SlideShare a Scribd company logo
Chapter 9     58
                                                                                          Sampling




                                       THE SAMPLING



          Define what a sampling is.
          Identify a good and defective sampling.
          Explain how to determine a sample size
          Discuss and identify the different types of sampling techniques


9.1 Sampling Defined

       The following are the terms that a researcher should comprehend.

   o   Sampling is a process of choosing a representative portion of a population to represent
       the entire population.

   o   Sample. It is a proportion, an element or a part of the population which is scientifically and
       randomly drawn that actually possesses the same characteristics as the population. This
       implies that every person has an equal opportunity to be selected for your sample

   o   An element is considered as a member of a population. It is a unit in which data is
       collected and analyzed

   o   Population pertains to total number of elements to be studied. It includes all members of
       a defined group that we are studying or collecting information on the data driven
       decisions.

   o   Parameter is the summary description of a given variable in a population. The mean
       income, the mean age of all the families are parameters. The age distribution of all people
       is a parameter.

   o   Sample size is the number of subjects in your study.

   o   Margin of Error is the allowable error in percent due to the use of the sample, instead of
       the population


   o   Sampling Error is the error attributed to chance difference between a random sample
       and the chosen population. It does not result from measurement or computation errors but
       contributory to inaccuracy of data.

Sample vs Population

As follows are some reasons why researchers use a sample rather than the entire population in
the conduct of their study.

   1. Sometimes population is difficult to identify who makes up the entire population.
Chapter 9     59
                                                                                              Sampling

    2. Sample is cheaper, faster, more accurate and can yield to more comprehensive
       information.
    3. Getting the population is too costly in terms of human resources and other expenses, and
       time consuming.
    4. In population, there is a lot of error to control and monitor.
    5. Sometimes lists are rarely up to date.

9.2 Good and Defective Sampling

Keys to Good Sampling
    formulate the aims of the study
    decide what analysis is required to satisfy this aims
    decide what data are required to facilitate the analysis
    collect the data required by the study

Defective Sampling

    1. Sampling that is too small or not a representative will be biased, invalid and unreliable.
    2. The sampling becomes very complicate if the population is too large or has many sections
       and subsection.
    3. The sample (respondents) should have common characteristics in order to eradicate
       faulty conclusions.
    4. The sampling becomes biased and unrepresentative if the researcher does not possess
       the necessary skills and technical know-how of the sampling procedure.


9.3. The Sample Size

         One of the most frequent problems in statistical analysis is the determination of the
appropriate sample size. One may ask why sample size is so important. The answer to this is that
an appropriate sample size is required for validity. If the sample sizes are too small, it will not yield
valid results. An appropriate sample size can produce accuracy of results. Moreover, the results
from the small sample size will be questionable. A sample size that is too large will result in
wasting money and time. It is also unethical to choose too large a sample size. There is no certain
rule of thumb to determine the sample size. Some researchers do, however, support a rule of
thumb when using the sample size. For example, in regression analysis, many researchers say
that there should be at least 10 observations per variable. If we are using three independent
variables, then a clear rule would be to have a minimum sample size of 30. Some researchers
follow a statistical formula to calculate the sample size.

Size of sample depends on some factors:
    1. Degree of accuracy required
    2. Amount of variability inherent in the population from which the sample was taken
    3. Nature and complexity of the characteristics of the population under consideration


Determine sample size

             Slovin Formula:                               Where:
                                                           n = sample size
                                                           N = population size
                                                           e = desired margin of error
Chapter 9     60
                                                                                             Sampling


    Example1:        What should be the representative sample size if the population from which
    the sample will be taken is 10,000 and the desired margin of error is 2%?

           Solution:   To determine the sample size, use the formula;




    The sample size is 2,000
    This formula in finding the sample size cannot be used when the normal approximation of the
    population is poor or small.

    Example 2: The population of Barangay Dodong is 10,600. What would be your
    representative sample size of Brgy. Sebuas if the population is 10,600 and the desired margin
    of error is 5%?




9.4 Types of Sampling Techniques

 1. Non-probability Sampling (Non-scientific). This type of sampling does not provide every
   member of the population an equal chance of being selected as part of the sample.
   Additionally, the data gatherers choose sample cases as they WISH. These have 3 kinds:

      a. Purposive sampling is used when the researcher selected samples which are
             according to the purposes of the researcher.
      b.      Quota sampling is used if a stratum is small in the population but important to the
             research questions being presented. This is done by merely looking for individuals with
             requisite characteristics.
      c.     Convenience sampling, exactly what the name suggests, are oftentimes what we have
             to use because of reality. We cannot draw a sample, but we have a group that is
             accessible, is representative of our target population and just available to us. Instead of
             becoming purists and throwing out the chance for collecting data for decisions, use what
             you have with the honest acknowledgement that there are limitations.

2. Probability Sampling (Scientific sampling). In this type of sampling, the researcher follows a
procedure that assures that all elements in the population are given equal chance of being
selected as a sample unit. There are 6 types:

    a. Simple random sampling may be done by drawing of lots or with the use of a table of
           random digits. This gives all elements as equal chance of being selected as a sample.

           Steps in Simple Random Sampling
           1. Determine the population of the study
           2. Determine the desired sample size ( You can use Pagoso formula, Gay’s formula or
              other formulae in determining sample size)
           3. List down the respondents (population) of the study in a sheet of paper.
           4. Write in a small sheets of paper, names of the respondents or codes, roll these pieces
              of papers and place them in a box big enough to accommodate them. Shake
              thoroughly the box
Chapter 9     61
                                                                                     Sampling

   5. Draw the sample one at a time after shaking the box until the desired sample size is
      drawn. The names are drawn include in the sample.

b. Systematic sampling is an often-used sampling strategy and cost effective. Again, you
   must have a population sampling frame list that is in random order and non-overlapping.
   Determine both the size of the population and the size of the sample you want to work
   with. Then, divide the sample size (n) into the population (N) size to get your key number,
   symbolized as “k”(sampling interval) a method of selecting a sample by taking the kth
   (sampling interval) units from an ordered (alphabetical /chronological) population. The
   formula applied is : K=N/n (where: K is desired interval, N population and n is the sample
   size)

   Steps in Simple Random Sampling
   1. Identify the population of the study
   2. Determine the desired sample size, then, apply the formula above. For example. Is
      you have a population of 800 and your desired sample size is 10%, then you will have
      a sample of 80. Applying the formula above 800/80=10), the sampling interval is 10
   3. Hence, every 10th in the list (or arrangement of households as the case may be) is
      taken as a member of the sample
   4. Close your eyes and run your finger down the list and then stop. The number, which
      the finger points to at, is the random start number.
   5. From the random start number, pick every 10 th in the list (or arrangement of the
      households) until the desired sample size of 80 is obtained.

c. Stratified random sampling is used when the population is heterogeneous and it is
   important to represent the different strata or sub-populations. There is a proportional
   representation of strata in the sample - proportional to the population strata. We divide the
   entire population into strata (groups) to obtain groups of people that are more or less
   equal in some respect.

   Steps in Simple Random Sampling
   1. Determine the stratum or class to which all elements in the population belong.
   2. Group the elements of the population according to the characteristics inherent in the
      whole class or stratum
   3. Apply either the pure random sampling method or systematic sampling in the actual
      selection of the sample. Do this for every class or stratum.
      Note: The same sample size should be proportional or the same percent is applied for
      each class or stratum.

For example:

                 Types of Farmers            Population        Fraction      Sample size
           Rice farmers                         30            30/75 x 30        12
           Sugar farmers                        20            20/75 x 30         8
           Vegetable farmers                    10            10/75 x 30         4
           Cutflower producers                  15            15/75 x 30         6
           TOTAL                                75                              30


d. Cluster Sampling – selecting a clusters of elements or blocks where each consists of
   heterogeneous elements (Calderon et al, 1993).

   Steps in Cluster Sampling
           1. Make a listing of sampling unit, the primary sampling units ( the first clusters
              to be sampled), the secondary sampling unit within the primary sampling, etc.
Chapter 9   62
                                                                                      Sampling

                 Suppose the provinces are the primary sampling units, the towns are the
                 secondary sampling units and the barangay are the final sampling units.
                 These are called natural clusters
              2. Since the sample is 20%, 20% of 9 provinces equals to 1.8 or 2 provinces.
                 Select these two ( 20 provinces either by pure or systematic random
                 sampling)
              3. Within each of these two provinces, select 20% of the towns either by pure
                 random or systematic random sampling method.
              4. Within each town selected, choose 20% of the barangays. Since there are
                 only one elementary school in one barrio or barangay, this is the final
                 sampling unit. The respondents may be stratified into teachers, parents and
                 pupils. The respondents have to be taken from these stratified groups either
                 pure random or systematic random sampling.
        Example:

                                          Desired sample : 50
                                     Population : 100 with 10 clusters

               Step1 . Number 10 clusters 1-10
               Step2. Use simple random sampling
         .     Step3. Identify the groups represented by the numbers drawn



   e. Multi-stage Sampling – selection of sample is accomplished in two or more stages.
             Example:
                    Desired sample : 50
                    Population : all men with 0-6 yrs old children in province


       Stage1 . Draw sample towns in the province. List all the names in the province and use
                  random sampling to draw the three sample towns.
       Stage2. Draw sample barangays in the sample towns. Secure a list of all barangays in
                 each of the sample towns and using simple random sampling, draw 3 sample
                 barangays in each of the three sample towns.
       Stage3. Draw a sample of married men in the sample barangays.List their names per
                 sample barangays from the 3sample towns then use random sampling to select
                 the men with 0-6 yrs old children.
Guidelines with regards to the minimum number of items needed for a representative
sample (Gay,1976):

       Descriptive studies – a minimum number of 100, 10 percent of the population. for
        smaller population, a minimum of 20% may be required
       Co-relational studies – a sample of at least 50 is deemed necessary to establish the
        existence of a relationship
       Ex post facto research of causal comparative studies-15 subjects or groups can be
        defended if they are very tightly controlled
       Experimental studies – minimum of 30 per group or 15 subjects per group Sometimes
        experimental studies with only 15 items in each group can be defended if they are very
        tightly controlled
       If the sample is randomly selected and is sufficiently large, an accurate view of the
        population can be had, provided that no bias enters the selection process
Chapter 9   63
                                                                            Sampling




                            THE RESEARCH SAMPLING


NAME: __________________________________________ SCORE: ___________________

YEAR & SECTION: _________________________________ DATE: _____________________


Instructions: Restate your research problem, research objectives and identify
your population. Determine the most appropriate sampling technique that you will
use then solve for your sample size.

      Research Title:
      _____________________________________________________
      _____________________________________________________


The Sampling Technique that I will use is: ____________________________
because__________________________________________________________
_________________________________________________________________
_________________________________________________________________
_______________

To     compute        for     the      sample       size,      I     will        use
_________________________________________________________________
_________________________________________________________________
_________________________________________________________________
_________________________________________________________________
_________________________________________________________________
_________________________________________________________________
_________________________________________________________________

More Related Content

PPTX
Applied research
PPTX
Sampling technique in quantitative and qualitative research
PDF
Qualitative research
PPT
Historical Research
PPTX
Sampling in qualitative researc
PPTX
The thesis and its parts
PDF
The usage of mobile phones fina lmj
PPTX
Kinds of qualitative_research
Applied research
Sampling technique in quantitative and qualitative research
Qualitative research
Historical Research
Sampling in qualitative researc
The thesis and its parts
The usage of mobile phones fina lmj
Kinds of qualitative_research

What's hot (20)

PPTX
Descriptive research
PPTX
Research design
PPTX
Research
PPTX
Research methodology Chapter 2
ODP
Sampling & data collection Methods
PPT
Basic research
PDF
Research Procedure
PPTX
Basic Terms in Statistics
PPTX
Research proposal chapter 1 presentation
PPT
Types of experimental design
PPTX
2. Qualitative sampling techniques by elmusharaf
PPTX
Lesson 20 describing sample size and sampling procedures
PPTX
CHARACTERISTICS OF A QUALITATIVE RESEARCH
PPTX
Population vs sample
PPT
data collection methods
PPTX
Research Gap.pptx
PPTX
Descriptive Research Design - Techniques and Types
PPTX
What is the difference and similarity between qualitative and quantitative re...
PDF
Methods of Research
Descriptive research
Research design
Research
Research methodology Chapter 2
Sampling & data collection Methods
Basic research
Research Procedure
Basic Terms in Statistics
Research proposal chapter 1 presentation
Types of experimental design
2. Qualitative sampling techniques by elmusharaf
Lesson 20 describing sample size and sampling procedures
CHARACTERISTICS OF A QUALITATIVE RESEARCH
Population vs sample
data collection methods
Research Gap.pptx
Descriptive Research Design - Techniques and Types
What is the difference and similarity between qualitative and quantitative re...
Methods of Research
Ad

Viewers also liked (20)

PDF
Samplels & Sampling Techniques
PPT
Common sampling techniques
PPTX
RESEARCH METHOD - SAMPLING
PPT
Chapter 8-SAMPLE & SAMPLING TECHNIQUES
PPTX
Sampling Methods in Qualitative and Quantitative Research
PPTX
Sampling techniquesmod5
PPTX
Sampling and Sample Types
PDF
Statistical Treatment
PPTX
Statistical tools in research
PPTX
Common statistical tools used in research and their uses
DOCX
Review of related literature
DOC
Research study ( Perception of the residents of Quintina, San pascual, Masbat...
PPT
The Demographic Tranistion Model
PPT
Sosyo Kognitib na Pananaw sa Pagsulat
PDF
Performance indicators definition_of_terms_and_formula
PPT
Writing research proposal
PDF
Population and sample mean
PPTX
Kabanata iii(pananaliksik)
PPT
The basic of educational research sampling
Samplels & Sampling Techniques
Common sampling techniques
RESEARCH METHOD - SAMPLING
Chapter 8-SAMPLE & SAMPLING TECHNIQUES
Sampling Methods in Qualitative and Quantitative Research
Sampling techniquesmod5
Sampling and Sample Types
Statistical Treatment
Statistical tools in research
Common statistical tools used in research and their uses
Review of related literature
Research study ( Perception of the residents of Quintina, San pascual, Masbat...
The Demographic Tranistion Model
Sosyo Kognitib na Pananaw sa Pagsulat
Performance indicators definition_of_terms_and_formula
Writing research proposal
Population and sample mean
Kabanata iii(pananaliksik)
The basic of educational research sampling
Ad

Similar to Chapter 9 sampling and statistical tool (20)

PPT
Sampling design 1216114348242957-8
PDF
Practical Research_Quarter 2 Lesson 3 Probability
PPT
sampling methods
DOCX
Types of research design, sampling methods & data collection
PPTX
sampling
PPTX
Selecting a sample: Writing Skill
PPTX
Theory of sampling
PPTX
L4 theory of sampling
PDF
Surveys & Questionnaires
PPT
Sampling 20 october 2012
PPTX
Sampling
PPT
Sampling Design
PPT
Sampling methods
PDF
Research methodlogy unit-iii-sampling
PPTX
THE NAME OF AYUSH Singh and I will be in the supply of business and the other...
PPTX
THE NAME OF AYUSH Singh and I will be in the supply of business and the other...
PPTX
Sampling seminar ppt
PPTX
sampling technique
PPTX
Sampling Technique - Anish
Sampling design 1216114348242957-8
Practical Research_Quarter 2 Lesson 3 Probability
sampling methods
Types of research design, sampling methods & data collection
sampling
Selecting a sample: Writing Skill
Theory of sampling
L4 theory of sampling
Surveys & Questionnaires
Sampling 20 october 2012
Sampling
Sampling Design
Sampling methods
Research methodlogy unit-iii-sampling
THE NAME OF AYUSH Singh and I will be in the supply of business and the other...
THE NAME OF AYUSH Singh and I will be in the supply of business and the other...
Sampling seminar ppt
sampling technique
Sampling Technique - Anish

More from Maria Theresa (20)

DOC
Syllabus educ200 methods of research
DOCX
ED197 episodes 1 12 (manual)
PPTX
Module 5 a job induction & orientation
PPTX
Module2 human resource information system
PPTX
Module 1 human resource management
DOCX
Tarpaulin making contest
DOCX
Documentary film
DOCX
Fs 2 episode 1
DOCX
Fs 2 episode 7
DOCX
Fs 2 episode 6
DOCX
Fs 2 episode 6
DOCX
Fs 2 episode 5
DOCX
Fs 2 episode 4
DOCX
Fs 2 episode 3
DOCX
Fs 2 episode 2
DOCX
Fs 2 episode 1
PPSX
Topic 1 ed105 b introduction
DOCX
Exercise (t able and mail merge)
DOCX
Sample format for appendices & bibliography
DOC
Title page final format
Syllabus educ200 methods of research
ED197 episodes 1 12 (manual)
Module 5 a job induction & orientation
Module2 human resource information system
Module 1 human resource management
Tarpaulin making contest
Documentary film
Fs 2 episode 1
Fs 2 episode 7
Fs 2 episode 6
Fs 2 episode 6
Fs 2 episode 5
Fs 2 episode 4
Fs 2 episode 3
Fs 2 episode 2
Fs 2 episode 1
Topic 1 ed105 b introduction
Exercise (t able and mail merge)
Sample format for appendices & bibliography
Title page final format

Recently uploaded (20)

PDF
Network Security Unit 5.pdf for BCA BBA.
PDF
Modernizing your data center with Dell and AMD
PDF
Build a system with the filesystem maintained by OSTree @ COSCUP 2025
PDF
NewMind AI Weekly Chronicles - August'25 Week I
PDF
NewMind AI Monthly Chronicles - July 2025
PPTX
Detection-First SIEM: Rule Types, Dashboards, and Threat-Informed Strategy
PDF
cuic standard and advanced reporting.pdf
PDF
Bridging biosciences and deep learning for revolutionary discoveries: a compr...
PDF
TokAI - TikTok AI Agent : The First AI Application That Analyzes 10,000+ Vira...
PPTX
Understanding_Digital_Forensics_Presentation.pptx
PPT
“AI and Expert System Decision Support & Business Intelligence Systems”
PDF
The Rise and Fall of 3GPP – Time for a Sabbatical?
PDF
CIFDAQ's Market Insight: SEC Turns Pro Crypto
PPTX
MYSQL Presentation for SQL database connectivity
PDF
Machine learning based COVID-19 study performance prediction
PDF
Architecting across the Boundaries of two Complex Domains - Healthcare & Tech...
PDF
Encapsulation_ Review paper, used for researhc scholars
PDF
Agricultural_Statistics_at_a_Glance_2022_0.pdf
PPTX
VMware vSphere Foundation How to Sell Presentation-Ver1.4-2-14-2024.pptx
PDF
Review of recent advances in non-invasive hemoglobin estimation
Network Security Unit 5.pdf for BCA BBA.
Modernizing your data center with Dell and AMD
Build a system with the filesystem maintained by OSTree @ COSCUP 2025
NewMind AI Weekly Chronicles - August'25 Week I
NewMind AI Monthly Chronicles - July 2025
Detection-First SIEM: Rule Types, Dashboards, and Threat-Informed Strategy
cuic standard and advanced reporting.pdf
Bridging biosciences and deep learning for revolutionary discoveries: a compr...
TokAI - TikTok AI Agent : The First AI Application That Analyzes 10,000+ Vira...
Understanding_Digital_Forensics_Presentation.pptx
“AI and Expert System Decision Support & Business Intelligence Systems”
The Rise and Fall of 3GPP – Time for a Sabbatical?
CIFDAQ's Market Insight: SEC Turns Pro Crypto
MYSQL Presentation for SQL database connectivity
Machine learning based COVID-19 study performance prediction
Architecting across the Boundaries of two Complex Domains - Healthcare & Tech...
Encapsulation_ Review paper, used for researhc scholars
Agricultural_Statistics_at_a_Glance_2022_0.pdf
VMware vSphere Foundation How to Sell Presentation-Ver1.4-2-14-2024.pptx
Review of recent advances in non-invasive hemoglobin estimation

Chapter 9 sampling and statistical tool

  • 1. Chapter 9 58 Sampling THE SAMPLING  Define what a sampling is.  Identify a good and defective sampling.  Explain how to determine a sample size  Discuss and identify the different types of sampling techniques 9.1 Sampling Defined The following are the terms that a researcher should comprehend. o Sampling is a process of choosing a representative portion of a population to represent the entire population. o Sample. It is a proportion, an element or a part of the population which is scientifically and randomly drawn that actually possesses the same characteristics as the population. This implies that every person has an equal opportunity to be selected for your sample o An element is considered as a member of a population. It is a unit in which data is collected and analyzed o Population pertains to total number of elements to be studied. It includes all members of a defined group that we are studying or collecting information on the data driven decisions. o Parameter is the summary description of a given variable in a population. The mean income, the mean age of all the families are parameters. The age distribution of all people is a parameter. o Sample size is the number of subjects in your study. o Margin of Error is the allowable error in percent due to the use of the sample, instead of the population o Sampling Error is the error attributed to chance difference between a random sample and the chosen population. It does not result from measurement or computation errors but contributory to inaccuracy of data. Sample vs Population As follows are some reasons why researchers use a sample rather than the entire population in the conduct of their study. 1. Sometimes population is difficult to identify who makes up the entire population.
  • 2. Chapter 9 59 Sampling 2. Sample is cheaper, faster, more accurate and can yield to more comprehensive information. 3. Getting the population is too costly in terms of human resources and other expenses, and time consuming. 4. In population, there is a lot of error to control and monitor. 5. Sometimes lists are rarely up to date. 9.2 Good and Defective Sampling Keys to Good Sampling  formulate the aims of the study  decide what analysis is required to satisfy this aims  decide what data are required to facilitate the analysis  collect the data required by the study Defective Sampling 1. Sampling that is too small or not a representative will be biased, invalid and unreliable. 2. The sampling becomes very complicate if the population is too large or has many sections and subsection. 3. The sample (respondents) should have common characteristics in order to eradicate faulty conclusions. 4. The sampling becomes biased and unrepresentative if the researcher does not possess the necessary skills and technical know-how of the sampling procedure. 9.3. The Sample Size One of the most frequent problems in statistical analysis is the determination of the appropriate sample size. One may ask why sample size is so important. The answer to this is that an appropriate sample size is required for validity. If the sample sizes are too small, it will not yield valid results. An appropriate sample size can produce accuracy of results. Moreover, the results from the small sample size will be questionable. A sample size that is too large will result in wasting money and time. It is also unethical to choose too large a sample size. There is no certain rule of thumb to determine the sample size. Some researchers do, however, support a rule of thumb when using the sample size. For example, in regression analysis, many researchers say that there should be at least 10 observations per variable. If we are using three independent variables, then a clear rule would be to have a minimum sample size of 30. Some researchers follow a statistical formula to calculate the sample size. Size of sample depends on some factors: 1. Degree of accuracy required 2. Amount of variability inherent in the population from which the sample was taken 3. Nature and complexity of the characteristics of the population under consideration Determine sample size Slovin Formula: Where: n = sample size N = population size e = desired margin of error
  • 3. Chapter 9 60 Sampling Example1: What should be the representative sample size if the population from which the sample will be taken is 10,000 and the desired margin of error is 2%? Solution: To determine the sample size, use the formula; The sample size is 2,000 This formula in finding the sample size cannot be used when the normal approximation of the population is poor or small. Example 2: The population of Barangay Dodong is 10,600. What would be your representative sample size of Brgy. Sebuas if the population is 10,600 and the desired margin of error is 5%? 9.4 Types of Sampling Techniques 1. Non-probability Sampling (Non-scientific). This type of sampling does not provide every member of the population an equal chance of being selected as part of the sample. Additionally, the data gatherers choose sample cases as they WISH. These have 3 kinds: a. Purposive sampling is used when the researcher selected samples which are according to the purposes of the researcher. b. Quota sampling is used if a stratum is small in the population but important to the research questions being presented. This is done by merely looking for individuals with requisite characteristics. c. Convenience sampling, exactly what the name suggests, are oftentimes what we have to use because of reality. We cannot draw a sample, but we have a group that is accessible, is representative of our target population and just available to us. Instead of becoming purists and throwing out the chance for collecting data for decisions, use what you have with the honest acknowledgement that there are limitations. 2. Probability Sampling (Scientific sampling). In this type of sampling, the researcher follows a procedure that assures that all elements in the population are given equal chance of being selected as a sample unit. There are 6 types: a. Simple random sampling may be done by drawing of lots or with the use of a table of random digits. This gives all elements as equal chance of being selected as a sample. Steps in Simple Random Sampling 1. Determine the population of the study 2. Determine the desired sample size ( You can use Pagoso formula, Gay’s formula or other formulae in determining sample size) 3. List down the respondents (population) of the study in a sheet of paper. 4. Write in a small sheets of paper, names of the respondents or codes, roll these pieces of papers and place them in a box big enough to accommodate them. Shake thoroughly the box
  • 4. Chapter 9 61 Sampling 5. Draw the sample one at a time after shaking the box until the desired sample size is drawn. The names are drawn include in the sample. b. Systematic sampling is an often-used sampling strategy and cost effective. Again, you must have a population sampling frame list that is in random order and non-overlapping. Determine both the size of the population and the size of the sample you want to work with. Then, divide the sample size (n) into the population (N) size to get your key number, symbolized as “k”(sampling interval) a method of selecting a sample by taking the kth (sampling interval) units from an ordered (alphabetical /chronological) population. The formula applied is : K=N/n (where: K is desired interval, N population and n is the sample size) Steps in Simple Random Sampling 1. Identify the population of the study 2. Determine the desired sample size, then, apply the formula above. For example. Is you have a population of 800 and your desired sample size is 10%, then you will have a sample of 80. Applying the formula above 800/80=10), the sampling interval is 10 3. Hence, every 10th in the list (or arrangement of households as the case may be) is taken as a member of the sample 4. Close your eyes and run your finger down the list and then stop. The number, which the finger points to at, is the random start number. 5. From the random start number, pick every 10 th in the list (or arrangement of the households) until the desired sample size of 80 is obtained. c. Stratified random sampling is used when the population is heterogeneous and it is important to represent the different strata or sub-populations. There is a proportional representation of strata in the sample - proportional to the population strata. We divide the entire population into strata (groups) to obtain groups of people that are more or less equal in some respect. Steps in Simple Random Sampling 1. Determine the stratum or class to which all elements in the population belong. 2. Group the elements of the population according to the characteristics inherent in the whole class or stratum 3. Apply either the pure random sampling method or systematic sampling in the actual selection of the sample. Do this for every class or stratum. Note: The same sample size should be proportional or the same percent is applied for each class or stratum. For example: Types of Farmers Population Fraction Sample size Rice farmers 30 30/75 x 30 12 Sugar farmers 20 20/75 x 30 8 Vegetable farmers 10 10/75 x 30 4 Cutflower producers 15 15/75 x 30 6 TOTAL 75 30 d. Cluster Sampling – selecting a clusters of elements or blocks where each consists of heterogeneous elements (Calderon et al, 1993). Steps in Cluster Sampling 1. Make a listing of sampling unit, the primary sampling units ( the first clusters to be sampled), the secondary sampling unit within the primary sampling, etc.
  • 5. Chapter 9 62 Sampling Suppose the provinces are the primary sampling units, the towns are the secondary sampling units and the barangay are the final sampling units. These are called natural clusters 2. Since the sample is 20%, 20% of 9 provinces equals to 1.8 or 2 provinces. Select these two ( 20 provinces either by pure or systematic random sampling) 3. Within each of these two provinces, select 20% of the towns either by pure random or systematic random sampling method. 4. Within each town selected, choose 20% of the barangays. Since there are only one elementary school in one barrio or barangay, this is the final sampling unit. The respondents may be stratified into teachers, parents and pupils. The respondents have to be taken from these stratified groups either pure random or systematic random sampling. Example: Desired sample : 50 Population : 100 with 10 clusters Step1 . Number 10 clusters 1-10 Step2. Use simple random sampling . Step3. Identify the groups represented by the numbers drawn e. Multi-stage Sampling – selection of sample is accomplished in two or more stages. Example: Desired sample : 50 Population : all men with 0-6 yrs old children in province Stage1 . Draw sample towns in the province. List all the names in the province and use random sampling to draw the three sample towns. Stage2. Draw sample barangays in the sample towns. Secure a list of all barangays in each of the sample towns and using simple random sampling, draw 3 sample barangays in each of the three sample towns. Stage3. Draw a sample of married men in the sample barangays.List their names per sample barangays from the 3sample towns then use random sampling to select the men with 0-6 yrs old children. Guidelines with regards to the minimum number of items needed for a representative sample (Gay,1976):  Descriptive studies – a minimum number of 100, 10 percent of the population. for smaller population, a minimum of 20% may be required  Co-relational studies – a sample of at least 50 is deemed necessary to establish the existence of a relationship  Ex post facto research of causal comparative studies-15 subjects or groups can be defended if they are very tightly controlled  Experimental studies – minimum of 30 per group or 15 subjects per group Sometimes experimental studies with only 15 items in each group can be defended if they are very tightly controlled  If the sample is randomly selected and is sufficiently large, an accurate view of the population can be had, provided that no bias enters the selection process
  • 6. Chapter 9 63 Sampling THE RESEARCH SAMPLING NAME: __________________________________________ SCORE: ___________________ YEAR & SECTION: _________________________________ DATE: _____________________ Instructions: Restate your research problem, research objectives and identify your population. Determine the most appropriate sampling technique that you will use then solve for your sample size. Research Title: _____________________________________________________ _____________________________________________________ The Sampling Technique that I will use is: ____________________________ because__________________________________________________________ _________________________________________________________________ _________________________________________________________________ _______________ To compute for the sample size, I will use _________________________________________________________________ _________________________________________________________________ _________________________________________________________________ _________________________________________________________________ _________________________________________________________________ _________________________________________________________________ _________________________________________________________________