SlideShare a Scribd company logo
 4.1 The Atomic Models of Thomson and Rutherford
 4.2 Rutherford Scattering
 4.3 The Classic Atomic Model
 4.4 The Bohr Model of the Hydrogen Atom
 4.5 Successes and Failures of the Bohr Model
 4.6 Characteristic X-Ray Spectra and Atomic Number
 4.7 Atomic Excitation by Electrons
CHAPTER 4
Structure of the AtomStructure of the Atom
In the present first part of the paper the mechanism of the binding of
electrons by a positive nucleus is discussed in relation to Planck’s
theory. It will be shown that it is possible from the point of view taken to
account in a simple way for the law of the line spectrum of hydrogen.
- Niels Bohr, 1913
Structure of the Atom
Pieces of evidence that scientists had in 1900 to indicate that
the atom was not a fundamental unit:
1) There seemed to be too many kinds of atoms, each
belonging to a distinct chemical element.
2) Atoms and electromagnetic phenomena were intimately
related.
3) The problem of valence. Certain elements combine with
some elements but not with others, a characteristic that
hinted at an internal atomic structure.
4) The discoveries of radioactivity, of x rays, and of the
electron.
 Thomson’s “plum-pudding” model of the atom had the positive
charges spread uniformly throughout a sphere the size of the
atom, with electrons embedded in the uniform background.
 In Thomson’s view, when the atom was heated, the electrons
could vibrate about their equilibrium positions, thus producing
electromagnetic radiation.
Thomson’s Atomic Model
Experiments of Geiger and Marsden
 Rutherford, Geiger, and Marsden
conceived a new technique for
investigating the structure of matter
by scattering α particles from atoms.
 Geiger showed that many α particles
were scattered from thin gold-leaf
targets at backward angles greater
than 90°.
Example 4.1
 The maximum scattering angle corresponding to the maximum momentum
change.
 Maximum momentum change of the α particle is
or
 Determine θ by letting Δpmax be perpendicular to the direction of motion.
 If an α particle were scattered by many electrons and N electrons
results in .
 The number of atoms across the thin gold layer of 6 × 10−7
m:
 Assume the distance between atoms is
and there are .
That gives .
Multiple Scattering from Electrons
 even if the α particle scattered from all 79 electrons in
each atom of gold.
The experimental results were not consistent with Thomson’s
atomic model.
 Rutherford proposed that an atom has a positively charged core
(nucleus) surrounded by the negative electrons.
Rutherford’s Atomic Model
 Scattering experiments help us study matter too small to be
observed directly.
 There is a relationship between the impact parameter b and the
scattering angle θ.
When b is small,
r gets small.
Coulomb force gets large.
θ can be large and the particle can be repelled backward.
4.2: Rutherford Scattering
 Any particle inside the circle of area πb0
2
will be similarly scattered.
 The cross section σ = πb2
is related to the probability for a particle being
scattered by a nucleus.
 The fraction of incident particles scattered is
 The number of scattering nuclei per unit area .
Rutherford Scattering
 In actual experiment a detector is positioned from θ to θ + dθ that
corresponds to incident particles between b and b + db.
 The number of particles scattered per unit area is
Rutherford Scattering Equation
4.3: The Classical Atomic Model
Let’s consider atoms as a planetary model.
 The force of attraction on the electron by the nucleus and Newton’s
2nd law give
where v is the tangential velocity of the electron.
 The total energy is
The Planetary Model is Doomed
 From classical E&M theory, an accelerated electric charge
radiates energy (electromagnetic radiation) which means total
energy must decrease. Radius r must decrease!!
Electron crashes into the nucleus!?
 Physics had reached a turning point in 1900 with Planck’s
hypothesis of the quantum behavior of radiation.
4.4: The Bohr Model of the Hydrogen Atom
Bohr’s general assumptions:
1) “Stationary states” (orbiting electrons do not radiate energy) exist
in atoms.
2) E = E1 − E2 = hf
3) Classical laws of physics do not apply to transitions between
stationary states.
4) The mean kinetic energy of the electron-nucleus system is
K = nhforb/2, where forb is the frequency of rotation.
Bohr Radius
 The diameter of the hydrogen atom for stationary states is
Where the Bohr radius is given by
 The smallest diameter of the hydrogen atom is
 n = 1 gives its lowest energy state (called the “ground” state)
The Hydrogen Atom
 The energies of the stationary states
where E0 = 13.6 eV.
 Emission of light occurs when the atom is
in an excited state and decays to a lower
energy state (nu → nℓ).
where f is the frequency of a photon.
R∞ is the Rydberg constant.
Transitions in the Hydrogen Atom
Lyman series
The atom will remain in the
excited state for a short time
before emitting a photon and
returning to a lower stationary
state. All hydrogen atoms exist
in n = 1 (invisible).
Balmer series
When sunlight passes through
the atmosphere, hydrogen
atoms in water vapor absorb
the wavelengths (visible).
Fine Structure Constant
 The electron’s velocity in the Bohr model:
 On the ground state,
v1 = 2.2 × 106
m/s ~ less than 1% of the speed of light.
 The ratio of v1 to c is the fine structure constant.
The Correspondence Principle
Need a principle to relate the new modern results with classical
ones.
Classical electrodynamics Bohr’s atomic model
Determine the properties
of radiation
Bohr’s correspondence
principle
In the limits where classical and quantum
theories should agree, the quantum
theory must reduce the classical result.
+
The Correspondence Principle
 The frequency of the radiation emitted fclassical is equal to the orbital frequency
forb of the electron around the nucleus.
 The frequency of the transition from n + 1 to n is
 For large n,
Substitute E0:
4.5: Successes and Failures of the Bohr Model
 The electron and hydrogen nucleus actually revolved about their
mutual center of mass.
 The electron mass is replaced by its reduced mass.
 The Rydberg constant for infinite nuclear mass is replaced by R.
Limitations of the Bohr Model
The Bohr model was a great step of the new quantum theory,
but it had its limitations.
1) Works only to single-electron atoms.
2) Could not account for the intensities or the fine structure
of the spectral lines.
3) Could not explain the binding of atoms into molecules.
4.6: Characteristic X-Ray Spectra and
Atomic Number
 Shells have letter names:
K shell for n = 1
L shell for n = 2
 The atom is most stable in its ground state.
 When it occurs in a heavy atom, the radiation emitted is an x ray.
 It has the energy E (x ray) = Eu − Eℓ.
An electron from higher shells will fill the inner-
shell vacancy at lower energy.
Atomic Number
L shell to K shell Kα x ray
M shell to K shell Kβ x ray
 Atomic number Z = number of protons in the nucleus.
 Moseley found a relationship between the frequencies of the
characteristic x ray and Z.
This holds for the Kα x ray.
Moseley’s Empirical Results
 The x ray is produced from n = 2 to n = 1 transition.
 In general, the K series of x ray wavelengths are
Moseley’s research clarified the importance of the electron shells
for all the elements, not just for hydrogen.
4.7: Atomic Excitation by Electrons
 Franck and Hertz studied the phenomenon of ionization.
Accelerating voltage is below 5 V.
electrons did not lose energy.
Accelerating voltage is above 5 V.
sudden drop in the current.
Atomic Excitation by Electrons
 Ground state has E0 to be zero.
First excited state has E1.
The energy difference E1 − 0 = E1 is the excitation energy.
 Hg has an excitation energy of
4.88 eV in the first excited state
 No energy can be transferred to
Hg below 4.88 eV because not
enough energy is available to
excite an electron to the next
energy level
 Above 4.88 eV, the current drops because scattered electrons no longer
reach the collector until the accelerating voltage reaches 9.8 eV and so on.

More Related Content

PDF
Dft calculation by vasp
PPTX
Auger effect. puplic
PPTX
Schrödinger wave equation
PPTX
Pauli exclusion principle
PPTX
The wave-particle duality and the double slit experiment
PDF
De Broglie wave equation - Derivation by SK
PPT
Intro. to quantum chemistry
PPTX
B sc_I_General chemistry U-I Nuclear chemistry
Dft calculation by vasp
Auger effect. puplic
Schrödinger wave equation
Pauli exclusion principle
The wave-particle duality and the double slit experiment
De Broglie wave equation - Derivation by SK
Intro. to quantum chemistry
B sc_I_General chemistry U-I Nuclear chemistry

What's hot (20)

PPT
Atomic emission spectra and the quantum mechanical model
PPT
IntroductiontoCompChem_2009.ppt
PPTX
Nuclear physics
PDF
Part III - Quantum Mechanics
PPSX
Quantum Numbers
PDF
(10) electron spin & angular momentum coupling
PPTX
the compton effect or the compton scatter
PDF
Applications of Computational Quantum Chemistry
PPTX
Free electron theory of metals (Classical and quantum).pptx
PPT
photo chemistry of ligand in coordination compound
PPT
Chemical shift with c13 nmr
 
PPTX
Quantum calculations and calculational chemistry
PPTX
NUCLEAR MODELS AND NUCLEAR FORCES
PDF
Group theory questions and answers
PPTX
Photoelectric effect
PPTX
Compton effect
PPTX
Lecture 04; spectral lines and broadening by Dr. Salma Amir
PPTX
Mossbauer Spectroscopy
PPT
electron spin resonance spectroscopy ( EPR/ESR)
Atomic emission spectra and the quantum mechanical model
IntroductiontoCompChem_2009.ppt
Nuclear physics
Part III - Quantum Mechanics
Quantum Numbers
(10) electron spin & angular momentum coupling
the compton effect or the compton scatter
Applications of Computational Quantum Chemistry
Free electron theory of metals (Classical and quantum).pptx
photo chemistry of ligand in coordination compound
Chemical shift with c13 nmr
 
Quantum calculations and calculational chemistry
NUCLEAR MODELS AND NUCLEAR FORCES
Group theory questions and answers
Photoelectric effect
Compton effect
Lecture 04; spectral lines and broadening by Dr. Salma Amir
Mossbauer Spectroscopy
electron spin resonance spectroscopy ( EPR/ESR)
Ad

Viewers also liked (7)

PPTX
บทที่ 2 ทฤษฎีสัมพัทธภาพเฉพาะ
PPT
CHAPTER 3 The Experimental Basis of Quantum Theory
PPTX
บทที่ 1 กำเนิดฟิสิกส์แผนใหม่
PPT
CHAPTER 5 Wave Properties of Matter and Quantum Mechanics I
PPT
CHAPTER 10 Molecules and Solids
PPT
CHAPTER 6 Quantum Mechanics II
บทที่ 2 ทฤษฎีสัมพัทธภาพเฉพาะ
CHAPTER 3 The Experimental Basis of Quantum Theory
บทที่ 1 กำเนิดฟิสิกส์แผนใหม่
CHAPTER 5 Wave Properties of Matter and Quantum Mechanics I
CHAPTER 10 Molecules and Solids
CHAPTER 6 Quantum Mechanics II
Ad

Similar to CHAPTER 4 Structure of the Atom (20)

PPTX
Atoms Class 12 NCERT chapter 12
PDF
Phy 310 chapter 4
PDF
Phy 310 chapter 4
PDF
CBSE Class 11 Chemistry Sample ebook
PPTX
Structure of atom ppt_ClassXI_CBSE_NCERT
PPTX
Chemistry 11
PPT
This is it Right one to form M-4.ppt
PPT
use this anytime anywhere, just cite properly TRM-4.ppt
PPT
CHAPTER 4: Structure of the Atom - Portland State University
PPTX
Evolution of atomic theories, Dalton.JJ. Thamson, Rutherford, max plank, Bohr
PPTX
CHAPTER 12 ATOMS physics science future.
PPT
TRM-4.ppt
PPT
chapter 4 chemistry structure of atom.ppt
PPTX
Atomic Structure_2080.pptxaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa
PDF
Chem chapter 2 Atomic Structure.pptx.pdf
PPT
The_Atom class 9 Neutron Proton and Electrons
PPT
The_Atom.ppt science 8 quarter 3 module 5
PPT
The_Atom.ppt
PPTX
01.aditya atomic models [repaired]
Atoms Class 12 NCERT chapter 12
Phy 310 chapter 4
Phy 310 chapter 4
CBSE Class 11 Chemistry Sample ebook
Structure of atom ppt_ClassXI_CBSE_NCERT
Chemistry 11
This is it Right one to form M-4.ppt
use this anytime anywhere, just cite properly TRM-4.ppt
CHAPTER 4: Structure of the Atom - Portland State University
Evolution of atomic theories, Dalton.JJ. Thamson, Rutherford, max plank, Bohr
CHAPTER 12 ATOMS physics science future.
TRM-4.ppt
chapter 4 chemistry structure of atom.ppt
Atomic Structure_2080.pptxaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa
Chem chapter 2 Atomic Structure.pptx.pdf
The_Atom class 9 Neutron Proton and Electrons
The_Atom.ppt science 8 quarter 3 module 5
The_Atom.ppt
01.aditya atomic models [repaired]

More from Thepsatri Rajabhat University (20)

PPTX
Timeline of atomic models
PPTX
บทที่ 1 หน่วยวัดและปริมาณทางฟิสิกส์ [2 2560]
PPTX
กฎของ Hamilton และ Lagrange’s Equations
PPTX
บทที่ 7 การเคลื่อนที่แบบหมุน
PPTX
บทที่ 4 งาน พลังงาน และเครื่องกลอย่างง่าย
PPTX
บทที่ 3 แรง มวล และกฎการเคลื่อนที่ของนิวตัน
PPTX
บทที่ 2 การเคลื่อนที่ในหนึ่งมิติ
PPTX
บทที่ 1 ฟิสิกส์กับการทำงานของร่างกายและชีวิตประจำวัน
PPTX
บทที่ 6 โมเมนตัมและการชน
PPTX
บทที่ 5 งานและพลังงาน
PPTX
บทที่ 8 ความร้อนและอุณหพลศาสตร์
PPTX
บทที่ 7 คลื่นกลและเสียง
PPTX
บทที่ 6 สมบัติของสาร
PPTX
บทที่ 5 โมเมนตัม
PPTX
บทที่ 4 งาน กำลัง พลังงาน และเครื่องกลอย่างง่าย
PPTX
บทที่ 3 แรง และ กฎการเคลื่อนที่ของนิวตัน
PPTX
บทที่ 2 การเคลื่อนที่แบบต่าง ๆ
PPTX
บทที่ 4 การเคลื่อนที่แบบต่าง ๆ
PPTX
บทที่ 3 แรง และ กฎการเคลื่อนที่ของนิวตัน
PPTX
บทที่ 2 การเคลื่อนที่แนวตรง
Timeline of atomic models
บทที่ 1 หน่วยวัดและปริมาณทางฟิสิกส์ [2 2560]
กฎของ Hamilton และ Lagrange’s Equations
บทที่ 7 การเคลื่อนที่แบบหมุน
บทที่ 4 งาน พลังงาน และเครื่องกลอย่างง่าย
บทที่ 3 แรง มวล และกฎการเคลื่อนที่ของนิวตัน
บทที่ 2 การเคลื่อนที่ในหนึ่งมิติ
บทที่ 1 ฟิสิกส์กับการทำงานของร่างกายและชีวิตประจำวัน
บทที่ 6 โมเมนตัมและการชน
บทที่ 5 งานและพลังงาน
บทที่ 8 ความร้อนและอุณหพลศาสตร์
บทที่ 7 คลื่นกลและเสียง
บทที่ 6 สมบัติของสาร
บทที่ 5 โมเมนตัม
บทที่ 4 งาน กำลัง พลังงาน และเครื่องกลอย่างง่าย
บทที่ 3 แรง และ กฎการเคลื่อนที่ของนิวตัน
บทที่ 2 การเคลื่อนที่แบบต่าง ๆ
บทที่ 4 การเคลื่อนที่แบบต่าง ๆ
บทที่ 3 แรง และ กฎการเคลื่อนที่ของนิวตัน
บทที่ 2 การเคลื่อนที่แนวตรง

Recently uploaded (20)

PDF
Weekly quiz Compilation Jan -July 25.pdf
PDF
BP 704 T. NOVEL DRUG DELIVERY SYSTEMS (UNIT 2).pdf
PPTX
Introduction to pro and eukaryotes and differences.pptx
PDF
Paper A Mock Exam 9_ Attempt review.pdf.
PPTX
B.Sc. DS Unit 2 Software Engineering.pptx
PDF
Hazard Identification & Risk Assessment .pdf
PPTX
202450812 BayCHI UCSC-SV 20250812 v17.pptx
PDF
Trump Administration's workforce development strategy
PPTX
Unit 4 Computer Architecture Multicore Processor.pptx
PDF
Vision Prelims GS PYQ Analysis 2011-2022 www.upscpdf.com.pdf
DOC
Soft-furnishing-By-Architect-A.F.M.Mohiuddin-Akhand.doc
PDF
What if we spent less time fighting change, and more time building what’s rig...
PPTX
CHAPTER IV. MAN AND BIOSPHERE AND ITS TOTALITY.pptx
PDF
A GUIDE TO GENETICS FOR UNDERGRADUATE MEDICAL STUDENTS
PDF
LDMMIA Reiki Yoga Finals Review Spring Summer
PDF
Complications of Minimal Access-Surgery.pdf
PDF
Uderstanding digital marketing and marketing stratergie for engaging the digi...
PPTX
ELIAS-SEZIURE AND EPilepsy semmioan session.pptx
PDF
Chinmaya Tiranga quiz Grand Finale.pdf
PDF
احياء السادس العلمي - الفصل الثالث (التكاثر) منهج متميزين/كلية بغداد/موهوبين
Weekly quiz Compilation Jan -July 25.pdf
BP 704 T. NOVEL DRUG DELIVERY SYSTEMS (UNIT 2).pdf
Introduction to pro and eukaryotes and differences.pptx
Paper A Mock Exam 9_ Attempt review.pdf.
B.Sc. DS Unit 2 Software Engineering.pptx
Hazard Identification & Risk Assessment .pdf
202450812 BayCHI UCSC-SV 20250812 v17.pptx
Trump Administration's workforce development strategy
Unit 4 Computer Architecture Multicore Processor.pptx
Vision Prelims GS PYQ Analysis 2011-2022 www.upscpdf.com.pdf
Soft-furnishing-By-Architect-A.F.M.Mohiuddin-Akhand.doc
What if we spent less time fighting change, and more time building what’s rig...
CHAPTER IV. MAN AND BIOSPHERE AND ITS TOTALITY.pptx
A GUIDE TO GENETICS FOR UNDERGRADUATE MEDICAL STUDENTS
LDMMIA Reiki Yoga Finals Review Spring Summer
Complications of Minimal Access-Surgery.pdf
Uderstanding digital marketing and marketing stratergie for engaging the digi...
ELIAS-SEZIURE AND EPilepsy semmioan session.pptx
Chinmaya Tiranga quiz Grand Finale.pdf
احياء السادس العلمي - الفصل الثالث (التكاثر) منهج متميزين/كلية بغداد/موهوبين

CHAPTER 4 Structure of the Atom

  • 1.  4.1 The Atomic Models of Thomson and Rutherford  4.2 Rutherford Scattering  4.3 The Classic Atomic Model  4.4 The Bohr Model of the Hydrogen Atom  4.5 Successes and Failures of the Bohr Model  4.6 Characteristic X-Ray Spectra and Atomic Number  4.7 Atomic Excitation by Electrons CHAPTER 4 Structure of the AtomStructure of the Atom In the present first part of the paper the mechanism of the binding of electrons by a positive nucleus is discussed in relation to Planck’s theory. It will be shown that it is possible from the point of view taken to account in a simple way for the law of the line spectrum of hydrogen. - Niels Bohr, 1913
  • 2. Structure of the Atom Pieces of evidence that scientists had in 1900 to indicate that the atom was not a fundamental unit: 1) There seemed to be too many kinds of atoms, each belonging to a distinct chemical element. 2) Atoms and electromagnetic phenomena were intimately related. 3) The problem of valence. Certain elements combine with some elements but not with others, a characteristic that hinted at an internal atomic structure. 4) The discoveries of radioactivity, of x rays, and of the electron.
  • 3.  Thomson’s “plum-pudding” model of the atom had the positive charges spread uniformly throughout a sphere the size of the atom, with electrons embedded in the uniform background.  In Thomson’s view, when the atom was heated, the electrons could vibrate about their equilibrium positions, thus producing electromagnetic radiation. Thomson’s Atomic Model
  • 4. Experiments of Geiger and Marsden  Rutherford, Geiger, and Marsden conceived a new technique for investigating the structure of matter by scattering α particles from atoms.  Geiger showed that many α particles were scattered from thin gold-leaf targets at backward angles greater than 90°.
  • 5. Example 4.1  The maximum scattering angle corresponding to the maximum momentum change.  Maximum momentum change of the α particle is or  Determine θ by letting Δpmax be perpendicular to the direction of motion.
  • 6.  If an α particle were scattered by many electrons and N electrons results in .  The number of atoms across the thin gold layer of 6 × 10−7 m:  Assume the distance between atoms is and there are . That gives . Multiple Scattering from Electrons
  • 7.  even if the α particle scattered from all 79 electrons in each atom of gold. The experimental results were not consistent with Thomson’s atomic model.  Rutherford proposed that an atom has a positively charged core (nucleus) surrounded by the negative electrons. Rutherford’s Atomic Model
  • 8.  Scattering experiments help us study matter too small to be observed directly.  There is a relationship between the impact parameter b and the scattering angle θ. When b is small, r gets small. Coulomb force gets large. θ can be large and the particle can be repelled backward. 4.2: Rutherford Scattering
  • 9.  Any particle inside the circle of area πb0 2 will be similarly scattered.  The cross section σ = πb2 is related to the probability for a particle being scattered by a nucleus.  The fraction of incident particles scattered is  The number of scattering nuclei per unit area . Rutherford Scattering
  • 10.  In actual experiment a detector is positioned from θ to θ + dθ that corresponds to incident particles between b and b + db.  The number of particles scattered per unit area is Rutherford Scattering Equation
  • 11. 4.3: The Classical Atomic Model Let’s consider atoms as a planetary model.  The force of attraction on the electron by the nucleus and Newton’s 2nd law give where v is the tangential velocity of the electron.  The total energy is
  • 12. The Planetary Model is Doomed  From classical E&M theory, an accelerated electric charge radiates energy (electromagnetic radiation) which means total energy must decrease. Radius r must decrease!! Electron crashes into the nucleus!?  Physics had reached a turning point in 1900 with Planck’s hypothesis of the quantum behavior of radiation.
  • 13. 4.4: The Bohr Model of the Hydrogen Atom Bohr’s general assumptions: 1) “Stationary states” (orbiting electrons do not radiate energy) exist in atoms. 2) E = E1 − E2 = hf 3) Classical laws of physics do not apply to transitions between stationary states. 4) The mean kinetic energy of the electron-nucleus system is K = nhforb/2, where forb is the frequency of rotation.
  • 14. Bohr Radius  The diameter of the hydrogen atom for stationary states is Where the Bohr radius is given by  The smallest diameter of the hydrogen atom is  n = 1 gives its lowest energy state (called the “ground” state)
  • 15. The Hydrogen Atom  The energies of the stationary states where E0 = 13.6 eV.  Emission of light occurs when the atom is in an excited state and decays to a lower energy state (nu → nℓ). where f is the frequency of a photon. R∞ is the Rydberg constant.
  • 16. Transitions in the Hydrogen Atom Lyman series The atom will remain in the excited state for a short time before emitting a photon and returning to a lower stationary state. All hydrogen atoms exist in n = 1 (invisible). Balmer series When sunlight passes through the atmosphere, hydrogen atoms in water vapor absorb the wavelengths (visible).
  • 17. Fine Structure Constant  The electron’s velocity in the Bohr model:  On the ground state, v1 = 2.2 × 106 m/s ~ less than 1% of the speed of light.  The ratio of v1 to c is the fine structure constant.
  • 18. The Correspondence Principle Need a principle to relate the new modern results with classical ones. Classical electrodynamics Bohr’s atomic model Determine the properties of radiation Bohr’s correspondence principle In the limits where classical and quantum theories should agree, the quantum theory must reduce the classical result. +
  • 19. The Correspondence Principle  The frequency of the radiation emitted fclassical is equal to the orbital frequency forb of the electron around the nucleus.  The frequency of the transition from n + 1 to n is  For large n, Substitute E0:
  • 20. 4.5: Successes and Failures of the Bohr Model  The electron and hydrogen nucleus actually revolved about their mutual center of mass.  The electron mass is replaced by its reduced mass.  The Rydberg constant for infinite nuclear mass is replaced by R.
  • 21. Limitations of the Bohr Model The Bohr model was a great step of the new quantum theory, but it had its limitations. 1) Works only to single-electron atoms. 2) Could not account for the intensities or the fine structure of the spectral lines. 3) Could not explain the binding of atoms into molecules.
  • 22. 4.6: Characteristic X-Ray Spectra and Atomic Number  Shells have letter names: K shell for n = 1 L shell for n = 2  The atom is most stable in its ground state.  When it occurs in a heavy atom, the radiation emitted is an x ray.  It has the energy E (x ray) = Eu − Eℓ. An electron from higher shells will fill the inner- shell vacancy at lower energy.
  • 23. Atomic Number L shell to K shell Kα x ray M shell to K shell Kβ x ray  Atomic number Z = number of protons in the nucleus.  Moseley found a relationship between the frequencies of the characteristic x ray and Z. This holds for the Kα x ray.
  • 24. Moseley’s Empirical Results  The x ray is produced from n = 2 to n = 1 transition.  In general, the K series of x ray wavelengths are Moseley’s research clarified the importance of the electron shells for all the elements, not just for hydrogen.
  • 25. 4.7: Atomic Excitation by Electrons  Franck and Hertz studied the phenomenon of ionization. Accelerating voltage is below 5 V. electrons did not lose energy. Accelerating voltage is above 5 V. sudden drop in the current.
  • 26. Atomic Excitation by Electrons  Ground state has E0 to be zero. First excited state has E1. The energy difference E1 − 0 = E1 is the excitation energy.  Hg has an excitation energy of 4.88 eV in the first excited state  No energy can be transferred to Hg below 4.88 eV because not enough energy is available to excite an electron to the next energy level  Above 4.88 eV, the current drops because scattered electrons no longer reach the collector until the accelerating voltage reaches 9.8 eV and so on.