SlideShare a Scribd company logo
5
Most read
10
Most read
19
Most read
Chapter No. 04
Moment Of Inertia
C304.4
Determine Area Moment of Inertia of regular and composite
sections.
MOMENT OF INERTIA
Moment of Inertia:
The product of the elemental area and square of the
perpendicular distance between the centroid of area and the
axis of reference is the “Moment of Inertia” about the
reference axis.
Ixx
= ∫dA. y2
Iyy
= ∫dA. x2
x
y
x
y
dA
It is also called second moment of area because first
moment of elemental area is dA.y and dA.x; and if it is
again multiplied by the distance,we get second
moment of elemental area as (dA.y)y and (dA.x)x.
Polar moment of Inertia
(Perpendicular Axes theorem)
The moment of inertia of an area about an axis perpendicular
to the plane of the area is called “Polar Moment of Inertia”
and it is denoted by symbol Izz
or J or Ip
. The moment of
inertia of an area in xy plane w.r.to z. axis is Izz
= Ip
= J =
∫r2
dA = ∫(x2
+ y2
) dA = ∫x2
dA + ∫y2
dA = Ixx
+Iyy
O
y
x
r
z
x
Y
Hence polar M.I. for an area w.r.t. an axis perpendicular to
its plane of area is equal to the sum of the M.I. about any
two mutually perpendicular axes in its plane, passing
through the point of intersection of the polar axis and the
area.
PERPENDICULAR AXIS THEOREM
Parallel Axis Theorem
y
x x
x0
x0
*
G
Ixx = dA. y2
∫
_
= dA (d +y')
∫ 2
_ _
= dA (d
∫ 2
+ y'2
+ 2dy')
_
= dA. d
∫ 2
+ dAy
∫ ΄2
+ 2d.dAy'
∫
_
d2
dA = A.(d)
∫
2
∫dA. y'2 = Ix0x0
_
2d dAy’ = 0
∫
( since Ist moment of area about centroidal axis = 0)
_
Ix x
= Ix
0
x
0
+Ad2
Hence, moment of inertia of any area about an axis xx is
equal to the M.I. about parallel centroidal axis plus the
product of the total area and square of the distance
between the two axes.
Radius of Gyration
It is the perpendicular distance at which the whole area may be
assumed to be concentrated, yielding the same second
moment of the area above the axis under consideration.
Iyy
= A.ryy
2
Ixx
= A.rxx
2
ryy
= √ Iyy
/A
And rxx
= √ Ixx
/A
y
y
A
rxx
A
x x
rxx
and ryy
are called the radii of gyration
ryy
MOMENT OF INERTIA BY DIRECT INTEGRATION
d
dy
x0
x
x
d/2
x0
y
b
M.I. about its horizontal centroidal axis :
G
.
RECTANGLE :
IXoXo = -d/2
∫
+d/2
dAy2
=-d/2∫
+d/2
(b.dy)y
2
= bd3
/12
About its base
IXX=IXoXo +A(d)2
Where d = d/2, the
distance between axes xx
and xoxo
3 2
h
x0
x
h/3
x0
b
x
y
(h-y)
dy
(2) TRIANGLE :
(a) M.I. about its base :
Ixx = dA.y
 2
= (x.dy)y
 2
From similar triangles
b/h = x/(h-y)
 x = b . (h-y)/h
h
Ixx = (b . (h-y)y
 2
.dy)/h
0
= b[ h (y3
/3) – y4
/4 ]/h
= bh3
/12
(b) Moment of inertia about its centroidal axis:
_
Ixx = Ix
0
x
0
+ Ad2
_
Ix
0
x
0
= Ixx – Ad2
= bh3
/12 – bh/2 . (h/3)2
= bh3
/36
Ix
0
x
0
= dA . y
 2
R 2
= (x.d .dr) r
   2
Sin2

0 0
R 2
= r
  3
.dr Sin2
d
 
0 0
R 2
= r
 3
dr {(1-

Cos2 )/2} d
 
0
R
0
2
=[r4
/4] [ /2 – Sin2 /4]
 
0 0
x
x
x0
x0
R

d

y=rSin
3. CIRCULAR AREA:
r
Ixx = dA . y
 2
R 
= (r.d .dr) r
   2
Sin2

0
R
0

= r
 3
.dr Sin
 2
d
 
0 0
R 
= r
  3
dr (1- Cos2 )/2) d
 
0 0

=[R4
/4] [ /2 – Sin2 /4]
 
0
= R4
/4[ /2 - 0] = R
  4
/8
4R/
3
y0
y0
x
x
x0
x0
4. SEMI CIRCULAR AREA:
R
About horizontal centroidal axis:
Ixx = Ix
0
x
0
+ A(d)2
Ix
0
x
0
= Ixx – A(d)
2
= R
 4
/8 R
 2
/2 .
(4R/3 )
 2
I = 0.11R4
QUARTER CIRCLE:
Ixx = Iyy
R /2

Ixx = (r.d .dr).
  
r2
Sin2

0 0
R /2

= r
 3
.dr Sin
 2
d
 
0 0
R /2

= r3 dr (1- Cos2 )/2)
  
d
0 0
x x
x0 x0
y
y y0
y0
4R/3π
4R/3π
Moment of inertia about Centroidal axis,
_
Ix
0
x
0
= Ixx - Ad2
= R
 4
/16 - R
 2
. (0. 424R)2
= 0.055R4
The following table indicates the final values of M.I.
about X and Y axes for different geometrical figures.
Sl.No Figure I x
0
-x
0
I y
0
-y
0
I xx I yy
1
bd3
/12 - bd3
/3 -
2
bh3
/36 - bh3
/12 -
3
R4
/4 R4
/4 - -
4
0.11R4
R4
/8 R4
/8 -
5
0.055R4
0.055R4
R4
/16 R4
/16
b
d
x0
x
x0
x
d/2
b
h
x
x
x0
x0
h/3
x0
x0
y0
y0
O
R
y0
y0
x
x
x0
x0
4R/3π
x0
y y0
4R/3π
4R/3π
Y
Y Xo

More Related Content

PPTX
Moment of Inertia 1.pptx RESFDKUGCHFHGJHKVJCVJGHKGVGCVJHKJB
PPTX
L10-T7 MOS Jul 2019-1.pptx .
PPTX
PDF
3. Quadrature Complete Theory Module-5.pdf
PPT
Lesson 16 length of an arc
PDF
Parallel axis theorem and their use on Moment Of Inertia
PPTX
Properties of surfaces-Centre of gravity and Moment of Inertia
PDF
Prof. V. V. Nalawade, Notes CGMI with practice numerical
Moment of Inertia 1.pptx RESFDKUGCHFHGJHKVJCVJGHKGVGCVJHKJB
L10-T7 MOS Jul 2019-1.pptx .
3. Quadrature Complete Theory Module-5.pdf
Lesson 16 length of an arc
Parallel axis theorem and their use on Moment Of Inertia
Properties of surfaces-Centre of gravity and Moment of Inertia
Prof. V. V. Nalawade, Notes CGMI with practice numerical

Similar to chapter 4. ppt moment of inertia strength of material (15)

PDF
Moment of inertia revision
PPTX
double integral.pptx
PPTX
Multiple ppt
PPTX
Multiple intigration ppt
PPTX
Maths-double integrals
PDF
A text book of engineering mathematics Volume 2 1st ed Edition Rajesh Pandey
PPT
8.7 numerical integration
PPT
8.7 numerical integration
PPT
8.7 numerical integration
PPT
0 calc7-1
PDF
Notes up to_ch7_sec3
PDF
Notes up to_ch7_sec3
PPTX
[4] num integration
PPT
25 surface area
PPTX
Moment of inertia of plane figures
Moment of inertia revision
double integral.pptx
Multiple ppt
Multiple intigration ppt
Maths-double integrals
A text book of engineering mathematics Volume 2 1st ed Edition Rajesh Pandey
8.7 numerical integration
8.7 numerical integration
8.7 numerical integration
0 calc7-1
Notes up to_ch7_sec3
Notes up to_ch7_sec3
[4] num integration
25 surface area
Moment of inertia of plane figures
Ad

More from RDTCPOLYTECHNICMECHD (20)

PDF
Power Plant Engineering Digital Material.pdf
PDF
introduction to cogeneration operation compatibility mode.pdf
PPT
Nuclear Powersem. ppt power plant nuclear
PPTX
CHAPTER 4 welding. pptx manufacturing processes
PDF
EEE- BEE045 -Thermal Power Plant- Dr. T.R. Rangaswamy.pdf
PPTX
Root Locus . ppt x construction of root locii
PPTX
PPE. ppt x power plant engineering ppt.x
PPT
Industrial Boilers .ppt power plant engg.
PPTX
PPE.pptx power plant engineering introduction
PPT
apm-et13e-chapter-5-boilers-and-unfired-pressure-vessels.ppt
PPT
Industrial Boilers.ppt power engineering
PPT
cogeneration power plants22.ppt power plant
PPTX
Pumps.pptx centrifugal and reciprocating pumps
PPTX
MPR_Unit 1-1.pptx hydraulic and disel power plant
PPTX
work study and ergonomics-ppt.pptx ergonomics
PPT
blandino_we0413.ppt ergonomics .....pptt
PPTX
CHAPTER 7 (2).pptx part print planning process
PPT
Process Engineering. ppt slides presentation
PPT
Lesson-1-Supply-Chain-Management-Introduction.ppt
PPT
STATISTICAL-QUALITY-CONTROL-ppt-3-2 (1).ppt
Power Plant Engineering Digital Material.pdf
introduction to cogeneration operation compatibility mode.pdf
Nuclear Powersem. ppt power plant nuclear
CHAPTER 4 welding. pptx manufacturing processes
EEE- BEE045 -Thermal Power Plant- Dr. T.R. Rangaswamy.pdf
Root Locus . ppt x construction of root locii
PPE. ppt x power plant engineering ppt.x
Industrial Boilers .ppt power plant engg.
PPE.pptx power plant engineering introduction
apm-et13e-chapter-5-boilers-and-unfired-pressure-vessels.ppt
Industrial Boilers.ppt power engineering
cogeneration power plants22.ppt power plant
Pumps.pptx centrifugal and reciprocating pumps
MPR_Unit 1-1.pptx hydraulic and disel power plant
work study and ergonomics-ppt.pptx ergonomics
blandino_we0413.ppt ergonomics .....pptt
CHAPTER 7 (2).pptx part print planning process
Process Engineering. ppt slides presentation
Lesson-1-Supply-Chain-Management-Introduction.ppt
STATISTICAL-QUALITY-CONTROL-ppt-3-2 (1).ppt
Ad

Recently uploaded (20)

PDF
Arduino robotics embedded978-1-4302-3184-4.pdf
PPTX
Welding lecture in detail for understanding
PDF
Well-logging-methods_new................
PDF
BMEC211 - INTRODUCTION TO MECHATRONICS-1.pdf
PDF
Embodied AI: Ushering in the Next Era of Intelligent Systems
PPTX
M Tech Sem 1 Civil Engineering Environmental Sciences.pptx
PPTX
UNIT 4 Total Quality Management .pptx
PDF
Digital Logic Computer Design lecture notes
PDF
keyrequirementskkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkk
PPTX
Sustainable Sites - Green Building Construction
PDF
composite construction of structures.pdf
PPTX
Infosys Presentation by1.Riyan Bagwan 2.Samadhan Naiknavare 3.Gaurav Shinde 4...
PDF
Model Code of Practice - Construction Work - 21102022 .pdf
PPTX
UNIT-1 - COAL BASED THERMAL POWER PLANTS
PPTX
IOT PPTs Week 10 Lecture Material.pptx of NPTEL Smart Cities contd
PPTX
web development for engineering and engineering
PPTX
Engineering Ethics, Safety and Environment [Autosaved] (1).pptx
PPT
Project quality management in manufacturing
PPTX
additive manufacturing of ss316l using mig welding
PDF
PRIZ Academy - 9 Windows Thinking Where to Invest Today to Win Tomorrow.pdf
Arduino robotics embedded978-1-4302-3184-4.pdf
Welding lecture in detail for understanding
Well-logging-methods_new................
BMEC211 - INTRODUCTION TO MECHATRONICS-1.pdf
Embodied AI: Ushering in the Next Era of Intelligent Systems
M Tech Sem 1 Civil Engineering Environmental Sciences.pptx
UNIT 4 Total Quality Management .pptx
Digital Logic Computer Design lecture notes
keyrequirementskkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkk
Sustainable Sites - Green Building Construction
composite construction of structures.pdf
Infosys Presentation by1.Riyan Bagwan 2.Samadhan Naiknavare 3.Gaurav Shinde 4...
Model Code of Practice - Construction Work - 21102022 .pdf
UNIT-1 - COAL BASED THERMAL POWER PLANTS
IOT PPTs Week 10 Lecture Material.pptx of NPTEL Smart Cities contd
web development for engineering and engineering
Engineering Ethics, Safety and Environment [Autosaved] (1).pptx
Project quality management in manufacturing
additive manufacturing of ss316l using mig welding
PRIZ Academy - 9 Windows Thinking Where to Invest Today to Win Tomorrow.pdf

chapter 4. ppt moment of inertia strength of material

  • 2. C304.4 Determine Area Moment of Inertia of regular and composite sections.
  • 3. MOMENT OF INERTIA Moment of Inertia: The product of the elemental area and square of the perpendicular distance between the centroid of area and the axis of reference is the “Moment of Inertia” about the reference axis. Ixx = ∫dA. y2 Iyy = ∫dA. x2 x y x y dA
  • 4. It is also called second moment of area because first moment of elemental area is dA.y and dA.x; and if it is again multiplied by the distance,we get second moment of elemental area as (dA.y)y and (dA.x)x.
  • 5. Polar moment of Inertia (Perpendicular Axes theorem) The moment of inertia of an area about an axis perpendicular to the plane of the area is called “Polar Moment of Inertia” and it is denoted by symbol Izz or J or Ip . The moment of inertia of an area in xy plane w.r.to z. axis is Izz = Ip = J = ∫r2 dA = ∫(x2 + y2 ) dA = ∫x2 dA + ∫y2 dA = Ixx +Iyy O y x r z x Y
  • 6. Hence polar M.I. for an area w.r.t. an axis perpendicular to its plane of area is equal to the sum of the M.I. about any two mutually perpendicular axes in its plane, passing through the point of intersection of the polar axis and the area. PERPENDICULAR AXIS THEOREM
  • 8. Ixx = dA. y2 ∫ _ = dA (d +y') ∫ 2 _ _ = dA (d ∫ 2 + y'2 + 2dy') _ = dA. d ∫ 2 + dAy ∫ ΄2 + 2d.dAy' ∫ _ d2 dA = A.(d) ∫ 2 ∫dA. y'2 = Ix0x0 _ 2d dAy’ = 0 ∫ ( since Ist moment of area about centroidal axis = 0) _ Ix x = Ix 0 x 0 +Ad2
  • 9. Hence, moment of inertia of any area about an axis xx is equal to the M.I. about parallel centroidal axis plus the product of the total area and square of the distance between the two axes. Radius of Gyration It is the perpendicular distance at which the whole area may be assumed to be concentrated, yielding the same second moment of the area above the axis under consideration.
  • 10. Iyy = A.ryy 2 Ixx = A.rxx 2 ryy = √ Iyy /A And rxx = √ Ixx /A y y A rxx A x x rxx and ryy are called the radii of gyration ryy
  • 11. MOMENT OF INERTIA BY DIRECT INTEGRATION d dy x0 x x d/2 x0 y b M.I. about its horizontal centroidal axis : G . RECTANGLE : IXoXo = -d/2 ∫ +d/2 dAy2 =-d/2∫ +d/2 (b.dy)y 2 = bd3 /12 About its base IXX=IXoXo +A(d)2 Where d = d/2, the distance between axes xx and xoxo 3 2
  • 12. h x0 x h/3 x0 b x y (h-y) dy (2) TRIANGLE : (a) M.I. about its base : Ixx = dA.y  2 = (x.dy)y  2 From similar triangles b/h = x/(h-y)  x = b . (h-y)/h h Ixx = (b . (h-y)y  2 .dy)/h 0 = b[ h (y3 /3) – y4 /4 ]/h = bh3 /12
  • 13. (b) Moment of inertia about its centroidal axis: _ Ixx = Ix 0 x 0 + Ad2 _ Ix 0 x 0 = Ixx – Ad2 = bh3 /12 – bh/2 . (h/3)2 = bh3 /36
  • 14. Ix 0 x 0 = dA . y  2 R 2 = (x.d .dr) r    2 Sin2  0 0 R 2 = r   3 .dr Sin2 d   0 0 R 2 = r  3 dr {(1-  Cos2 )/2} d   0 R 0 2 =[r4 /4] [ /2 – Sin2 /4]   0 0 x x x0 x0 R  d  y=rSin 3. CIRCULAR AREA: r
  • 15. Ixx = dA . y  2 R  = (r.d .dr) r    2 Sin2  0 R 0  = r  3 .dr Sin  2 d   0 0 R  = r   3 dr (1- Cos2 )/2) d   0 0  =[R4 /4] [ /2 – Sin2 /4]   0 = R4 /4[ /2 - 0] = R   4 /8 4R/ 3 y0 y0 x x x0 x0 4. SEMI CIRCULAR AREA: R
  • 16. About horizontal centroidal axis: Ixx = Ix 0 x 0 + A(d)2 Ix 0 x 0 = Ixx – A(d) 2 = R  4 /8 R  2 /2 . (4R/3 )  2 I = 0.11R4
  • 17. QUARTER CIRCLE: Ixx = Iyy R /2  Ixx = (r.d .dr).    r2 Sin2  0 0 R /2  = r  3 .dr Sin  2 d   0 0 R /2  = r3 dr (1- Cos2 )/2)    d 0 0 x x x0 x0 y y y0 y0 4R/3π 4R/3π
  • 18. Moment of inertia about Centroidal axis, _ Ix 0 x 0 = Ixx - Ad2 = R  4 /16 - R  2 . (0. 424R)2 = 0.055R4 The following table indicates the final values of M.I. about X and Y axes for different geometrical figures.
  • 19. Sl.No Figure I x 0 -x 0 I y 0 -y 0 I xx I yy 1 bd3 /12 - bd3 /3 - 2 bh3 /36 - bh3 /12 - 3 R4 /4 R4 /4 - - 4 0.11R4 R4 /8 R4 /8 - 5 0.055R4 0.055R4 R4 /16 R4 /16 b d x0 x x0 x d/2 b h x x x0 x0 h/3 x0 x0 y0 y0 O R y0 y0 x x x0 x0 4R/3π x0 y y0 4R/3π 4R/3π Y Y Xo