SlideShare a Scribd company logo
Section 7.3-1
Copyright © 2014, 2012, 2010 Pearson Education, Inc.
Lecture Slides
Elementary Statistics
Twelfth Edition
and the Triola Statistics Series
by Mario F. Triola
Section 7.3-2
Copyright © 2014, 2012, 2010 Pearson Education, Inc.
Chapter 7
Estimates and Sample Sizes
7-1 Review and Preview
7-2 Estimating a Population Proportion
7-3 Estimating a Population Mean
7-4 Estimating a Population Standard Deviation or
Variance
Section 7.3-3
Copyright © 2014, 2012, 2010 Pearson Education, Inc.
Key Concept
This section presents methods for using the
sample mean to make an inference about the
value of the corresponding population mean.
Section 7.3-4
Copyright © 2014, 2012, 2010 Pearson Education, Inc.
Key Concept
1. We should know that the sample mean is
the best point estimate of the population
mean μ.
2. We should learn how to use sample data to
construct a confidence interval for estimating
the value of a population mean, and we
should know how to interpret such confidence
intervals.
3. We should develop the ability to determine
the sample size necessary to estimate a
population mean.
x
Section 7.3-5
Copyright © 2014, 2012, 2010 Pearson Education, Inc.
Requirements
The procedure we use has a requirement that the
population is normally distributed or the sample size is
greater than 30.
Section 7.3-6
Copyright © 2014, 2012, 2010 Pearson Education, Inc.
Margin of Error E for Estimate of μ
(With σ Not Known)
where has n – 1 degrees of freedom.
Table A-3 lists values for .
Section 7.3-7
Copyright © 2014, 2012, 2010 Pearson Education, Inc.
If the distribution of a population is essentially
normal, then the distribution of
is a Student t Distribution for all samples of size n.
It is often referred to as a t distribution and is used
to find critical values denoted by .
Student t Distribution
Section 7.3-8
Copyright © 2014, 2012, 2010 Pearson Education, Inc.
degrees of freedom = n – 1
for the methods in this section
Definition
The number of degrees of freedom for a collection
of sample data is the number of sample values
that can vary after certain restrictions have been
imposed on all data values.
The degree of freedom is often abbreviated df.
Section 7.3-9
Copyright © 2014, 2012, 2010 Pearson Education, Inc.
μ = population mean
= sample mean
s = sample standard deviation
n = number of sample values
E = margin of error
t α/2 = critical t value separating an area of α/2 in the
right tail of the t distribution
Notation
x
Section 7.3-10
Copyright © 2014, 2012, 2010 Pearson Education, Inc.
where
found in Table A-3.
Confidence Interval for the
Estimate of μ (With σ Not Known)
df = n – 1
Section 7.3-11
Copyright © 2014, 2012, 2010 Pearson Education, Inc.
2. Using n – 1 degrees of freedom, refer to Table A-3 or use
technology to find the critical value that corresponds to the
desired confidence level.
Procedure for Constructing a Confidence
Interval for μ (With σ Not Known)
1. Verify that the requirements are satisfied.
3. Evaluate the margin of error .
4. Find the values of Substitute those values in
the general format for the confidence interval:
5. Round the resulting confidence interval limits.
x  E and x  E.
x  E    x  E
Section 7.3-12
Copyright © 2014, 2012, 2010 Pearson Education, Inc.
Example
A common claim is that garlic lowers cholesterol levels. In
a test of the effectiveness of garlic, 49 subjects were
treated with doses of raw garlic, and their cholesterol
levels were measured before and after the treatment.
The changes in their levels of LDL cholesterol (in mg/dL)
have a mean of 0.4 and a standard deviation of 21.0.
Use the sample statistics of n = 49, = 0.4, and s = 21.0 to
construct a 95% confidence interval estimate of the mean
net change in LDL cholesterol after the garlic treatment.
What does the confidence interval suggest about the
effectiveness of garlic in reducing LDL cholesterol?
x
Section 7.3-13
Copyright © 2014, 2012, 2010 Pearson Education, Inc.
Example - Continued
Requirements are satisfied: simple random
sample and n = 49 (i.e., n > 30).
2
21 0
2 009 6 027
49


   
.
. .
E t
n
95% implies α = 0.05.
With n = 49, the df = 49 – 1 = 48
Closest df is 50, two tails, so = 2.009
Using = 2.009, s = 21.0 and n = 49 the margin
of error is:
Section 7.3-14
Copyright © 2014, 2012, 2010 Pearson Education, Inc.
Example - Continued
Construct the confidence interval: x  0.4,E  6.027
We are 95% confident that the limits of –5.6 and 6.4 actually do contain
the value of μ, the mean of the changes in LDL cholesterol for the
population.
Because the confidence interval limits contain the value of 0, it is very
possible that the mean of the changes in LDL cholesterol is equal to 0,
suggesting that the garlic treatment did not affect the LDL cholesterol
levels.
It does not appear that the garlic treatment is effective in lowering LDL
cholesterol.
x  E    x  E
0.4  6.027    0.4  6.027
5.6    6.4
Section 7.3-15
Copyright © 2014, 2012, 2010 Pearson Education, Inc.
Important Properties of the
Student t Distribution
1. The Student t distribution is different for different sample sizes.
(See the following slide for the cases n = 3 and n = 12.)
2. The Student t distribution has the same general symmetric bell
shape as the standard normal distribution but it reflects the greater
variability (with wider distributions) that is expected with small
samples.
3. The Student t distribution has a mean of t = 0 (just as the standard
normal distribution has a mean of z = 0).
4. The standard deviation of the Student t distribution varies with the
sample size and is greater than 1 (unlike the standard normal
distribution, which has σ = 1).
5. As the sample size n gets larger, the Student t distribution gets
closer to the normal distribution.
Section 7.3-16
Copyright © 2014, 2012, 2010 Pearson Education, Inc.
Student t Distributions for
n = 3 and n = 12
Section 7.3-17
Copyright © 2014, 2012, 2010 Pearson Education, Inc.
Point estimate of μ:
= (upper confidence limit) + (lower confidence limit)
2
Margin of Error:
= (upper confidence limit) – (lower confidence limit)
2
Finding the Point Estimate
and E from a Confidence Interval
Section 7.3-18
Copyright © 2014, 2012, 2010 Pearson Education, Inc.
Finding a Sample Size for Estimating a
Population Mean
= population mean
= population standard deviation
= sample mean
= desired margin of error
= z score separating an area of in the right tail of
the standard normal distribution
x
Section 7.3-19
Copyright © 2014, 2012, 2010 Pearson Education, Inc.
Round-Off Rule for Sample Size n
If the computed sample size n is not a whole
number, round the value of n up to the next
larger whole number.
Section 7.3-20
Copyright © 2014, 2012, 2010 Pearson Education, Inc.
Finding the Sample Size n
When σ is Unknown
1. Use the range rule of thumb (see Section 3-3) to
estimate the standard deviation as follows:
2. Start the sample collection process without knowing σ
and, using the first several values, calculate the sample
standard deviation s and use it in place of σ. The
estimated value of σ can then be improved as more
sample data are obtained, and the sample size can be
refined accordingly.
3. Estimate the value of σ by using the results of some
other earlier study.
.
Section 7.3-21
Copyright © 2014, 2012, 2010 Pearson Education, Inc.
Example
Assume that we want to estimate the mean IQ score for the
population of statistics students. How many statistics students
must be randomly selected for IQ tests if we want 95%
confidence that the sample mean is within 3 IQ points of the
population mean?
α = 0.05
α/2 = 0.025
zα/2 = 1.96
E = 3
σ = 15
With a simple random sample of only 97
statistics students, we will be 95%
confident that the sample mean is within
3 IQ points of the true population mean μ.
Section 7.3-22
Copyright © 2014, 2012, 2010 Pearson Education, Inc.
Part 2: Key Concept
This section presents methods for
estimating a population mean. In addition
to knowing the values of the sample data
or statistics, we must also know the value
of the population standard deviation, σ.
Section 7.3-23
Copyright © 2014, 2012, 2010 Pearson Education, Inc.
μ = population mean
= sample mean
σ = population standard deviation
n = number of sample values
E = margin of error
z α/2 = critical z value separating an area of α/2 in the
right tail of the standard normal distribution
Confidence Interval for Estimating a
Population Mean (with σ Known)
x
Section 7.3-24
Copyright © 2014, 2012, 2010 Pearson Education, Inc.
Confidence Interval for Estimating
a Population Mean (with σ Known)
1. The sample is a simple random sample. (All samples
of the same size have an equal chance of being
selected.)
2. The value of the population standard deviation σ is
known.
3. Either or both of these conditions is satisfied: The
population is normally distributed or n > 30.
Section 7.3-25
Copyright © 2014, 2012, 2010 Pearson Education, Inc.
Confidence Interval for Estimating
a Population Mean (with σ Known)
x  E    x  E where E  z 2


n
or x  E
or x  E,x  E
 
Section 7.3-26
Copyright © 2014, 2012, 2010 Pearson Education, Inc.
Example
People have died in boat and aircraft accidents because an
obsolete estimate of the mean weight of men was used.
In recent decades, the mean weight of men has increased
considerably, so we need to update our estimate of that
mean so that boats, aircraft, elevators, and other such
devices do not become dangerously overloaded.
Using the weights of men from a random sample, we obtain
these sample statistics for the simple random sample:
n = 40 and = 172.55 lb.
Research from several other sources suggests that the
population of weights of men has a standard deviation given
by σ = 26 lb.
x
Section 7.3-27
Copyright © 2014, 2012, 2010 Pearson Education, Inc.
Example - Continued
a. Find the best point estimate of the mean weight of the
population of all men.
b. Construct a 95% confidence interval estimate of the
mean weight of all men.
c. What do the results suggest about the mean weight of
166.3 lb that was used to determine the safe passenger
capacity of water vessels in 1960 (as given in the
National Transportation and Safety Board safety
recommendation M-04-04)?
Section 7.3-28
Copyright © 2014, 2012, 2010 Pearson Education, Inc.
Example - Continued
a. The sample mean of 172.55 lb is the best point estimate of
the mean weight of the population of all men.


    
2
26
1.96 8.0574835
40
E z
n
b. A 95% confidence interval implies that α = 0.05, so zα/2= 1.96.
Calculate the margin of error.
Construct the confidence interval.
x  E    x  E
172.55  8.0574835    172.55  8.0574835
164.49    180.61
Section 7.3-29
Copyright © 2014, 2012, 2010 Pearson Education, Inc.
Example - Continued
c. Based on the confidence interval, it is possible that the
mean weight of 166.3 lb used in 1960 could be the
mean weight of men today.
However, the best point estimate of 172.55 lb suggests
that the mean weight of men is now considerably greater
than 166.3 lb.
Considering that an underestimate of the mean weight
of men could result in lives lost through overloaded
boats and aircraft, these results strongly suggest that
additional data should be collected.
Section 7.3-30
Copyright © 2014, 2012, 2010 Pearson Education, Inc.
Choosing the Appropriate Distribution
Section 7.3-31
Copyright © 2014, 2012, 2010 Pearson Education, Inc.
Choosing the Appropriate Distribution
Use the normal (z)
distribution
σ known and
normally distributed
population or n > 30
Use t distribution σ not known and
normally distributed
population or n > 30
Use a nonparametric
method or bootstrapping
Population is not normally
distributed and n ≤ 30

More Related Content

PPTX
Estimating a Population Mean
PPTX
Estimating a Population Mean
PPTX
Estimating a Population Mean
PDF
Lect w4 Lect w3 estimation
PPT
Msb12e ppt ch06
PPTX
statistics chapter 4 PowerPoint for accounting studens.ppt
PPTX
. Estimation Of Parameters presentation pptx
PPT
Confidence Intervals
Estimating a Population Mean
Estimating a Population Mean
Estimating a Population Mean
Lect w4 Lect w3 estimation
Msb12e ppt ch06
statistics chapter 4 PowerPoint for accounting studens.ppt
. Estimation Of Parameters presentation pptx
Confidence Intervals

Similar to Chapter 7 Section 3.ppt (20)

PPTX
estimation.pptx
PPTX
Lind_18e_Chap009_Estimation and Confidence Intervals.pptx
PPT
Inferential statistics-estimation
PPT
PHILIPPINE STATISTCICS UNIT~2.POWER POINT T SAMPLE
PPTX
Estimating a Population Standard Deviation or Variance
PPT
Chapter 7 note Estimation.ppt biostatics
PPTX
BIOMETRYc(1).pptx
PPTX
BIOMETRYc(1).pptx
PPTX
Estimating a Population Proportion
DOCX
Estimation in statistics
PPTX
M1-4 Estimasi Titik dan Intervaltttt.pptx
PPT
Chap009.ppt
PPT
PPTX
Confidence interval statistics two .pptx
PPTX
Standard Error & Confidence Intervals.pptx
PPTX
Business Analytics _ Confidence Interval
PPTX
Estimation by c.i
PPT
Chapter 09
PPT
Chapter 7 Section 4(1).ppt
PPT
Statistik 1 7 estimasi & ci
estimation.pptx
Lind_18e_Chap009_Estimation and Confidence Intervals.pptx
Inferential statistics-estimation
PHILIPPINE STATISTCICS UNIT~2.POWER POINT T SAMPLE
Estimating a Population Standard Deviation or Variance
Chapter 7 note Estimation.ppt biostatics
BIOMETRYc(1).pptx
BIOMETRYc(1).pptx
Estimating a Population Proportion
Estimation in statistics
M1-4 Estimasi Titik dan Intervaltttt.pptx
Chap009.ppt
Confidence interval statistics two .pptx
Standard Error & Confidence Intervals.pptx
Business Analytics _ Confidence Interval
Estimation by c.i
Chapter 09
Chapter 7 Section 4(1).ppt
Statistik 1 7 estimasi & ci
Ad

More from ManoloTaquire (20)

PPT
Chapter 2 Section 3.ppt
PPT
Chapter 4 Section 3.ppt
PPT
Chapter 3 Section 2.ppt
PPT
Chapter 2 Section 4.ppt
PPT
Chapter 6 Section 7.ppt
PPT
Chapter 4 Section 2.ppt
PPT
Chapter 1 Section 4.ppt
PPT
Chapter 3 Section 4.ppt
PPT
Chapter 2 Section 1.ppt
PPT
Chapter 3 Section 1.ppt
PPT
Chapter 3 Section 3.ppt
PPT
Chapter 6 Section 5.ppt
PPT
Chapter 4 Section 1.ppt
PPT
Chapter 4 Section 5.ppt
PPT
Chapter 1 Section 3.ppt
PPT
Chapter 6 Section 3.ppt
PPT
Chapter 6 Section 1.ppt
PPT
Chapter 5 Section (5).ppt
PPT
Chapter 5 Section (3).ppt
PPT
Chapter 1 Section 2.ppt
Chapter 2 Section 3.ppt
Chapter 4 Section 3.ppt
Chapter 3 Section 2.ppt
Chapter 2 Section 4.ppt
Chapter 6 Section 7.ppt
Chapter 4 Section 2.ppt
Chapter 1 Section 4.ppt
Chapter 3 Section 4.ppt
Chapter 2 Section 1.ppt
Chapter 3 Section 1.ppt
Chapter 3 Section 3.ppt
Chapter 6 Section 5.ppt
Chapter 4 Section 1.ppt
Chapter 4 Section 5.ppt
Chapter 1 Section 3.ppt
Chapter 6 Section 3.ppt
Chapter 6 Section 1.ppt
Chapter 5 Section (5).ppt
Chapter 5 Section (3).ppt
Chapter 1 Section 2.ppt
Ad

Recently uploaded (20)

PPTX
Introduction to Child Health Nursing – Unit I | Child Health Nursing I | B.Sc...
PDF
2.FourierTransform-ShortQuestionswithAnswers.pdf
PDF
Microbial disease of the cardiovascular and lymphatic systems
PDF
Basic Mud Logging Guide for educational purpose
PDF
Chapter 2 Heredity, Prenatal Development, and Birth.pdf
PDF
Anesthesia in Laparoscopic Surgery in India
PDF
Module 4: Burden of Disease Tutorial Slides S2 2025
PDF
Classroom Observation Tools for Teachers
PDF
TR - Agricultural Crops Production NC III.pdf
PDF
ANTIBIOTICS.pptx.pdf………………… xxxxxxxxxxxxx
PDF
Mark Klimek Lecture Notes_240423 revision books _173037.pdf
PPTX
human mycosis Human fungal infections are called human mycosis..pptx
PDF
102 student loan defaulters named and shamed – Is someone you know on the list?
PDF
VCE English Exam - Section C Student Revision Booklet
PPTX
Final Presentation General Medicine 03-08-2024.pptx
PPTX
Cell Structure & Organelles in detailed.
PPTX
Institutional Correction lecture only . . .
PDF
The Lost Whites of Pakistan by Jahanzaib Mughal.pdf
PDF
Origin of periodic table-Mendeleev’s Periodic-Modern Periodic table
PDF
grade 11-chemistry_fetena_net_5883.pdf teacher guide for all student
Introduction to Child Health Nursing – Unit I | Child Health Nursing I | B.Sc...
2.FourierTransform-ShortQuestionswithAnswers.pdf
Microbial disease of the cardiovascular and lymphatic systems
Basic Mud Logging Guide for educational purpose
Chapter 2 Heredity, Prenatal Development, and Birth.pdf
Anesthesia in Laparoscopic Surgery in India
Module 4: Burden of Disease Tutorial Slides S2 2025
Classroom Observation Tools for Teachers
TR - Agricultural Crops Production NC III.pdf
ANTIBIOTICS.pptx.pdf………………… xxxxxxxxxxxxx
Mark Klimek Lecture Notes_240423 revision books _173037.pdf
human mycosis Human fungal infections are called human mycosis..pptx
102 student loan defaulters named and shamed – Is someone you know on the list?
VCE English Exam - Section C Student Revision Booklet
Final Presentation General Medicine 03-08-2024.pptx
Cell Structure & Organelles in detailed.
Institutional Correction lecture only . . .
The Lost Whites of Pakistan by Jahanzaib Mughal.pdf
Origin of periodic table-Mendeleev’s Periodic-Modern Periodic table
grade 11-chemistry_fetena_net_5883.pdf teacher guide for all student

Chapter 7 Section 3.ppt

  • 1. Section 7.3-1 Copyright © 2014, 2012, 2010 Pearson Education, Inc. Lecture Slides Elementary Statistics Twelfth Edition and the Triola Statistics Series by Mario F. Triola
  • 2. Section 7.3-2 Copyright © 2014, 2012, 2010 Pearson Education, Inc. Chapter 7 Estimates and Sample Sizes 7-1 Review and Preview 7-2 Estimating a Population Proportion 7-3 Estimating a Population Mean 7-4 Estimating a Population Standard Deviation or Variance
  • 3. Section 7.3-3 Copyright © 2014, 2012, 2010 Pearson Education, Inc. Key Concept This section presents methods for using the sample mean to make an inference about the value of the corresponding population mean.
  • 4. Section 7.3-4 Copyright © 2014, 2012, 2010 Pearson Education, Inc. Key Concept 1. We should know that the sample mean is the best point estimate of the population mean μ. 2. We should learn how to use sample data to construct a confidence interval for estimating the value of a population mean, and we should know how to interpret such confidence intervals. 3. We should develop the ability to determine the sample size necessary to estimate a population mean. x
  • 5. Section 7.3-5 Copyright © 2014, 2012, 2010 Pearson Education, Inc. Requirements The procedure we use has a requirement that the population is normally distributed or the sample size is greater than 30.
  • 6. Section 7.3-6 Copyright © 2014, 2012, 2010 Pearson Education, Inc. Margin of Error E for Estimate of μ (With σ Not Known) where has n – 1 degrees of freedom. Table A-3 lists values for .
  • 7. Section 7.3-7 Copyright © 2014, 2012, 2010 Pearson Education, Inc. If the distribution of a population is essentially normal, then the distribution of is a Student t Distribution for all samples of size n. It is often referred to as a t distribution and is used to find critical values denoted by . Student t Distribution
  • 8. Section 7.3-8 Copyright © 2014, 2012, 2010 Pearson Education, Inc. degrees of freedom = n – 1 for the methods in this section Definition The number of degrees of freedom for a collection of sample data is the number of sample values that can vary after certain restrictions have been imposed on all data values. The degree of freedom is often abbreviated df.
  • 9. Section 7.3-9 Copyright © 2014, 2012, 2010 Pearson Education, Inc. μ = population mean = sample mean s = sample standard deviation n = number of sample values E = margin of error t α/2 = critical t value separating an area of α/2 in the right tail of the t distribution Notation x
  • 10. Section 7.3-10 Copyright © 2014, 2012, 2010 Pearson Education, Inc. where found in Table A-3. Confidence Interval for the Estimate of μ (With σ Not Known) df = n – 1
  • 11. Section 7.3-11 Copyright © 2014, 2012, 2010 Pearson Education, Inc. 2. Using n – 1 degrees of freedom, refer to Table A-3 or use technology to find the critical value that corresponds to the desired confidence level. Procedure for Constructing a Confidence Interval for μ (With σ Not Known) 1. Verify that the requirements are satisfied. 3. Evaluate the margin of error . 4. Find the values of Substitute those values in the general format for the confidence interval: 5. Round the resulting confidence interval limits. x  E and x  E. x  E    x  E
  • 12. Section 7.3-12 Copyright © 2014, 2012, 2010 Pearson Education, Inc. Example A common claim is that garlic lowers cholesterol levels. In a test of the effectiveness of garlic, 49 subjects were treated with doses of raw garlic, and their cholesterol levels were measured before and after the treatment. The changes in their levels of LDL cholesterol (in mg/dL) have a mean of 0.4 and a standard deviation of 21.0. Use the sample statistics of n = 49, = 0.4, and s = 21.0 to construct a 95% confidence interval estimate of the mean net change in LDL cholesterol after the garlic treatment. What does the confidence interval suggest about the effectiveness of garlic in reducing LDL cholesterol? x
  • 13. Section 7.3-13 Copyright © 2014, 2012, 2010 Pearson Education, Inc. Example - Continued Requirements are satisfied: simple random sample and n = 49 (i.e., n > 30). 2 21 0 2 009 6 027 49       . . . E t n 95% implies α = 0.05. With n = 49, the df = 49 – 1 = 48 Closest df is 50, two tails, so = 2.009 Using = 2.009, s = 21.0 and n = 49 the margin of error is:
  • 14. Section 7.3-14 Copyright © 2014, 2012, 2010 Pearson Education, Inc. Example - Continued Construct the confidence interval: x  0.4,E  6.027 We are 95% confident that the limits of –5.6 and 6.4 actually do contain the value of μ, the mean of the changes in LDL cholesterol for the population. Because the confidence interval limits contain the value of 0, it is very possible that the mean of the changes in LDL cholesterol is equal to 0, suggesting that the garlic treatment did not affect the LDL cholesterol levels. It does not appear that the garlic treatment is effective in lowering LDL cholesterol. x  E    x  E 0.4  6.027    0.4  6.027 5.6    6.4
  • 15. Section 7.3-15 Copyright © 2014, 2012, 2010 Pearson Education, Inc. Important Properties of the Student t Distribution 1. The Student t distribution is different for different sample sizes. (See the following slide for the cases n = 3 and n = 12.) 2. The Student t distribution has the same general symmetric bell shape as the standard normal distribution but it reflects the greater variability (with wider distributions) that is expected with small samples. 3. The Student t distribution has a mean of t = 0 (just as the standard normal distribution has a mean of z = 0). 4. The standard deviation of the Student t distribution varies with the sample size and is greater than 1 (unlike the standard normal distribution, which has σ = 1). 5. As the sample size n gets larger, the Student t distribution gets closer to the normal distribution.
  • 16. Section 7.3-16 Copyright © 2014, 2012, 2010 Pearson Education, Inc. Student t Distributions for n = 3 and n = 12
  • 17. Section 7.3-17 Copyright © 2014, 2012, 2010 Pearson Education, Inc. Point estimate of μ: = (upper confidence limit) + (lower confidence limit) 2 Margin of Error: = (upper confidence limit) – (lower confidence limit) 2 Finding the Point Estimate and E from a Confidence Interval
  • 18. Section 7.3-18 Copyright © 2014, 2012, 2010 Pearson Education, Inc. Finding a Sample Size for Estimating a Population Mean = population mean = population standard deviation = sample mean = desired margin of error = z score separating an area of in the right tail of the standard normal distribution x
  • 19. Section 7.3-19 Copyright © 2014, 2012, 2010 Pearson Education, Inc. Round-Off Rule for Sample Size n If the computed sample size n is not a whole number, round the value of n up to the next larger whole number.
  • 20. Section 7.3-20 Copyright © 2014, 2012, 2010 Pearson Education, Inc. Finding the Sample Size n When σ is Unknown 1. Use the range rule of thumb (see Section 3-3) to estimate the standard deviation as follows: 2. Start the sample collection process without knowing σ and, using the first several values, calculate the sample standard deviation s and use it in place of σ. The estimated value of σ can then be improved as more sample data are obtained, and the sample size can be refined accordingly. 3. Estimate the value of σ by using the results of some other earlier study. .
  • 21. Section 7.3-21 Copyright © 2014, 2012, 2010 Pearson Education, Inc. Example Assume that we want to estimate the mean IQ score for the population of statistics students. How many statistics students must be randomly selected for IQ tests if we want 95% confidence that the sample mean is within 3 IQ points of the population mean? α = 0.05 α/2 = 0.025 zα/2 = 1.96 E = 3 σ = 15 With a simple random sample of only 97 statistics students, we will be 95% confident that the sample mean is within 3 IQ points of the true population mean μ.
  • 22. Section 7.3-22 Copyright © 2014, 2012, 2010 Pearson Education, Inc. Part 2: Key Concept This section presents methods for estimating a population mean. In addition to knowing the values of the sample data or statistics, we must also know the value of the population standard deviation, σ.
  • 23. Section 7.3-23 Copyright © 2014, 2012, 2010 Pearson Education, Inc. μ = population mean = sample mean σ = population standard deviation n = number of sample values E = margin of error z α/2 = critical z value separating an area of α/2 in the right tail of the standard normal distribution Confidence Interval for Estimating a Population Mean (with σ Known) x
  • 24. Section 7.3-24 Copyright © 2014, 2012, 2010 Pearson Education, Inc. Confidence Interval for Estimating a Population Mean (with σ Known) 1. The sample is a simple random sample. (All samples of the same size have an equal chance of being selected.) 2. The value of the population standard deviation σ is known. 3. Either or both of these conditions is satisfied: The population is normally distributed or n > 30.
  • 25. Section 7.3-25 Copyright © 2014, 2012, 2010 Pearson Education, Inc. Confidence Interval for Estimating a Population Mean (with σ Known) x  E    x  E where E  z 2   n or x  E or x  E,x  E  
  • 26. Section 7.3-26 Copyright © 2014, 2012, 2010 Pearson Education, Inc. Example People have died in boat and aircraft accidents because an obsolete estimate of the mean weight of men was used. In recent decades, the mean weight of men has increased considerably, so we need to update our estimate of that mean so that boats, aircraft, elevators, and other such devices do not become dangerously overloaded. Using the weights of men from a random sample, we obtain these sample statistics for the simple random sample: n = 40 and = 172.55 lb. Research from several other sources suggests that the population of weights of men has a standard deviation given by σ = 26 lb. x
  • 27. Section 7.3-27 Copyright © 2014, 2012, 2010 Pearson Education, Inc. Example - Continued a. Find the best point estimate of the mean weight of the population of all men. b. Construct a 95% confidence interval estimate of the mean weight of all men. c. What do the results suggest about the mean weight of 166.3 lb that was used to determine the safe passenger capacity of water vessels in 1960 (as given in the National Transportation and Safety Board safety recommendation M-04-04)?
  • 28. Section 7.3-28 Copyright © 2014, 2012, 2010 Pearson Education, Inc. Example - Continued a. The sample mean of 172.55 lb is the best point estimate of the mean weight of the population of all men.        2 26 1.96 8.0574835 40 E z n b. A 95% confidence interval implies that α = 0.05, so zα/2= 1.96. Calculate the margin of error. Construct the confidence interval. x  E    x  E 172.55  8.0574835    172.55  8.0574835 164.49    180.61
  • 29. Section 7.3-29 Copyright © 2014, 2012, 2010 Pearson Education, Inc. Example - Continued c. Based on the confidence interval, it is possible that the mean weight of 166.3 lb used in 1960 could be the mean weight of men today. However, the best point estimate of 172.55 lb suggests that the mean weight of men is now considerably greater than 166.3 lb. Considering that an underestimate of the mean weight of men could result in lives lost through overloaded boats and aircraft, these results strongly suggest that additional data should be collected.
  • 30. Section 7.3-30 Copyright © 2014, 2012, 2010 Pearson Education, Inc. Choosing the Appropriate Distribution
  • 31. Section 7.3-31 Copyright © 2014, 2012, 2010 Pearson Education, Inc. Choosing the Appropriate Distribution Use the normal (z) distribution σ known and normally distributed population or n > 30 Use t distribution σ not known and normally distributed population or n > 30 Use a nonparametric method or bootstrapping Population is not normally distributed and n ≤ 30