Per Unit Representation
Dr Bakary Diarra
BIUST Palapye
Per-Unit representation
 In system with many generators and transformers
 Many different currents and voltages
 Use base quantities to make the system more uniform
 Quantities: apparent power, voltages, current and
impedances
Electrical Energy Systems Dr B. Diarra 2
Example
 Let’s consider this circuit
Electrical Energy Systems Dr B. Diarra 3
𝑉𝑆
𝑍𝑆
𝑉𝐿
DC 𝑍𝐿
𝑉𝑆 = 1000 𝑍𝑆 = 𝑗10 𝑍𝐿 = 60 + 𝑗70
The current in the circuit is
𝐼𝑆 =
𝑉𝑆
𝑍𝑆 + 𝑍𝐿
=
1000
60 + 𝑗80
= 10 < −53° 𝐴
The apparent power of the system
𝑆 = 𝑉𝑆. 𝐼𝑆
∗
= 1000 ∗ 10 < 53° = 10000 𝑉𝐴 < 53°
The overall impedance
𝑍𝑇 = 𝑍𝑆 + 𝑍𝐿 = 60 + 𝑗80 = 100 < 53°
The amplitude of these quantities will be used as reference in this circuit
Example
Base quantities are real (modules):
1. Apparent power 𝑆𝑏𝑎𝑠𝑒 = 10 𝑘𝑉𝐴
2. Input voltage 𝑉𝑏𝑎𝑠𝑒 = 1000 𝑉
3. Circuit current 𝐼𝑏𝑎𝑠𝑒 = 10 𝐴
4. Overall impedance 𝑍𝑏𝑎𝑠𝑒 = 100 Ω
Electrical Energy Systems Dr B. Diarra 4
Example
Per unit quantities of the circuit,
𝑉𝐿 =
𝑍𝐿
𝑍𝑇
𝑉𝑆 =
60+𝑗70
60+𝑗80
∗ 1000 = 920 + 𝑗60, so
𝑉𝐿𝑝𝑢 =
𝑉𝐿
𝑉𝑏𝑎𝑠𝑒
= 0.92 + 𝑗0.06𝑝. 𝑢 → 𝑉𝐿𝑝𝑢 = 0.922𝑝. 𝑢
The impedances
𝑍𝐿𝑝𝑢 =
𝑍𝐿
𝑍𝑏𝑎𝑠𝑒
=
60 + 𝑗70
100
= 0.6 + 𝑗0.7𝑝. 𝑢
𝑍𝑆𝑝𝑢 =
𝑍𝑆
𝑍𝑏𝑎𝑠𝑒
=
𝑗10
100
= 𝑗0.1 𝑝. 𝑢
Electrical Energy Systems Dr B. Diarra 5
Definition
The circuit becomes
Per definition
𝑝𝑒𝑟 𝑢𝑛𝑖𝑡 𝑣𝑎𝑙𝑢𝑒 =
𝑎𝑐𝑡𝑢𝑎𝑙 𝑣𝑎𝑙𝑢𝑒
𝑏𝑎𝑠𝑒 𝑣𝑎𝑙𝑢𝑒
On equipment, percent values are used
𝑝𝑒𝑟𝑐𝑒𝑛𝑡 𝑣𝑎𝑙𝑢𝑒 = 𝑝𝑒𝑟 𝑢𝑛𝑖𝑡 𝑣𝑎𝑙𝑢𝑒 𝑥 100
Electrical Energy Systems Dr B. Diarra 6
1 𝑝. 𝑢
𝑍𝑆 = 𝑗0.1 𝑝. 𝑢
𝑍𝐿 = 0.922 < 49° 𝑝. 𝑢
DC
Generators
The ratings of the generators are chosen as base
In the previous example
𝑆𝑏𝑎𝑠𝑒 = 10 𝑘𝑉𝐴
𝑉𝑏𝑎𝑠𝑒 = 1000 𝑉
𝐼𝑏𝑎𝑠𝑒 =
𝑆𝑏𝑎𝑠𝑒
𝑉𝑏𝑎𝑠𝑒
= 10 𝐴
𝑍𝑏𝑎𝑠𝑒 =
𝑉𝑏𝑎𝑠𝑒
2
𝑆𝑏𝑎𝑠𝑒
= 100 Ω
Electrical Energy Systems Dr B. Diarra 8
Transformers
Let’s consider the following transformer
The voltage and power ratings are used as base values, e.g the
base voltages are different for the primary and secondary
windings.
Electrical Energy Systems Dr B. Diarra 9
Ratings
𝑆 = 2000 𝑉𝐴
𝑉1/𝑉2 = 200/400 𝑉
𝑍 = 𝑗4 Ω
𝑛 = 2
𝑉1 𝑉2
Low voltage side High voltage side
𝑛 = 2
𝑉1 𝑉2
LV side HV side
𝑍 = 𝑗16 Ω
𝑆1 = 𝑉1𝐼1
∗
= 𝑉1
2
/𝑍1
∗
and using 𝑉2 = 𝑛𝑉1 we get 𝑆1 = 𝑉2
2
/𝑛2
𝑍1
∗
, → 𝑍2 = 𝑛2
𝑍1
Base values
For the transformer
Electrical Energy Systems Dr B. Diarra 10
Quantities Low voltage side High voltage side
𝑆𝑏𝑎𝑠𝑒 2000 𝑉𝐴 2000 𝑉𝐴
𝑉𝑏𝑎𝑠𝑒 200 𝑉 400 𝑉
𝐼𝑏𝑎𝑠𝑒
𝑆𝑏𝑎𝑠𝑒
𝑉𝑏𝑎𝑠𝑒
= 10 𝐴
𝑆𝑏𝑎𝑠𝑒
𝑉𝑏𝑎𝑠𝑒
= 5 𝐴
𝑍𝑏𝑎𝑠𝑒
𝑉𝑏𝑎𝑠𝑒
2
𝑆𝑏𝑎𝑠𝑒
= 20 Ω
𝑉𝑏𝑎𝑠𝑒
2
𝑆𝑏𝑎𝑠𝑒
= 80 Ω
𝑍𝑝𝑢
𝑍
𝑍𝑏𝑎𝑠𝑒
=
𝑗4
20
= 𝑗0.2
𝑍
𝑍𝑏𝑎𝑠𝑒
=
𝑗16
80
= 𝑗0.2
Transformers
The p.u of the transformer is the same
The per-unit impedance is the same for both
sides of the transformer
Electrical Energy Systems Dr B. Diarra 11
𝑗0.2 𝑝. 𝑢
Per unit model of the transformer
Three phase systems
The base quantities of three-phase systems are
Electrical Energy Systems Dr B. Diarra 12
Quantities Low voltage side Quantities
𝑉𝑏𝑎𝑠𝑒 𝑉𝐿𝐿 = 3𝑉𝐿𝑁 Line-to-line voltage
𝑆𝑏𝑎𝑠𝑒 3𝑉𝑏𝑎𝑠𝑒𝐼𝑏𝑎𝑠𝑒 Apparent power
𝐼𝑏𝑎𝑠𝑒
𝑆𝑏𝑎𝑠𝑒
3𝑉𝑏𝑎𝑠𝑒
Line current
𝑍𝑏𝑎𝑠𝑒
𝑉𝐿𝐿
3𝐼𝑏𝑎𝑠𝑒
=
𝑉𝑏𝑎𝑠𝑒
2
𝑆𝑏𝑎𝑠𝑒
Phase impedance
Change of base for impedance
Let’s consider two bases A and B and Z an impedance
𝑍𝐴𝑝𝑢 =
𝑍
𝑍𝐴𝑏𝑎𝑠𝑒
= 𝑍
𝑆𝐴𝑏𝑎𝑠𝑒
𝑉𝐴𝑏𝑎𝑠𝑒
2 → 𝑍 = 𝑍𝐴𝑝𝑢
𝑉𝐴𝑏𝑎𝑠𝑒
2
𝑆𝐴𝑏𝑎𝑠𝑒
𝑍𝐵𝑝𝑢 =
𝑍
𝑍𝐵𝑏𝑎𝑠𝑒
= 𝑍
𝑆𝐵𝑏𝑎𝑠𝑒
𝑉𝐵𝑏𝑎𝑠𝑒
2 → 𝑍 = 𝑍𝐵𝑝𝑢
𝑉𝐵𝑏𝑎𝑠𝑒
2
𝑆𝐵𝑏𝑎𝑠𝑒
So we find that
𝑍𝐴𝑝𝑢
𝑉𝐴𝑏𝑎𝑠𝑒
2
𝑆𝐴𝑏𝑎𝑠𝑒
= 𝑍𝐵𝑝𝑢
𝑉𝐵𝑏𝑎𝑠𝑒
2
𝑆𝐵𝑏𝑎𝑠𝑒
→ 𝑍𝐵𝑝𝑢 = 𝑍𝐴𝑝𝑢
𝑉𝐴𝑏𝑎𝑠𝑒
𝑉𝐵𝑏𝑎𝑠𝑒
2
𝑆𝐵𝑏𝑎𝑠𝑒
𝑆𝐴𝑏𝑎𝑠𝑒
Electrical Energy Systems Dr B. Diarra 13
Change of base for voltage
Let’s consider two bases A and B and 𝑉 a voltage
𝑉𝐴𝑝𝑢 =
𝑉
𝑉𝐴𝑏𝑎𝑠𝑒
→ 𝑉 = 𝑉𝐴𝑝𝑢𝑉𝐴𝑏𝑎𝑠𝑒
𝑉𝐵𝑝𝑢 =
𝑉
𝑉𝐵𝑏𝑎𝑠𝑒
→ 𝑉 = 𝑉𝐵𝑝𝑢𝑉𝐵𝑏𝑎𝑠𝑒
So we find that
𝑉𝐴𝑝𝑢𝑉𝐴𝑏𝑎𝑠𝑒 = 𝑉𝐵𝑝𝑢𝑉𝐵𝑏𝑎𝑠𝑒 → 𝑉𝐵𝑝𝑢 = 𝑉𝐴𝑝𝑢
𝑉𝐴𝑏𝑎𝑠𝑒
𝑉𝐵𝑏𝑎𝑠𝑒
Electrical Energy Systems Dr B. Diarra 14
Example
A power system consists of one synchronous generator and one synchronous motor
connected by two transformers and a transmission line. Create a per-phase, per-unit
equivalent circuit of this system using a base apparent power of 100 MVA and the base
voltage of G1 of 13.8 kV.
G1 ratings: 100 MVA, 13.8 kV, R=0.1 pu, XS=0.9 pu
T1 ratings: 100 MVA, 13.8/110 kV, R=0.01 pu, XS=0.05 pu
T2 ratings: 50 MVA, 120/14.4 kV, R=0.01 pu, XS=0.05 pu
M ratings: 50 MVA, 13.8 kV, R=0.1 pu, XS=1.1 pu
L1 ratings: R=15 Ω, X=75 Ω
Electrical Energy Systems Dr B. Diarra 15
Different steps
First step: find the base voltages
Second step: find the base impedance
Third step: convert impedances at the right base
Draw the per-unit per phase system
Electrical Energy Systems Dr B. Diarra 16
Example
The base quantities fixed by transformers!!
Electrical Energy Systems Dr B. Diarra 17
𝑉𝑏𝑎𝑠𝑒1 = 13.8 𝑘𝑉
𝑍𝑏𝑎𝑠𝑒1 =
𝑉𝑏𝑎𝑠𝑒1
2
𝑆𝑏𝑎𝑠𝑒
=
13.8𝑥 103 2
100𝑥106
= 1.9044 Ω
𝑉𝑏𝑎𝑠𝑒2 = 𝑉𝑏𝑎𝑠𝑒1
110 𝑘𝑉
13.8 𝑘𝑉
= 110 𝑘𝑉
𝑍𝑏𝑎𝑠𝑒2 =
𝑉𝑏𝑎𝑠𝑒2
2
𝑆𝑏𝑎𝑠𝑒
=
110𝑥 103 2
100𝑥106
= 121 Ω
𝑉𝑏𝑎𝑠𝑒3 = 𝑉𝑏𝑎𝑠𝑒2
14.4 𝑘𝑉
120 𝑘𝑉
= 13.2 𝑘𝑉
𝑍𝑏𝑎𝑠𝑒3 =
𝑉𝑏𝑎𝑠𝑒3
2
𝑆𝑏𝑎𝑠𝑒
=
13.2𝑥 103 2
100𝑥106
= 1.7424 Ω
Example
 For generator G1
𝑅𝑝𝑢 = 0.1𝑝𝑢 and 𝑋𝑆𝑝𝑢 = 0.9 𝑝𝑢 its ratings are equal to the base values
 For transformer T1
𝑅𝑝𝑢 = 0.01 pu and 𝑋𝑆𝑝𝑢 = 0.05 𝑝𝑢 its ratings are equal to the base values
 For transmission line L1
𝑅𝑝𝑢 =
𝑅
𝑍𝑏𝑎𝑠𝑒1
=
15
121
= 0.124 𝑝𝑢, 𝑋𝑝𝑢 =
𝑋
𝑍𝑏𝑎𝑠𝑒1
=
75
121
= 0.372 𝑝𝑢
Electrical Energy Systems Dr B. Diarra 18
Example
For transformer T2
𝑅𝑝𝑢𝑛𝑒𝑤 = 𝑅𝑝𝑢𝑜𝑙𝑑
𝑉𝑏𝑎𝑠𝑒𝑜𝑙𝑑
𝑉𝑏𝑎𝑠𝑒𝑛𝑒𝑤
2
𝑆𝑏𝑎𝑠𝑒𝑛𝑒𝑤
𝑆𝑏𝑎𝑠𝑒𝑜𝑙𝑑
= 0.01
14.4
13.2
2
100
50
= 0.024
𝑋𝑝𝑢𝑛𝑒𝑤 = 𝑋𝑝𝑢𝑜𝑙𝑑
𝑉𝑏𝑎𝑠𝑒𝑜𝑙𝑑
𝑉𝑏𝑎𝑠𝑒𝑛𝑒𝑤
2
𝑆𝑏𝑎𝑠𝑒𝑛𝑒𝑤
𝑆𝑏𝑎𝑠𝑒𝑜𝑙𝑑
= 0.05
14.4
13.2
2
100
50
= 0.120
For the machine M
𝑅𝑝𝑢𝑛𝑒𝑤 = 𝑅𝑝𝑢𝑜𝑙𝑑
𝑉𝑏𝑎𝑠𝑒𝑜𝑙𝑑
𝑉𝑏𝑎𝑠𝑒𝑛𝑒𝑤
2
𝑆𝑏𝑎𝑠𝑒𝑛𝑒𝑤
𝑆𝑏𝑎𝑠𝑒𝑜𝑙𝑑
= 0.1
13.8
13.2
2
100
50
= 0.219
𝑋𝑝𝑢𝑛𝑒𝑤 = 𝑋𝑝𝑢𝑜𝑙𝑑
𝑉𝑏𝑎𝑠𝑒𝑜𝑙𝑑
𝑉𝑏𝑎𝑠𝑒𝑛𝑒𝑤
2
𝑆𝑏𝑎𝑠𝑒𝑛𝑒𝑤
𝑆𝑏𝑎𝑠𝑒𝑜𝑙𝑑
= 1.1
13.8
13.2
2
100
50
= 2.405
Electrical Energy Systems Dr B. Diarra 19
Example
Per unit circuit (can be simplified)
Electrical Energy Systems Dr B. Diarra 20
𝑗0.9 𝑝𝑢
𝑗0.05 𝑝𝑢 𝑗0.62 𝑝𝑢 𝑗0.119 𝑝𝑢
𝑗2.405 𝑝𝑢
0.01 𝑝𝑢 0.124 𝑝𝑢
0.1 𝑝𝑢
0.0238 𝑝𝑢
0.219 𝑝𝑢
𝐸𝐺
𝐸𝑀
𝐺1
𝑀
Remarks
 Apparent power in per unit
𝑆 = 3𝑉𝐼∗
→ 𝑆𝑝𝑢 =
𝑆
𝑆𝑏𝑎𝑠𝑒
=
3𝑉𝐼∗
3𝑉𝑏𝑎𝑠𝑒𝐼𝑏𝑎𝑠𝑒
=
3𝑉𝐿𝐿𝐼∗
3𝑉𝑏𝑎𝑠𝑒𝐼𝑏𝑎𝑠𝑒
→ 𝑆𝑝𝑢 = 𝑉𝐿𝐿𝑝𝑢𝐼𝑝𝑢
∗
= 𝑉
𝑝𝑢𝐼𝑝𝑢
∗
 Ohm’s law gives
𝑉 = 𝑍𝐼 → 𝑉
𝑝𝑢 =
3𝑉
𝑉𝑏𝑎𝑠𝑒
=
3𝑍𝐼
3𝑍𝑏𝑎𝑠𝑒𝐼𝑏𝑎𝑠𝑒
→ 𝑉
𝑝𝑢 = 𝑍𝑝𝑢𝐼𝑝𝑢
 Finally the complex power becomes
𝑉
𝑝𝑢 = 𝑍𝑝𝑢𝐼𝑝𝑢 → 𝑆𝑝𝑢 =
𝑉
𝑝𝑢
2
𝑍𝑝𝑢
∗
Electrical Energy Systems Dr B. Diarra 21
Example2
• 44
Electrical Energy Systems Dr B. Diarra 22
Conclusion
Per unit representation makes easy the
manipulation of systems
Only amplitudes are concerned not phases
All the quantities can be represented in per unit
Useful in fault analysis and power flow studies
All electrical laws remains applicable
Electrical Energy Systems Dr B. Diarra 23

More Related Content

PPTX
5_2020_12_01!02_20_41_PM.pptx
PPTX
2850-107 Carrying out electrical assembly (H0) Solution.pptx
PPTX
Network analysis unit 2
PPSX
Three Phase Rectifier By Vivek Ahlawat
PPT
Lecture 8
PPTX
lec7 (1).pptx
PDF
Power System Analysis and Design
PDF
International Journal of Engineering Research and Development (IJERD)
5_2020_12_01!02_20_41_PM.pptx
2850-107 Carrying out electrical assembly (H0) Solution.pptx
Network analysis unit 2
Three Phase Rectifier By Vivek Ahlawat
Lecture 8
lec7 (1).pptx
Power System Analysis and Design
International Journal of Engineering Research and Development (IJERD)

Similar to Chap4 PerUnit representation.pdf (20)

PDF
Ms3621652169
PDF
Grid-Connection Control and Simulation of PMSG Wind Power System Based on Mul...
PDF
7- 1st semester_BJT_AC_Analysis (re model)-1.pdf
PPTX
ALL DAY EFFICIENCY
PDF
Design high gain dc dc boost converter with coupling inductor and simulation ...
PDF
Per unit calculation
PPTX
Electrical Troubleshooting
PDF
A modified Cuk DC-DC converter for DC microgrid systems
PPSX
ECNG 3015 - PU system and 3Phase Fault calculation
PDF
Drive_Lecture_4_slip_power (1) for machines
PDF
508 144-151
PDF
Modified Bidirectional Converter with Current Fed Inverter
PPTX
Sheela arokia mary
PDF
Ee321 lab 2
PDF
Coupled Inductor Based High Step-Up DC-DC Converter for Multi Input PV System
PPTX
WATTMETER CONSTRUCTION AND TORQUE EQAUTION
PDF
Per unit analysis
PPT
3.4 analysing transformer
PPTX
Amplidyne
PDF
[LEC-03] Per Unit Calculations (Part-1).pdf
Ms3621652169
Grid-Connection Control and Simulation of PMSG Wind Power System Based on Mul...
7- 1st semester_BJT_AC_Analysis (re model)-1.pdf
ALL DAY EFFICIENCY
Design high gain dc dc boost converter with coupling inductor and simulation ...
Per unit calculation
Electrical Troubleshooting
A modified Cuk DC-DC converter for DC microgrid systems
ECNG 3015 - PU system and 3Phase Fault calculation
Drive_Lecture_4_slip_power (1) for machines
508 144-151
Modified Bidirectional Converter with Current Fed Inverter
Sheela arokia mary
Ee321 lab 2
Coupled Inductor Based High Step-Up DC-DC Converter for Multi Input PV System
WATTMETER CONSTRUCTION AND TORQUE EQAUTION
Per unit analysis
3.4 analysing transformer
Amplidyne
[LEC-03] Per Unit Calculations (Part-1).pdf
Ad

Recently uploaded (20)

PDF
BP 704 T. NOVEL DRUG DELIVERY SYSTEMS (UNIT 2).pdf
PPTX
Module on health assessment of CHN. pptx
PDF
My India Quiz Book_20210205121199924.pdf
PPTX
What’s under the hood: Parsing standardized learning content for AI
PPTX
B.Sc. DS Unit 2 Software Engineering.pptx
PDF
International_Financial_Reporting_Standa.pdf
PDF
Vision Prelims GS PYQ Analysis 2011-2022 www.upscpdf.com.pdf
PDF
Skin Care and Cosmetic Ingredients Dictionary ( PDFDrive ).pdf
PDF
1.3 FINAL REVISED K-10 PE and Health CG 2023 Grades 4-10 (1).pdf
PPTX
ELIAS-SEZIURE AND EPilepsy semmioan session.pptx
PPTX
Education and Perspectives of Education.pptx
PDF
Myanmar Dental Journal, The Journal of the Myanmar Dental Association (2013).pdf
PDF
Environmental Education MCQ BD2EE - Share Source.pdf
PDF
Journal of Dental Science - UDMY (2020).pdf
PDF
LEARNERS WITH ADDITIONAL NEEDS ProfEd Topic
PDF
Empowerment Technology for Senior High School Guide
PDF
Race Reva University – Shaping Future Leaders in Artificial Intelligence
PDF
LIFE & LIVING TRILOGY - PART - (2) THE PURPOSE OF LIFE.pdf
PDF
Climate and Adaptation MCQs class 7 from chatgpt
PDF
David L Page_DCI Research Study Journey_how Methodology can inform one's prac...
BP 704 T. NOVEL DRUG DELIVERY SYSTEMS (UNIT 2).pdf
Module on health assessment of CHN. pptx
My India Quiz Book_20210205121199924.pdf
What’s under the hood: Parsing standardized learning content for AI
B.Sc. DS Unit 2 Software Engineering.pptx
International_Financial_Reporting_Standa.pdf
Vision Prelims GS PYQ Analysis 2011-2022 www.upscpdf.com.pdf
Skin Care and Cosmetic Ingredients Dictionary ( PDFDrive ).pdf
1.3 FINAL REVISED K-10 PE and Health CG 2023 Grades 4-10 (1).pdf
ELIAS-SEZIURE AND EPilepsy semmioan session.pptx
Education and Perspectives of Education.pptx
Myanmar Dental Journal, The Journal of the Myanmar Dental Association (2013).pdf
Environmental Education MCQ BD2EE - Share Source.pdf
Journal of Dental Science - UDMY (2020).pdf
LEARNERS WITH ADDITIONAL NEEDS ProfEd Topic
Empowerment Technology for Senior High School Guide
Race Reva University – Shaping Future Leaders in Artificial Intelligence
LIFE & LIVING TRILOGY - PART - (2) THE PURPOSE OF LIFE.pdf
Climate and Adaptation MCQs class 7 from chatgpt
David L Page_DCI Research Study Journey_how Methodology can inform one's prac...
Ad

Chap4 PerUnit representation.pdf

  • 1. Per Unit Representation Dr Bakary Diarra BIUST Palapye
  • 2. Per-Unit representation  In system with many generators and transformers  Many different currents and voltages  Use base quantities to make the system more uniform  Quantities: apparent power, voltages, current and impedances Electrical Energy Systems Dr B. Diarra 2
  • 3. Example  Let’s consider this circuit Electrical Energy Systems Dr B. Diarra 3 𝑉𝑆 𝑍𝑆 𝑉𝐿 DC 𝑍𝐿 𝑉𝑆 = 1000 𝑍𝑆 = 𝑗10 𝑍𝐿 = 60 + 𝑗70 The current in the circuit is 𝐼𝑆 = 𝑉𝑆 𝑍𝑆 + 𝑍𝐿 = 1000 60 + 𝑗80 = 10 < −53° 𝐴 The apparent power of the system 𝑆 = 𝑉𝑆. 𝐼𝑆 ∗ = 1000 ∗ 10 < 53° = 10000 𝑉𝐴 < 53° The overall impedance 𝑍𝑇 = 𝑍𝑆 + 𝑍𝐿 = 60 + 𝑗80 = 100 < 53° The amplitude of these quantities will be used as reference in this circuit
  • 4. Example Base quantities are real (modules): 1. Apparent power 𝑆𝑏𝑎𝑠𝑒 = 10 𝑘𝑉𝐴 2. Input voltage 𝑉𝑏𝑎𝑠𝑒 = 1000 𝑉 3. Circuit current 𝐼𝑏𝑎𝑠𝑒 = 10 𝐴 4. Overall impedance 𝑍𝑏𝑎𝑠𝑒 = 100 Ω Electrical Energy Systems Dr B. Diarra 4
  • 5. Example Per unit quantities of the circuit, 𝑉𝐿 = 𝑍𝐿 𝑍𝑇 𝑉𝑆 = 60+𝑗70 60+𝑗80 ∗ 1000 = 920 + 𝑗60, so 𝑉𝐿𝑝𝑢 = 𝑉𝐿 𝑉𝑏𝑎𝑠𝑒 = 0.92 + 𝑗0.06𝑝. 𝑢 → 𝑉𝐿𝑝𝑢 = 0.922𝑝. 𝑢 The impedances 𝑍𝐿𝑝𝑢 = 𝑍𝐿 𝑍𝑏𝑎𝑠𝑒 = 60 + 𝑗70 100 = 0.6 + 𝑗0.7𝑝. 𝑢 𝑍𝑆𝑝𝑢 = 𝑍𝑆 𝑍𝑏𝑎𝑠𝑒 = 𝑗10 100 = 𝑗0.1 𝑝. 𝑢 Electrical Energy Systems Dr B. Diarra 5
  • 6. Definition The circuit becomes Per definition 𝑝𝑒𝑟 𝑢𝑛𝑖𝑡 𝑣𝑎𝑙𝑢𝑒 = 𝑎𝑐𝑡𝑢𝑎𝑙 𝑣𝑎𝑙𝑢𝑒 𝑏𝑎𝑠𝑒 𝑣𝑎𝑙𝑢𝑒 On equipment, percent values are used 𝑝𝑒𝑟𝑐𝑒𝑛𝑡 𝑣𝑎𝑙𝑢𝑒 = 𝑝𝑒𝑟 𝑢𝑛𝑖𝑡 𝑣𝑎𝑙𝑢𝑒 𝑥 100 Electrical Energy Systems Dr B. Diarra 6 1 𝑝. 𝑢 𝑍𝑆 = 𝑗0.1 𝑝. 𝑢 𝑍𝐿 = 0.922 < 49° 𝑝. 𝑢 DC
  • 7. Generators The ratings of the generators are chosen as base In the previous example 𝑆𝑏𝑎𝑠𝑒 = 10 𝑘𝑉𝐴 𝑉𝑏𝑎𝑠𝑒 = 1000 𝑉 𝐼𝑏𝑎𝑠𝑒 = 𝑆𝑏𝑎𝑠𝑒 𝑉𝑏𝑎𝑠𝑒 = 10 𝐴 𝑍𝑏𝑎𝑠𝑒 = 𝑉𝑏𝑎𝑠𝑒 2 𝑆𝑏𝑎𝑠𝑒 = 100 Ω Electrical Energy Systems Dr B. Diarra 8
  • 8. Transformers Let’s consider the following transformer The voltage and power ratings are used as base values, e.g the base voltages are different for the primary and secondary windings. Electrical Energy Systems Dr B. Diarra 9 Ratings 𝑆 = 2000 𝑉𝐴 𝑉1/𝑉2 = 200/400 𝑉 𝑍 = 𝑗4 Ω 𝑛 = 2 𝑉1 𝑉2 Low voltage side High voltage side 𝑛 = 2 𝑉1 𝑉2 LV side HV side 𝑍 = 𝑗16 Ω 𝑆1 = 𝑉1𝐼1 ∗ = 𝑉1 2 /𝑍1 ∗ and using 𝑉2 = 𝑛𝑉1 we get 𝑆1 = 𝑉2 2 /𝑛2 𝑍1 ∗ , → 𝑍2 = 𝑛2 𝑍1
  • 9. Base values For the transformer Electrical Energy Systems Dr B. Diarra 10 Quantities Low voltage side High voltage side 𝑆𝑏𝑎𝑠𝑒 2000 𝑉𝐴 2000 𝑉𝐴 𝑉𝑏𝑎𝑠𝑒 200 𝑉 400 𝑉 𝐼𝑏𝑎𝑠𝑒 𝑆𝑏𝑎𝑠𝑒 𝑉𝑏𝑎𝑠𝑒 = 10 𝐴 𝑆𝑏𝑎𝑠𝑒 𝑉𝑏𝑎𝑠𝑒 = 5 𝐴 𝑍𝑏𝑎𝑠𝑒 𝑉𝑏𝑎𝑠𝑒 2 𝑆𝑏𝑎𝑠𝑒 = 20 Ω 𝑉𝑏𝑎𝑠𝑒 2 𝑆𝑏𝑎𝑠𝑒 = 80 Ω 𝑍𝑝𝑢 𝑍 𝑍𝑏𝑎𝑠𝑒 = 𝑗4 20 = 𝑗0.2 𝑍 𝑍𝑏𝑎𝑠𝑒 = 𝑗16 80 = 𝑗0.2
  • 10. Transformers The p.u of the transformer is the same The per-unit impedance is the same for both sides of the transformer Electrical Energy Systems Dr B. Diarra 11 𝑗0.2 𝑝. 𝑢 Per unit model of the transformer
  • 11. Three phase systems The base quantities of three-phase systems are Electrical Energy Systems Dr B. Diarra 12 Quantities Low voltage side Quantities 𝑉𝑏𝑎𝑠𝑒 𝑉𝐿𝐿 = 3𝑉𝐿𝑁 Line-to-line voltage 𝑆𝑏𝑎𝑠𝑒 3𝑉𝑏𝑎𝑠𝑒𝐼𝑏𝑎𝑠𝑒 Apparent power 𝐼𝑏𝑎𝑠𝑒 𝑆𝑏𝑎𝑠𝑒 3𝑉𝑏𝑎𝑠𝑒 Line current 𝑍𝑏𝑎𝑠𝑒 𝑉𝐿𝐿 3𝐼𝑏𝑎𝑠𝑒 = 𝑉𝑏𝑎𝑠𝑒 2 𝑆𝑏𝑎𝑠𝑒 Phase impedance
  • 12. Change of base for impedance Let’s consider two bases A and B and Z an impedance 𝑍𝐴𝑝𝑢 = 𝑍 𝑍𝐴𝑏𝑎𝑠𝑒 = 𝑍 𝑆𝐴𝑏𝑎𝑠𝑒 𝑉𝐴𝑏𝑎𝑠𝑒 2 → 𝑍 = 𝑍𝐴𝑝𝑢 𝑉𝐴𝑏𝑎𝑠𝑒 2 𝑆𝐴𝑏𝑎𝑠𝑒 𝑍𝐵𝑝𝑢 = 𝑍 𝑍𝐵𝑏𝑎𝑠𝑒 = 𝑍 𝑆𝐵𝑏𝑎𝑠𝑒 𝑉𝐵𝑏𝑎𝑠𝑒 2 → 𝑍 = 𝑍𝐵𝑝𝑢 𝑉𝐵𝑏𝑎𝑠𝑒 2 𝑆𝐵𝑏𝑎𝑠𝑒 So we find that 𝑍𝐴𝑝𝑢 𝑉𝐴𝑏𝑎𝑠𝑒 2 𝑆𝐴𝑏𝑎𝑠𝑒 = 𝑍𝐵𝑝𝑢 𝑉𝐵𝑏𝑎𝑠𝑒 2 𝑆𝐵𝑏𝑎𝑠𝑒 → 𝑍𝐵𝑝𝑢 = 𝑍𝐴𝑝𝑢 𝑉𝐴𝑏𝑎𝑠𝑒 𝑉𝐵𝑏𝑎𝑠𝑒 2 𝑆𝐵𝑏𝑎𝑠𝑒 𝑆𝐴𝑏𝑎𝑠𝑒 Electrical Energy Systems Dr B. Diarra 13
  • 13. Change of base for voltage Let’s consider two bases A and B and 𝑉 a voltage 𝑉𝐴𝑝𝑢 = 𝑉 𝑉𝐴𝑏𝑎𝑠𝑒 → 𝑉 = 𝑉𝐴𝑝𝑢𝑉𝐴𝑏𝑎𝑠𝑒 𝑉𝐵𝑝𝑢 = 𝑉 𝑉𝐵𝑏𝑎𝑠𝑒 → 𝑉 = 𝑉𝐵𝑝𝑢𝑉𝐵𝑏𝑎𝑠𝑒 So we find that 𝑉𝐴𝑝𝑢𝑉𝐴𝑏𝑎𝑠𝑒 = 𝑉𝐵𝑝𝑢𝑉𝐵𝑏𝑎𝑠𝑒 → 𝑉𝐵𝑝𝑢 = 𝑉𝐴𝑝𝑢 𝑉𝐴𝑏𝑎𝑠𝑒 𝑉𝐵𝑏𝑎𝑠𝑒 Electrical Energy Systems Dr B. Diarra 14
  • 14. Example A power system consists of one synchronous generator and one synchronous motor connected by two transformers and a transmission line. Create a per-phase, per-unit equivalent circuit of this system using a base apparent power of 100 MVA and the base voltage of G1 of 13.8 kV. G1 ratings: 100 MVA, 13.8 kV, R=0.1 pu, XS=0.9 pu T1 ratings: 100 MVA, 13.8/110 kV, R=0.01 pu, XS=0.05 pu T2 ratings: 50 MVA, 120/14.4 kV, R=0.01 pu, XS=0.05 pu M ratings: 50 MVA, 13.8 kV, R=0.1 pu, XS=1.1 pu L1 ratings: R=15 Ω, X=75 Ω Electrical Energy Systems Dr B. Diarra 15
  • 15. Different steps First step: find the base voltages Second step: find the base impedance Third step: convert impedances at the right base Draw the per-unit per phase system Electrical Energy Systems Dr B. Diarra 16
  • 16. Example The base quantities fixed by transformers!! Electrical Energy Systems Dr B. Diarra 17 𝑉𝑏𝑎𝑠𝑒1 = 13.8 𝑘𝑉 𝑍𝑏𝑎𝑠𝑒1 = 𝑉𝑏𝑎𝑠𝑒1 2 𝑆𝑏𝑎𝑠𝑒 = 13.8𝑥 103 2 100𝑥106 = 1.9044 Ω 𝑉𝑏𝑎𝑠𝑒2 = 𝑉𝑏𝑎𝑠𝑒1 110 𝑘𝑉 13.8 𝑘𝑉 = 110 𝑘𝑉 𝑍𝑏𝑎𝑠𝑒2 = 𝑉𝑏𝑎𝑠𝑒2 2 𝑆𝑏𝑎𝑠𝑒 = 110𝑥 103 2 100𝑥106 = 121 Ω 𝑉𝑏𝑎𝑠𝑒3 = 𝑉𝑏𝑎𝑠𝑒2 14.4 𝑘𝑉 120 𝑘𝑉 = 13.2 𝑘𝑉 𝑍𝑏𝑎𝑠𝑒3 = 𝑉𝑏𝑎𝑠𝑒3 2 𝑆𝑏𝑎𝑠𝑒 = 13.2𝑥 103 2 100𝑥106 = 1.7424 Ω
  • 17. Example  For generator G1 𝑅𝑝𝑢 = 0.1𝑝𝑢 and 𝑋𝑆𝑝𝑢 = 0.9 𝑝𝑢 its ratings are equal to the base values  For transformer T1 𝑅𝑝𝑢 = 0.01 pu and 𝑋𝑆𝑝𝑢 = 0.05 𝑝𝑢 its ratings are equal to the base values  For transmission line L1 𝑅𝑝𝑢 = 𝑅 𝑍𝑏𝑎𝑠𝑒1 = 15 121 = 0.124 𝑝𝑢, 𝑋𝑝𝑢 = 𝑋 𝑍𝑏𝑎𝑠𝑒1 = 75 121 = 0.372 𝑝𝑢 Electrical Energy Systems Dr B. Diarra 18
  • 18. Example For transformer T2 𝑅𝑝𝑢𝑛𝑒𝑤 = 𝑅𝑝𝑢𝑜𝑙𝑑 𝑉𝑏𝑎𝑠𝑒𝑜𝑙𝑑 𝑉𝑏𝑎𝑠𝑒𝑛𝑒𝑤 2 𝑆𝑏𝑎𝑠𝑒𝑛𝑒𝑤 𝑆𝑏𝑎𝑠𝑒𝑜𝑙𝑑 = 0.01 14.4 13.2 2 100 50 = 0.024 𝑋𝑝𝑢𝑛𝑒𝑤 = 𝑋𝑝𝑢𝑜𝑙𝑑 𝑉𝑏𝑎𝑠𝑒𝑜𝑙𝑑 𝑉𝑏𝑎𝑠𝑒𝑛𝑒𝑤 2 𝑆𝑏𝑎𝑠𝑒𝑛𝑒𝑤 𝑆𝑏𝑎𝑠𝑒𝑜𝑙𝑑 = 0.05 14.4 13.2 2 100 50 = 0.120 For the machine M 𝑅𝑝𝑢𝑛𝑒𝑤 = 𝑅𝑝𝑢𝑜𝑙𝑑 𝑉𝑏𝑎𝑠𝑒𝑜𝑙𝑑 𝑉𝑏𝑎𝑠𝑒𝑛𝑒𝑤 2 𝑆𝑏𝑎𝑠𝑒𝑛𝑒𝑤 𝑆𝑏𝑎𝑠𝑒𝑜𝑙𝑑 = 0.1 13.8 13.2 2 100 50 = 0.219 𝑋𝑝𝑢𝑛𝑒𝑤 = 𝑋𝑝𝑢𝑜𝑙𝑑 𝑉𝑏𝑎𝑠𝑒𝑜𝑙𝑑 𝑉𝑏𝑎𝑠𝑒𝑛𝑒𝑤 2 𝑆𝑏𝑎𝑠𝑒𝑛𝑒𝑤 𝑆𝑏𝑎𝑠𝑒𝑜𝑙𝑑 = 1.1 13.8 13.2 2 100 50 = 2.405 Electrical Energy Systems Dr B. Diarra 19
  • 19. Example Per unit circuit (can be simplified) Electrical Energy Systems Dr B. Diarra 20 𝑗0.9 𝑝𝑢 𝑗0.05 𝑝𝑢 𝑗0.62 𝑝𝑢 𝑗0.119 𝑝𝑢 𝑗2.405 𝑝𝑢 0.01 𝑝𝑢 0.124 𝑝𝑢 0.1 𝑝𝑢 0.0238 𝑝𝑢 0.219 𝑝𝑢 𝐸𝐺 𝐸𝑀 𝐺1 𝑀
  • 20. Remarks  Apparent power in per unit 𝑆 = 3𝑉𝐼∗ → 𝑆𝑝𝑢 = 𝑆 𝑆𝑏𝑎𝑠𝑒 = 3𝑉𝐼∗ 3𝑉𝑏𝑎𝑠𝑒𝐼𝑏𝑎𝑠𝑒 = 3𝑉𝐿𝐿𝐼∗ 3𝑉𝑏𝑎𝑠𝑒𝐼𝑏𝑎𝑠𝑒 → 𝑆𝑝𝑢 = 𝑉𝐿𝐿𝑝𝑢𝐼𝑝𝑢 ∗ = 𝑉 𝑝𝑢𝐼𝑝𝑢 ∗  Ohm’s law gives 𝑉 = 𝑍𝐼 → 𝑉 𝑝𝑢 = 3𝑉 𝑉𝑏𝑎𝑠𝑒 = 3𝑍𝐼 3𝑍𝑏𝑎𝑠𝑒𝐼𝑏𝑎𝑠𝑒 → 𝑉 𝑝𝑢 = 𝑍𝑝𝑢𝐼𝑝𝑢  Finally the complex power becomes 𝑉 𝑝𝑢 = 𝑍𝑝𝑢𝐼𝑝𝑢 → 𝑆𝑝𝑢 = 𝑉 𝑝𝑢 2 𝑍𝑝𝑢 ∗ Electrical Energy Systems Dr B. Diarra 21
  • 21. Example2 • 44 Electrical Energy Systems Dr B. Diarra 22
  • 22. Conclusion Per unit representation makes easy the manipulation of systems Only amplitudes are concerned not phases All the quantities can be represented in per unit Useful in fault analysis and power flow studies All electrical laws remains applicable Electrical Energy Systems Dr B. Diarra 23