b) and c) are both examples of probabilistic classification
COMP20411 Machine Learning 4
Probability Basics
• Prior, conditional and joint probability
– Prior probability:
– Conditional probability:
– Joint probability:
– Relationship:
– Independence:
• Bayesian Rule
)
|
,
)
( 1
2
1 X
P(X
X
|
X
P 2
)
(
)
(
)
(
)
(
X
X
X
P
C
P
C
|
P
|
C
P 
)
(X
P
)
)
(
),
,
( 2
2 ,X
P(X
P
X
X 1
1 
 X
X
)
(
)
|
(
)
(
)
|
(
) 2
2
1
1
1
2
2 X
P
X
X
P
X
P
X
X
P
,X
P(X1 

)
(
)
(
)
),
(
)
|
(
),
(
)
|
( 2
1
2
1
2
1
2
1
2 X
P
X
P
,X
P(X
X
P
X
X
P
X
P
X
X
P 1 


Evidence
Prior
Likelihood
Posterior


Example by Dieter Fox
ch8Bayes.pptch8Bayesch8Bayesch8Bayesch8Bayes
ch8Bayes.pptch8Bayesch8Bayesch8Bayesch8Bayes
COMP20411 Machine Learning 8
Probabilistic Classification
• Establishing a probabilistic model for classification
– Discriminative model
– Generative model
• MAP classification rule
– MAP: Maximum A Posterior
– Assign x to c* if
• Generative classification with the MAP rule
– Apply Bayesian rule to convert:
)
,
,
,
)
( 1 n
1
L X
(X
c
,
,
c
C
|
C
P 






 X
X
)
,
,
,
)
( 1 n
1
L X
(X
c
,
,
c
C
C
|
P 






 X
X
L
c
,
,
c
c
c
c
|
c
C
P
|
c
C
P 








 1
*
*
,
)
(
)
( x
X
x
X
)
(
)
(
)
(
)
(
)
(
)
( C
P
C
|
P
P
C
P
C
|
P
|
C
P X
X
X
X 

Feature Histograms
x
C1
C2
P(x)
Slide by Stephen Marsland
Posterior Probability
x
P(C|x)
1
0
Slide by Stephen Marsland
COMP20411 Machine Learning 11
Naïve Bayes
• Bayes classification
Difficulty: learning the joint probability
• Naïve Bayes classification
– Making the assumption that all input attributes are
independent
– MAP classification rule
)
(
)
|
,
,
(
)
(
)
(
)
( 1 C
P
C
X
X
P
C
P
C
|
P
|
C
P n




 X
X
)
|
,
,
( 1 C
X
X
P n



)
|
(
)
|
(
)
|
(
)
|
,
,
(
)
|
(
)
|
,
,
(
)
;
,
,
|
(
)
|
,
,
,
(
2
1
2
1
2
2
1
2
1
C
X
P
C
X
P
C
X
P
C
X
X
P
C
X
P
C
X
X
P
C
X
X
X
P
C
X
X
X
P
n
n
n
n
n


















L
n
n c
c
c
c
c
c
P
c
x
P
c
x
P
c
P
c
x
P
c
x
P ,
,
,
),
(
)]
|
(
)
|
(
[
)
(
)]
|
(
)
|
(
[ 1
*
1
*
*
*
1 











COMP20411 Machine Learning 12
Naïve Bayes
• Naïve Bayes Algorithm (for discrete input attributes)
– Learning Phase: Given a training set S,
Output: conditional probability tables; for elements
– Test Phase: Given an unknown instance ,
Look up tables to assign the label c* to X’ if
;
in
examples
with
)
|
(
estimate
)
|
(
ˆ
)
,
1
;
,
,
1
(
attribute
each
of
value
attribute
every
For
;
in
examples
with
)
(
estimate
)
(
ˆ
of
value
target
each
For 1
S
S
i
jk
j
i
jk
j
j
j
jk
i
i
L
i
i
c
C
a
X
P
c
C
a
X
P
N
,
k
n
j
x
a
c
C
P
c
C
P
)
c
,
,
c
(c
c




















L
n
n c
c
c
c
c
c
P
c
a
P
c
a
P
c
P
c
a
P
c
a
P ,
,
,
),
(
ˆ
)]
|
(
ˆ
)
|
(
ˆ
[
)
(
ˆ
)]
|
(
ˆ
)
|
(
ˆ
[ 1
*
1
*
*
*
1 















)
,
,
( 1 n
a
a 






X
L
N
x j
j 
,
COMP20411 Machine Learning 13
Example
• Example: Play Tennis
COMP20411 Machine Learning 14
Example
• Learning Phase
Outlook Play=Yes Play=No
Sunny 2/9 3/5
Overcast 4/9 0/5
Rain 3/9 2/5
Temperature Play=Yes Play=No
Hot 2/9 2/5
Mild 4/9 2/5
Cool 3/9 1/5
Humidity Play=Ye
s
Play=N
o
High 3/9 4/5
Normal 6/9 1/5
Wind Play=Yes Play=No
Strong 3/9 3/5
Weak 6/9 2/5
P(Play=Yes) = 9/14 P(Play=No) = 5/14
COMP20411 Machine Learning 15
Example
• Test Phase
– Given a new instance,
x’=(Outlook=Sunny, Temperature=Cool, Humidity=High, Wind=Strong)
– Look up tables
– MAP rule
P(Outlook=Sunny|Play=No) = 3/5
P(Temperature=Cool|Play==No) = 1/5
P(Huminity=High|Play=No) = 4/5
P(Wind=Strong|Play=No) = 3/5
P(Play=No) = 5/14
P(Outlook=Sunny|Play=Yes) = 2/9
P(Temperature=Cool|Play=Yes) = 3/9
P(Huminity=High|Play=Yes) = 3/9
P(Wind=Strong|Play=Yes) = 3/9
P(Play=Yes) = 9/14
P(Yes|x’): [P(Sunny|Yes)P(Cool|Yes)P(High|Yes)P(Strong|Yes)]P(Play=Yes) =
0.0053
P(No|x’): [P(Sunny|No) P(Cool|No)P(High|No)P(Strong|No)]P(Play=No) = 0.0206
Given the fact P(Yes|x’) < P(No|x’), we label x’ to be “No”.
COMP20411 Machine Learning 16
Relevant Issues
• Violation of Independence Assumption
– For many real world tasks,
– Nevertheless, naïve Bayes works surprisingly well anyway!
• Zero conditional probability Problem
– If no example contains the attribute value
– In this circumstance, during test
– For a remedy, conditional probabilities estimated with
)
|
(
)
|
(
)
|
,
,
( 1
1 C
X
P
C
X
P
C
X
X
P n
n 






0
)
|
(
ˆ
, 


 i
jk
j
jk
j c
C
a
X
P
a
X
0
)
|
(
ˆ
)
|
(
ˆ
)
|
(
ˆ
1 





 i
n
i
jk
i c
x
P
c
a
P
c
x
P
)
1
examples,
virtual"
"
of
(number
prior
to
weight
:
)
of
values
possible
for
/
1
(usually,
estimate
prior
:
which
for
examples
training
of
number
:
C
and
which
for
examples
training
of
number
:
)
|
(
ˆ










m
m
X
t
t
p
p
c
C
n
c
a
X
n
m
n
mp
n
c
C
a
X
P
j
i
i
jk
j
c
c
i
jk
j
COMP20411 Machine Learning 17
Relevant Issues
• Continuous-valued Input Attributes
– Numberless values for an attribute
– Conditional probability modeled with the normal distribution
– Learning Phase:
Output: normal distributions and
– Test Phase:
• Calculate conditional probabilities with all the normal distributions
• Apply the MAP rule to make a decision
i
j
ji
i
j
ji
ji
ji
j
ji
i
j
c
C
c
X
X
c
C
X
P









 



which
for
examples
of
X
values
attribute
of
deviation
standard
:
C
which
for
examples
of
values
attribute
of
(avearage)
mean
:
2
)
(
exp
2
1
)
|
(
ˆ
2
2






L
n c
c
C
X
X ,
,
),
,
,
(
for 1
1 







X
L
n
)
,
,
(
for 1 n
X
X 






X
L
i
c
C
P i ,
,
1
)
( 




COMP20411 Machine Learning 18
Conclusions
• Naïve Bayes based on the independence assumption
– Training is very easy and fast; just requiring considering each
attribute in each class separately
– Test is straightforward; just looking up tables or calculating
conditional probabilities with normal distributions
• A popular generative model
– Performance competitive to most of state-of-the-art classifiers
even in presence of violating independence assumption
– Many successful applications, e.g., spam mail filtering
– Apart from classification, naïve Bayes can do more…

More Related Content

PPT
ch8Bayes.ppt
PPT
ch8Bayes.ppt
PPTX
ch8Bayes.pptx
PPT
Naive bayes
PPT
Naive-Bayewwewewewewewewewewewewewewew.ppt
PPT
ch8Bayes.ppt
PPTX
PPT
ch8Bkdeedch aporbobotlity of the machine l
ch8Bayes.ppt
ch8Bayes.ppt
ch8Bayes.pptx
Naive bayes
Naive-Bayewwewewewewewewewewewewewewew.ppt
ch8Bayes.ppt
ch8Bkdeedch aporbobotlity of the machine l

Similar to ch8Bayes.pptch8Bayesch8Bayesch8Bayesch8Bayes (20)

PPT
Naive Bayes Classifier.ppt helping others by sharing the ppt
PPTX
Naive Bayes Presentation
PPT
Lecture07_ Naive Bayes Classifier Machine Learning
PPT
NaiveBayes_machine-learning(basic_ppt).ppt
PPT
lecture13-nbbbbb. Bbnnndnjdjdjbayes.ppt
PPTX
Ml4 naive bayes
PPTX
4c-Naive-Bayes.pptxfsjnvs['knnjjjjjjjjjscfi
PPTX
"Naive Bayes Classifier" @ Papers We Love Bucharest
PPTX
baysian in machine learning in Supervised Learning .pptx
PPT
bayesNaive.ppt
PPT
bayesNaive.ppt
PPT
bayesNaive algorithm in machine learning
PPT
bayes answer jejisiowwoowwksknejejrjejej
PPTX
Naive Bayes.pptx
PDF
Bayes 6
PPT
Text classification
PPT
Text classification
PPT
Text classification
PPT
Text classification
PPT
Text classification
Naive Bayes Classifier.ppt helping others by sharing the ppt
Naive Bayes Presentation
Lecture07_ Naive Bayes Classifier Machine Learning
NaiveBayes_machine-learning(basic_ppt).ppt
lecture13-nbbbbb. Bbnnndnjdjdjbayes.ppt
Ml4 naive bayes
4c-Naive-Bayes.pptxfsjnvs['knnjjjjjjjjjscfi
"Naive Bayes Classifier" @ Papers We Love Bucharest
baysian in machine learning in Supervised Learning .pptx
bayesNaive.ppt
bayesNaive.ppt
bayesNaive algorithm in machine learning
bayes answer jejisiowwoowwksknejejrjejej
Naive Bayes.pptx
Bayes 6
Text classification
Text classification
Text classification
Text classification
Text classification
Ad

Recently uploaded (20)

PPTX
Introduction-to-Cloud-ComputingFinal.pptx
PPTX
Database Infoormation System (DBIS).pptx
PDF
Clinical guidelines as a resource for EBP(1).pdf
PDF
“Getting Started with Data Analytics Using R – Concepts, Tools & Case Studies”
PPTX
MODULE 8 - DISASTER risk PREPAREDNESS.pptx
PPT
Reliability_Chapter_ presentation 1221.5784
PDF
Lecture1 pattern recognition............
PPTX
STUDY DESIGN details- Lt Col Maksud (21).pptx
PPTX
Introduction to machine learning and Linear Models
PPTX
Introduction to Knowledge Engineering Part 1
PDF
22.Patil - Early prediction of Alzheimer’s disease using convolutional neural...
PPTX
Computer network topology notes for revision
PPT
Miokarditis (Inflamasi pada Otot Jantung)
PDF
TRAFFIC-MANAGEMENT-AND-ACCIDENT-INVESTIGATION-WITH-DRIVING-PDF-FILE.pdf
PPTX
AI Strategy room jwfjksfksfjsjsjsjsjfsjfsj
PPTX
Introduction to Firewall Analytics - Interfirewall and Transfirewall.pptx
PPTX
ALIMENTARY AND BILIARY CONDITIONS 3-1.pptx
PDF
168300704-gasification-ppt.pdfhghhhsjsjhsuxush
PPTX
Qualitative Qantitative and Mixed Methods.pptx
PPTX
advance b rammar.pptxfdgdfgdfsgdfgsdgfdfgdfgsdfgdfgdfg
Introduction-to-Cloud-ComputingFinal.pptx
Database Infoormation System (DBIS).pptx
Clinical guidelines as a resource for EBP(1).pdf
“Getting Started with Data Analytics Using R – Concepts, Tools & Case Studies”
MODULE 8 - DISASTER risk PREPAREDNESS.pptx
Reliability_Chapter_ presentation 1221.5784
Lecture1 pattern recognition............
STUDY DESIGN details- Lt Col Maksud (21).pptx
Introduction to machine learning and Linear Models
Introduction to Knowledge Engineering Part 1
22.Patil - Early prediction of Alzheimer’s disease using convolutional neural...
Computer network topology notes for revision
Miokarditis (Inflamasi pada Otot Jantung)
TRAFFIC-MANAGEMENT-AND-ACCIDENT-INVESTIGATION-WITH-DRIVING-PDF-FILE.pdf
AI Strategy room jwfjksfksfjsjsjsjsjfsjfsj
Introduction to Firewall Analytics - Interfirewall and Transfirewall.pptx
ALIMENTARY AND BILIARY CONDITIONS 3-1.pptx
168300704-gasification-ppt.pdfhghhhsjsjhsuxush
Qualitative Qantitative and Mixed Methods.pptx
advance b rammar.pptxfdgdfgdfsgdfgsdgfdfgdfgsdfgdfgdfg
Ad

ch8Bayes.pptch8Bayesch8Bayesch8Bayesch8Bayes

  • 1. Naïve Bayes Classifier Ke Chen http://intranet.cs.man.ac.uk/mlo/comp20411/ Extended by Longin Jan Latecki latecki@temple.edu COMP20411 Machine Learning
  • 2. COMP20411 Machine Learning 2 Outline • Background • Probability Basics • Probabilistic Classification • Naïve Bayes • Example: Play Tennis • Relevant Issues • Conclusions
  • 3. COMP20411 Machine Learning 3 Background • There are three methods to establish a classifier a) Model a classification rule directly Examples: k-NN, decision trees, perceptron, SVM b) Model the probability of class memberships given input data Example: multi-layered perceptron with the cross-entropy cost c) Make a probabilistic model of data within each class Examples: naive Bayes, model based classifiers • a) and b) are examples of discriminative classification • c) is an example of generative classification • b) and c) are both examples of probabilistic classification
  • 4. COMP20411 Machine Learning 4 Probability Basics • Prior, conditional and joint probability – Prior probability: – Conditional probability: – Joint probability: – Relationship: – Independence: • Bayesian Rule ) | , ) ( 1 2 1 X P(X X | X P 2 ) ( ) ( ) ( ) ( X X X P C P C | P | C P  ) (X P ) ) ( ), , ( 2 2 ,X P(X P X X 1 1   X X ) ( ) | ( ) ( ) | ( ) 2 2 1 1 1 2 2 X P X X P X P X X P ,X P(X1   ) ( ) ( ) ), ( ) | ( ), ( ) | ( 2 1 2 1 2 1 2 1 2 X P X P ,X P(X X P X X P X P X X P 1    Evidence Prior Likelihood Posterior  
  • 8. COMP20411 Machine Learning 8 Probabilistic Classification • Establishing a probabilistic model for classification – Discriminative model – Generative model • MAP classification rule – MAP: Maximum A Posterior – Assign x to c* if • Generative classification with the MAP rule – Apply Bayesian rule to convert: ) , , , ) ( 1 n 1 L X (X c , , c C | C P         X X ) , , , ) ( 1 n 1 L X (X c , , c C C | P         X X L c , , c c c c | c C P | c C P           1 * * , ) ( ) ( x X x X ) ( ) ( ) ( ) ( ) ( ) ( C P C | P P C P C | P | C P X X X X  
  • 11. COMP20411 Machine Learning 11 Naïve Bayes • Bayes classification Difficulty: learning the joint probability • Naïve Bayes classification – Making the assumption that all input attributes are independent – MAP classification rule ) ( ) | , , ( ) ( ) ( ) ( 1 C P C X X P C P C | P | C P n      X X ) | , , ( 1 C X X P n    ) | ( ) | ( ) | ( ) | , , ( ) | ( ) | , , ( ) ; , , | ( ) | , , , ( 2 1 2 1 2 2 1 2 1 C X P C X P C X P C X X P C X P C X X P C X X X P C X X X P n n n n n                   L n n c c c c c c P c x P c x P c P c x P c x P , , , ), ( )] | ( ) | ( [ ) ( )] | ( ) | ( [ 1 * 1 * * * 1            
  • 12. COMP20411 Machine Learning 12 Naïve Bayes • Naïve Bayes Algorithm (for discrete input attributes) – Learning Phase: Given a training set S, Output: conditional probability tables; for elements – Test Phase: Given an unknown instance , Look up tables to assign the label c* to X’ if ; in examples with ) | ( estimate ) | ( ˆ ) , 1 ; , , 1 ( attribute each of value attribute every For ; in examples with ) ( estimate ) ( ˆ of value target each For 1 S S i jk j i jk j j j jk i i L i i c C a X P c C a X P N , k n j x a c C P c C P ) c , , c (c c                     L n n c c c c c c P c a P c a P c P c a P c a P , , , ), ( ˆ )] | ( ˆ ) | ( ˆ [ ) ( ˆ )] | ( ˆ ) | ( ˆ [ 1 * 1 * * * 1                 ) , , ( 1 n a a        X L N x j j  ,
  • 13. COMP20411 Machine Learning 13 Example • Example: Play Tennis
  • 14. COMP20411 Machine Learning 14 Example • Learning Phase Outlook Play=Yes Play=No Sunny 2/9 3/5 Overcast 4/9 0/5 Rain 3/9 2/5 Temperature Play=Yes Play=No Hot 2/9 2/5 Mild 4/9 2/5 Cool 3/9 1/5 Humidity Play=Ye s Play=N o High 3/9 4/5 Normal 6/9 1/5 Wind Play=Yes Play=No Strong 3/9 3/5 Weak 6/9 2/5 P(Play=Yes) = 9/14 P(Play=No) = 5/14
  • 15. COMP20411 Machine Learning 15 Example • Test Phase – Given a new instance, x’=(Outlook=Sunny, Temperature=Cool, Humidity=High, Wind=Strong) – Look up tables – MAP rule P(Outlook=Sunny|Play=No) = 3/5 P(Temperature=Cool|Play==No) = 1/5 P(Huminity=High|Play=No) = 4/5 P(Wind=Strong|Play=No) = 3/5 P(Play=No) = 5/14 P(Outlook=Sunny|Play=Yes) = 2/9 P(Temperature=Cool|Play=Yes) = 3/9 P(Huminity=High|Play=Yes) = 3/9 P(Wind=Strong|Play=Yes) = 3/9 P(Play=Yes) = 9/14 P(Yes|x’): [P(Sunny|Yes)P(Cool|Yes)P(High|Yes)P(Strong|Yes)]P(Play=Yes) = 0.0053 P(No|x’): [P(Sunny|No) P(Cool|No)P(High|No)P(Strong|No)]P(Play=No) = 0.0206 Given the fact P(Yes|x’) < P(No|x’), we label x’ to be “No”.
  • 16. COMP20411 Machine Learning 16 Relevant Issues • Violation of Independence Assumption – For many real world tasks, – Nevertheless, naïve Bayes works surprisingly well anyway! • Zero conditional probability Problem – If no example contains the attribute value – In this circumstance, during test – For a remedy, conditional probabilities estimated with ) | ( ) | ( ) | , , ( 1 1 C X P C X P C X X P n n        0 ) | ( ˆ ,     i jk j jk j c C a X P a X 0 ) | ( ˆ ) | ( ˆ ) | ( ˆ 1        i n i jk i c x P c a P c x P ) 1 examples, virtual" " of (number prior to weight : ) of values possible for / 1 (usually, estimate prior : which for examples training of number : C and which for examples training of number : ) | ( ˆ           m m X t t p p c C n c a X n m n mp n c C a X P j i i jk j c c i jk j
  • 17. COMP20411 Machine Learning 17 Relevant Issues • Continuous-valued Input Attributes – Numberless values for an attribute – Conditional probability modeled with the normal distribution – Learning Phase: Output: normal distributions and – Test Phase: • Calculate conditional probabilities with all the normal distributions • Apply the MAP rule to make a decision i j ji i j ji ji ji j ji i j c C c X X c C X P               which for examples of X values attribute of deviation standard : C which for examples of values attribute of (avearage) mean : 2 ) ( exp 2 1 ) | ( ˆ 2 2       L n c c C X X , , ), , , ( for 1 1         X L n ) , , ( for 1 n X X        X L i c C P i , , 1 ) (     
  • 18. COMP20411 Machine Learning 18 Conclusions • Naïve Bayes based on the independence assumption – Training is very easy and fast; just requiring considering each attribute in each class separately – Test is straightforward; just looking up tables or calculating conditional probabilities with normal distributions • A popular generative model – Performance competitive to most of state-of-the-art classifiers even in presence of violating independence assumption – Many successful applications, e.g., spam mail filtering – Apart from classification, naïve Bayes can do more…