SlideShare a Scribd company logo
CHAPTER IINUMERICAL APPROXIMATIONBY: MARIA FERNANDA VERGARA M.UNIVERSIDAD INDUSTRIAL DE SANTANDER
NUMERICAL APPROXIMATIONA numericalapproximationis a number X’ thatrepresentsanothernumberwhichitsexactvalueis X. X’ becomes more exactwhenisclosertotheexactvalue of XIsimportanttotakeintoaccountthisnumericalapproximationbecausenumericalsolutions are notexact, butthemainobjectiveistoget a solutionreallyclosetothe real solution.
SIGNIFICANT FIGURES“The concept of  a significant figure, ordigit, has beendevelopedtoformallydesignatethereliability of a numericalvalue. Thesignificantdigits of a number are thosethat can beusedwithconfidence. Theycorrespondtothenumber of certaindigits plus oneestimateddigit.”-Numericalmethodsforengineers, CHAPRA-.Whysignificant figures are important in numericalmethods?
ACCURACY AND PRECISION
ERROR DEFINITIONSNumericalerrorsoriginatewhenyouapproximatetorepresentexactmathematicalquantitiesoroperations. Thiserrors can be: Truncationerrorswhichhappenwhenapproximations are usedtorepresentmathemathicalprocedures; and round-off errorswhichhappenwhenyou use numberswithlimitedsignificant figures toexpressexactnumbers.ET=Real Value - Approximation
RELATIVE ERRORRelative error is a waytoaccountforthe magnitudes of thequantitiesbeingevaluatedTrue percentrelative error
EXAMPLE EXERCISEThemeasure of a bridge is 9999cm, and themeasure of a rivetis 9 cm, ifthe true values are 10.000cm and 10cm, respectively, compute the true error and the true percentrelative error foreach case.
In real worldapplications, wewillnotknowthe true value. So theprocedureistonormalizethe error usingthebestavaliableestimate of the true value:Usinaniterativeapproachto compute answers, theapproximatedrelative error
ROUND-OFF ERRORSThiskind of errorsoriginatebecausecomputers can retain a finitenumber of significant figures, so numbers as e, π, cannotbeexpressedexactly.“Truncationerrors are thosethatresultfromusinganapproximation in place of anexactmathematicalprocedure.”TRUNCATION ERRORS

More Related Content

PDF
Integration
PPT
Expository paragraph
PPTX
Chapter v
PDF
Applied numerical methods lec3
PPTX
Presentation2
PDF
Roots of equations
PPTX
Gauss jordan
PDF
Applied numerical methods lec4
Integration
Expository paragraph
Chapter v
Applied numerical methods lec3
Presentation2
Roots of equations
Gauss jordan
Applied numerical methods lec4

Similar to Chapter 2: Numerical Approximation (20)

PPTX
Numerical approximation
PPTX
NUMERICAL APPROXIMATION
PPTX
Numerical approximation
PPTX
Cheg 2052 – introduction.pptx
PPTX
Numerical Methods.pptx
PPTX
Numerical approximation
PPT
Lesson 1 Measuring Errors.ppt the material regards errors in measuring a
PPT
introduction to Numerical Analysis
PPT
Numerical Analysis And Linear Algebra
PPTX
Aproximacion numerica
PPTX
PPT
PDF
Métodos numéricos - introducción a los métodos numéricos
PDF
NUMERICA METHODS 1 final touch summary for test 1
PPTX
Application's of Numerical Math in CSE
PDF
Numerical approximation
PPT
Numerical approximation and solution of equations
PDF
Multivariate Approximation and Applications 1st Edition N. Dyn
Numerical approximation
NUMERICAL APPROXIMATION
Numerical approximation
Cheg 2052 – introduction.pptx
Numerical Methods.pptx
Numerical approximation
Lesson 1 Measuring Errors.ppt the material regards errors in measuring a
introduction to Numerical Analysis
Numerical Analysis And Linear Algebra
Aproximacion numerica
Métodos numéricos - introducción a los métodos numéricos
NUMERICA METHODS 1 final touch summary for test 1
Application's of Numerical Math in CSE
Numerical approximation
Numerical approximation and solution of equations
Multivariate Approximation and Applications 1st Edition N. Dyn
Ad

More from Maria Fernanda (11)

PDF
Estudios de-casos-internacionales-de-ciudades-inteligentes-medellin-colombia
PDF
Smart cities a lesson from barcelona
PDF
Internet of things en las smart cities
PPTX
Chapter 4: Linear Algebraic Equations
PDF
Roots of polynomials
PPT
Roots of polynomials
PPT
Chapter 3: Roots of Equations
PPTX
CHAPTER 2: Numerical Approximation
PPT
Chapter 1: Darcy's law
PPT
CHAPTER 1: Modeling
PPT
Chapter I
Estudios de-casos-internacionales-de-ciudades-inteligentes-medellin-colombia
Smart cities a lesson from barcelona
Internet of things en las smart cities
Chapter 4: Linear Algebraic Equations
Roots of polynomials
Roots of polynomials
Chapter 3: Roots of Equations
CHAPTER 2: Numerical Approximation
Chapter 1: Darcy's law
CHAPTER 1: Modeling
Chapter I
Ad

Recently uploaded (20)

PDF
medical_surgical_nursing_10th_edition_ignatavicius_TEST_BANK_pdf.pdf
PDF
ChatGPT for Dummies - Pam Baker Ccesa007.pdf
PDF
A GUIDE TO GENETICS FOR UNDERGRADUATE MEDICAL STUDENTS
PPTX
Onco Emergencies - Spinal cord compression Superior vena cava syndrome Febr...
PDF
RMMM.pdf make it easy to upload and study
PPTX
Digestion and Absorption of Carbohydrates, Proteina and Fats
PPTX
Final Presentation General Medicine 03-08-2024.pptx
PDF
Practical Manual AGRO-233 Principles and Practices of Natural Farming
PDF
Chinmaya Tiranga quiz Grand Finale.pdf
PDF
1_English_Language_Set_2.pdf probationary
PDF
Black Hat USA 2025 - Micro ICS Summit - ICS/OT Threat Landscape
PDF
Supply Chain Operations Speaking Notes -ICLT Program
PDF
OBE - B.A.(HON'S) IN INTERIOR ARCHITECTURE -Ar.MOHIUDDIN.pdf
PPTX
Orientation - ARALprogram of Deped to the Parents.pptx
PDF
Complications of Minimal Access Surgery at WLH
PPTX
Tissue processing ( HISTOPATHOLOGICAL TECHNIQUE
PDF
Trump Administration's workforce development strategy
PPTX
Introduction to Building Materials
PDF
Computing-Curriculum for Schools in Ghana
PPTX
Introduction-to-Literarature-and-Literary-Studies-week-Prelim-coverage.pptx
medical_surgical_nursing_10th_edition_ignatavicius_TEST_BANK_pdf.pdf
ChatGPT for Dummies - Pam Baker Ccesa007.pdf
A GUIDE TO GENETICS FOR UNDERGRADUATE MEDICAL STUDENTS
Onco Emergencies - Spinal cord compression Superior vena cava syndrome Febr...
RMMM.pdf make it easy to upload and study
Digestion and Absorption of Carbohydrates, Proteina and Fats
Final Presentation General Medicine 03-08-2024.pptx
Practical Manual AGRO-233 Principles and Practices of Natural Farming
Chinmaya Tiranga quiz Grand Finale.pdf
1_English_Language_Set_2.pdf probationary
Black Hat USA 2025 - Micro ICS Summit - ICS/OT Threat Landscape
Supply Chain Operations Speaking Notes -ICLT Program
OBE - B.A.(HON'S) IN INTERIOR ARCHITECTURE -Ar.MOHIUDDIN.pdf
Orientation - ARALprogram of Deped to the Parents.pptx
Complications of Minimal Access Surgery at WLH
Tissue processing ( HISTOPATHOLOGICAL TECHNIQUE
Trump Administration's workforce development strategy
Introduction to Building Materials
Computing-Curriculum for Schools in Ghana
Introduction-to-Literarature-and-Literary-Studies-week-Prelim-coverage.pptx

Chapter 2: Numerical Approximation

  • 1. CHAPTER IINUMERICAL APPROXIMATIONBY: MARIA FERNANDA VERGARA M.UNIVERSIDAD INDUSTRIAL DE SANTANDER
  • 2. NUMERICAL APPROXIMATIONA numericalapproximationis a number X’ thatrepresentsanothernumberwhichitsexactvalueis X. X’ becomes more exactwhenisclosertotheexactvalue of XIsimportanttotakeintoaccountthisnumericalapproximationbecausenumericalsolutions are notexact, butthemainobjectiveistoget a solutionreallyclosetothe real solution.
  • 3. SIGNIFICANT FIGURES“The concept of a significant figure, ordigit, has beendevelopedtoformallydesignatethereliability of a numericalvalue. Thesignificantdigits of a number are thosethat can beusedwithconfidence. Theycorrespondtothenumber of certaindigits plus oneestimateddigit.”-Numericalmethodsforengineers, CHAPRA-.Whysignificant figures are important in numericalmethods?
  • 5. ERROR DEFINITIONSNumericalerrorsoriginatewhenyouapproximatetorepresentexactmathematicalquantitiesoroperations. Thiserrors can be: Truncationerrorswhichhappenwhenapproximations are usedtorepresentmathemathicalprocedures; and round-off errorswhichhappenwhenyou use numberswithlimitedsignificant figures toexpressexactnumbers.ET=Real Value - Approximation
  • 6. RELATIVE ERRORRelative error is a waytoaccountforthe magnitudes of thequantitiesbeingevaluatedTrue percentrelative error
  • 7. EXAMPLE EXERCISEThemeasure of a bridge is 9999cm, and themeasure of a rivetis 9 cm, ifthe true values are 10.000cm and 10cm, respectively, compute the true error and the true percentrelative error foreach case.
  • 8. In real worldapplications, wewillnotknowthe true value. So theprocedureistonormalizethe error usingthebestavaliableestimate of the true value:Usinaniterativeapproachto compute answers, theapproximatedrelative error
  • 9. ROUND-OFF ERRORSThiskind of errorsoriginatebecausecomputers can retain a finitenumber of significant figures, so numbers as e, π, cannotbeexpressedexactly.“Truncationerrors are thosethatresultfromusinganapproximation in place of anexactmathematicalprocedure.”TRUNCATION ERRORS