SlideShare a Scribd company logo
The Nernst Equation
• Outline:
– Why would concentration matter in electrochem.?
– The Nernst equation.
– Applications
Concentration and Ecell
• Consider the following redox reaction:
Zn(s) + 2H+ (aq) Zn2+(aq) + H2(g) E°cell = 0.76 V
DG°= -nFE°cell < 0 (spontaneous)
• What if [H+] = 2 M?
Expect driving force for product formation to increase.
Therefore DG decreases, and Ecell increases
How does Ecell dependend on concentration?
Concentration and Ecell (cont.)
• Recall, in general:
DG = DG° + RTln(Q)
• However:
DG = -nFEcell
-nFEcell = -nFE°cell + RTln(Q)
Ecell = E°cell - (RT/nF)ln(Q)
Ecell = E°cell - (0.0591/n)log(Q)
The Nernst Equation
Concentration and Ecell (cont.)
• With the Nernst Eq., we can determine the effect
of concentration on cell potentials.
Ecell = E°cell - (0.0591/n)log(Q)
• Example. Calculate the cell potential for the
following:
Fe(s) + Cu2+(aq) Fe2+(aq) + Cu(s)
Where [Cu2+] = 0.3 M and [Fe2+] = 0.1 M
Concentration and Ecell (cont.)
Fe(s) + Cu2+(aq) Fe2+(aq) + Cu(s)
• First, need to identify the 1/2 cells
Cu2+(aq) + 2e- Cu(s) E°1/2 = 0.34 V
Fe2+(aq) + 2e- Fe(s) E°1/2 = -0.44 V
Fe(s) Fe 2+(aq) + 2e- E°1/2 = +0.44 V
Fe(s) + Cu2+(aq) Fe2+(aq) + Cu(s) E°cell = +0.78 V
Concentration and Ecell (cont.)
• Now, calculate Ecell
Fe(s) + Cu2+(aq) Fe2+(aq) + Cu(s) E°cell = +0.78 V
Ecell = E°cell - (0.0591/n)log(Q)

Q 
Fe2
 
Cu2
 

(0.1)
(0.3)
 0.33
Ecell = 0.78 V - (0.0591 /2)log(0.33)
Ecell = 0.78 V - (-0.014 V) = 0.794 V
Concentration and Ecell (cont.)
• If [Cu2+] = 0.3 M, what [Fe2+] is needed so that
Ecell = 0.76 V?
Fe(s) + Cu2+(aq) Fe2+(aq) + Cu(s) E°cell = +0.78 V
Ecell = E°cell - (0.0591/n)log(Q)
0.76 V = 0.78 V - (0.0591/2)log(Q)
0.02 V = (0.0591/2)log(Q)
0.676 = log(Q)
4.7 = Q
Concentration and Ecell (cont.)
Fe(s) + Cu2+(aq) Fe2+(aq) + Cu(s)
4.7 = Q

Q 
Fe2
 
Cu2
 
 4.7

Q 
Fe2
 
0.3
 
 4.7
[Fe2+] = 1.4 M
Concentration Cells
• Consider the cell
presented on the left.
• The 1/2 cell reactions
are the same, it is just
the concentrations that
differ.
• Will there be electron
flow?
Concentration Cells (cont.)
Ag+ + e- Ag E°1/2 = 0.80 V
• What if both sides had 1 M
concentrations of Ag+?
• E°1/2 would be the same;
therefore, E°cell = 0.
Concentration Cells (cont.)
Ag Ag+ + e- E1/2 = ? V
Anode:
Ag+ + e- Ag E1/2 = 0.80 V
Cathode:

Q 
Ag
 anode
Ag
 cathode

0.1
1
 0.1
Ecell = E°cell - (0.0591/n)log(Q)
0 V
Ecell = - (0.0591)log(0.1) = 0.0591 V
1
Concentration Cells (cont.)
Another Example:
What is Ecell?
Concentration Cells (cont.)
Ecell = E°cell - (0.0591/n)log(Q)
0
Fe2+ + 2e- Fe
2 e- transferred…n = 2
2

Q 
Fe2
 anode
Fe2
 cathode

0.01
.1
 0.1
Ecell = -(0.0296)log(.1) = 0.0296 V
anode cathode
e-
Measurement of pH
• pH meters use electrochemical reactions.
• Ion selective probes: respond to the presence of a
specific ion. pH probes are sensitive to H+.
• Specific reactions:
Hg2Cl2(s) + 2e- 2Hg(l) + 2Cl-(aq) E°1/2 = 0.27 V
Hg2Cl2(s) + H2(g) 2Hg(l) + 2H+(aq) + 2Cl-(aq)
H2(g) 2H+(aq) + 2e- E°1/2 = 0.0 V
E°cell = 0.27 V
Measurement of pH (cont.)
Hg2Cl2(s) + H2(g) 2Hg(l) + 2H+(aq) + 2Cl-(aq)
• What if we let [H+] vary?

Q 
H
 
2
Cl
 
2
PH2
 H
 
2
Cl
 
2
Ecell = E°cell - (0.0591/2)log(Q)
Ecell = E°cell - (0.0591/2)(2log[H+] + 2log[Cl-])
Ecell = E°cell - (0.0591)(log[H+] + log[Cl-])
saturate
constant
Measurement of pH (cont.)
Ecell = E°cell - (0.0591)log[H+] + constant
• Ecell is directly proportional to log [H+]
electrode
Summary
DG = DG° + RTln(Q)
DG = -nFEcell Ecell = E°cell - (0.0591/n)log(Q)
• None of these ideas is separate. They are all
connected, and are all derived directly from
thermodynamics.

More Related Content

PDF
Chapter 2.pdf
PPTX
electrochemistry.pptx
PPTX
Session V.pptx
PPTX
Electrochem - Copy.pptx
PPT
Ch21 130105202245-phpapp01
PPT
Ch17 z5e electrochem
PDF
Electrochemistry hai yeh bencho isme tera ghar jayenga.pdf
PDF
Vii.electrochemistry
Chapter 2.pdf
electrochemistry.pptx
Session V.pptx
Electrochem - Copy.pptx
Ch21 130105202245-phpapp01
Ch17 z5e electrochem
Electrochemistry hai yeh bencho isme tera ghar jayenga.pdf
Vii.electrochemistry

Similar to Chapter-19-moor.ppt (20)

DOCX
2nd Year Undergraduate Practical
PPT
Tutorial 5 - Electrochemistry.ppt
PPT
Tutorial 5 - Electrochemistry.ppt
PPSX
17_Electrochemistry.ppsx chemsitry talta
PPTX
potentiometry
PPT
Nernst Equation 3.ppt
PPTX
electro chemistry6676992 (1).pptx
PDF
IA on effect of zinc concentration on voltage using nernst equation
PPTX
Electrochemistry for Class 12 CBSE Class
PDF
Electrochemistry.pdf
PPT
PPT CLASS 12 CHEMISTRY CH 2 SR ELE M 02 SRP.ppt
PPT
Ch17z5eelectrochem 110115232747-phpapp02
PPTX
Electrochemistry B Sc III-SEM-VI
PPTX
Module 2_S7 and S8_Electrochemical Cells.pptx
PPTX
Batteray and fuel cell Lesson 1 (2).pptx
PDF
Option C Nernst Equation, Voltaic Cell and Concentration Cell
PPT
Electrochemistry by rawat
PPT
Chapter - 6 (Electrochemistry).ppt
PPT
Electrochemistry Petrucci Harwood Hering 8 Edition
2nd Year Undergraduate Practical
Tutorial 5 - Electrochemistry.ppt
Tutorial 5 - Electrochemistry.ppt
17_Electrochemistry.ppsx chemsitry talta
potentiometry
Nernst Equation 3.ppt
electro chemistry6676992 (1).pptx
IA on effect of zinc concentration on voltage using nernst equation
Electrochemistry for Class 12 CBSE Class
Electrochemistry.pdf
PPT CLASS 12 CHEMISTRY CH 2 SR ELE M 02 SRP.ppt
Ch17z5eelectrochem 110115232747-phpapp02
Electrochemistry B Sc III-SEM-VI
Module 2_S7 and S8_Electrochemical Cells.pptx
Batteray and fuel cell Lesson 1 (2).pptx
Option C Nernst Equation, Voltaic Cell and Concentration Cell
Electrochemistry by rawat
Chapter - 6 (Electrochemistry).ppt
Electrochemistry Petrucci Harwood Hering 8 Edition
Ad

More from AsifAli165576 (19)

PPT
Nano lecture 8.ppt
PPTX
in organic presentation.pptx
PPTX
Nanomaterials.pptx
PPTX
AAS-VV.pptx
PPT
apchapt17.ppt
PPT
6-8-10 Presentation1 - Copy.ppt
PPTX
MOT.pptx
PPTX
Heterocyclic and organometallic compounds.pptx
PPT
Isis_Tutorial2.ppt
PPT
Print.ppt
PPTX
Nano_Fabrication_Lecture3.pptx
PPT
Chemical Thermodynamics.ppt
PPT
Jahn Teller effect LO_0.ppt
PPTX
Sulfuric Acid.pptx
PPTX
Nitic Acid.pptx
PPTX
Key-Performance-Indicators.pptx
PPT
Many-electron-atoms.ppt
PPT
10-Quantum-Numbers.ppt
PPT
molecular_orbital_theory.ppt
Nano lecture 8.ppt
in organic presentation.pptx
Nanomaterials.pptx
AAS-VV.pptx
apchapt17.ppt
6-8-10 Presentation1 - Copy.ppt
MOT.pptx
Heterocyclic and organometallic compounds.pptx
Isis_Tutorial2.ppt
Print.ppt
Nano_Fabrication_Lecture3.pptx
Chemical Thermodynamics.ppt
Jahn Teller effect LO_0.ppt
Sulfuric Acid.pptx
Nitic Acid.pptx
Key-Performance-Indicators.pptx
Many-electron-atoms.ppt
10-Quantum-Numbers.ppt
molecular_orbital_theory.ppt
Ad

Recently uploaded (20)

PPTX
Fundamentals of Mechanical Engineering.pptx
PDF
BIO-INSPIRED ARCHITECTURE FOR PARSIMONIOUS CONVERSATIONAL INTELLIGENCE : THE ...
PDF
III.4.1.2_The_Space_Environment.p pdffdf
PPTX
Artificial Intelligence
PDF
Exploratory_Data_Analysis_Fundamentals.pdf
PPT
Total quality management ppt for engineering students
PPTX
6ME3A-Unit-II-Sensors and Actuators_Handouts.pptx
PDF
R24 SURVEYING LAB MANUAL for civil enggi
PDF
86236642-Electric-Loco-Shed.pdf jfkduklg
PDF
Mitigating Risks through Effective Management for Enhancing Organizational Pe...
PDF
A SYSTEMATIC REVIEW OF APPLICATIONS IN FRAUD DETECTION
PDF
Analyzing Impact of Pakistan Economic Corridor on Import and Export in Pakist...
PDF
EXPLORING LEARNING ENGAGEMENT FACTORS INFLUENCING BEHAVIORAL, COGNITIVE, AND ...
PDF
Abrasive, erosive and cavitation wear.pdf
PPTX
Nature of X-rays, X- Ray Equipment, Fluoroscopy
PPT
INTRODUCTION -Data Warehousing and Mining-M.Tech- VTU.ppt
PPT
Introduction, IoT Design Methodology, Case Study on IoT System for Weather Mo...
PPT
A5_DistSysCh1.ppt_INTRODUCTION TO DISTRIBUTED SYSTEMS
PDF
Unit I ESSENTIAL OF DIGITAL MARKETING.pdf
PDF
PPT on Performance Review to get promotions
Fundamentals of Mechanical Engineering.pptx
BIO-INSPIRED ARCHITECTURE FOR PARSIMONIOUS CONVERSATIONAL INTELLIGENCE : THE ...
III.4.1.2_The_Space_Environment.p pdffdf
Artificial Intelligence
Exploratory_Data_Analysis_Fundamentals.pdf
Total quality management ppt for engineering students
6ME3A-Unit-II-Sensors and Actuators_Handouts.pptx
R24 SURVEYING LAB MANUAL for civil enggi
86236642-Electric-Loco-Shed.pdf jfkduklg
Mitigating Risks through Effective Management for Enhancing Organizational Pe...
A SYSTEMATIC REVIEW OF APPLICATIONS IN FRAUD DETECTION
Analyzing Impact of Pakistan Economic Corridor on Import and Export in Pakist...
EXPLORING LEARNING ENGAGEMENT FACTORS INFLUENCING BEHAVIORAL, COGNITIVE, AND ...
Abrasive, erosive and cavitation wear.pdf
Nature of X-rays, X- Ray Equipment, Fluoroscopy
INTRODUCTION -Data Warehousing and Mining-M.Tech- VTU.ppt
Introduction, IoT Design Methodology, Case Study on IoT System for Weather Mo...
A5_DistSysCh1.ppt_INTRODUCTION TO DISTRIBUTED SYSTEMS
Unit I ESSENTIAL OF DIGITAL MARKETING.pdf
PPT on Performance Review to get promotions

Chapter-19-moor.ppt

  • 1. The Nernst Equation • Outline: – Why would concentration matter in electrochem.? – The Nernst equation. – Applications
  • 2. Concentration and Ecell • Consider the following redox reaction: Zn(s) + 2H+ (aq) Zn2+(aq) + H2(g) E°cell = 0.76 V DG°= -nFE°cell < 0 (spontaneous) • What if [H+] = 2 M? Expect driving force for product formation to increase. Therefore DG decreases, and Ecell increases How does Ecell dependend on concentration?
  • 3. Concentration and Ecell (cont.) • Recall, in general: DG = DG° + RTln(Q) • However: DG = -nFEcell -nFEcell = -nFE°cell + RTln(Q) Ecell = E°cell - (RT/nF)ln(Q) Ecell = E°cell - (0.0591/n)log(Q) The Nernst Equation
  • 4. Concentration and Ecell (cont.) • With the Nernst Eq., we can determine the effect of concentration on cell potentials. Ecell = E°cell - (0.0591/n)log(Q) • Example. Calculate the cell potential for the following: Fe(s) + Cu2+(aq) Fe2+(aq) + Cu(s) Where [Cu2+] = 0.3 M and [Fe2+] = 0.1 M
  • 5. Concentration and Ecell (cont.) Fe(s) + Cu2+(aq) Fe2+(aq) + Cu(s) • First, need to identify the 1/2 cells Cu2+(aq) + 2e- Cu(s) E°1/2 = 0.34 V Fe2+(aq) + 2e- Fe(s) E°1/2 = -0.44 V Fe(s) Fe 2+(aq) + 2e- E°1/2 = +0.44 V Fe(s) + Cu2+(aq) Fe2+(aq) + Cu(s) E°cell = +0.78 V
  • 6. Concentration and Ecell (cont.) • Now, calculate Ecell Fe(s) + Cu2+(aq) Fe2+(aq) + Cu(s) E°cell = +0.78 V Ecell = E°cell - (0.0591/n)log(Q)  Q  Fe2   Cu2    (0.1) (0.3)  0.33 Ecell = 0.78 V - (0.0591 /2)log(0.33) Ecell = 0.78 V - (-0.014 V) = 0.794 V
  • 7. Concentration and Ecell (cont.) • If [Cu2+] = 0.3 M, what [Fe2+] is needed so that Ecell = 0.76 V? Fe(s) + Cu2+(aq) Fe2+(aq) + Cu(s) E°cell = +0.78 V Ecell = E°cell - (0.0591/n)log(Q) 0.76 V = 0.78 V - (0.0591/2)log(Q) 0.02 V = (0.0591/2)log(Q) 0.676 = log(Q) 4.7 = Q
  • 8. Concentration and Ecell (cont.) Fe(s) + Cu2+(aq) Fe2+(aq) + Cu(s) 4.7 = Q  Q  Fe2   Cu2    4.7  Q  Fe2   0.3    4.7 [Fe2+] = 1.4 M
  • 9. Concentration Cells • Consider the cell presented on the left. • The 1/2 cell reactions are the same, it is just the concentrations that differ. • Will there be electron flow?
  • 10. Concentration Cells (cont.) Ag+ + e- Ag E°1/2 = 0.80 V • What if both sides had 1 M concentrations of Ag+? • E°1/2 would be the same; therefore, E°cell = 0.
  • 11. Concentration Cells (cont.) Ag Ag+ + e- E1/2 = ? V Anode: Ag+ + e- Ag E1/2 = 0.80 V Cathode:  Q  Ag  anode Ag  cathode  0.1 1  0.1 Ecell = E°cell - (0.0591/n)log(Q) 0 V Ecell = - (0.0591)log(0.1) = 0.0591 V 1
  • 12. Concentration Cells (cont.) Another Example: What is Ecell?
  • 13. Concentration Cells (cont.) Ecell = E°cell - (0.0591/n)log(Q) 0 Fe2+ + 2e- Fe 2 e- transferred…n = 2 2  Q  Fe2  anode Fe2  cathode  0.01 .1  0.1 Ecell = -(0.0296)log(.1) = 0.0296 V anode cathode e-
  • 14. Measurement of pH • pH meters use electrochemical reactions. • Ion selective probes: respond to the presence of a specific ion. pH probes are sensitive to H+. • Specific reactions: Hg2Cl2(s) + 2e- 2Hg(l) + 2Cl-(aq) E°1/2 = 0.27 V Hg2Cl2(s) + H2(g) 2Hg(l) + 2H+(aq) + 2Cl-(aq) H2(g) 2H+(aq) + 2e- E°1/2 = 0.0 V E°cell = 0.27 V
  • 15. Measurement of pH (cont.) Hg2Cl2(s) + H2(g) 2Hg(l) + 2H+(aq) + 2Cl-(aq) • What if we let [H+] vary?  Q  H   2 Cl   2 PH2  H   2 Cl   2 Ecell = E°cell - (0.0591/2)log(Q) Ecell = E°cell - (0.0591/2)(2log[H+] + 2log[Cl-]) Ecell = E°cell - (0.0591)(log[H+] + log[Cl-]) saturate constant
  • 16. Measurement of pH (cont.) Ecell = E°cell - (0.0591)log[H+] + constant • Ecell is directly proportional to log [H+] electrode
  • 17. Summary DG = DG° + RTln(Q) DG = -nFEcell Ecell = E°cell - (0.0591/n)log(Q) • None of these ideas is separate. They are all connected, and are all derived directly from thermodynamics.