SlideShare a Scribd company logo
iQyu
                                                                                                        Qyu & f : A → B esa Qyu gS ;k ugha bldh tkap ds fy, fuEufyf[kr ijh{k.k
                                                                                                     djrs gSa&
                                                                                                        (i) A ds çR;sd vo;o dk f- ds vUrxZr B esa çfrfcEc fo|eku gS ;k ughaA
                                                                                                        (ii) A ds çR;sd vo;o dk f- ds vUrxZr B esa ,d vksj dsoy ,d çfrfcEc


                                    xf.kr                                                                     fo|eku gksuk pkfg,A
                                                                                                        Qyu&Øfer ;qXeksa ds leqPp; ds :i esa & Qyu f Øfer ;qXeksa (a, b) dk leqPp;
                                                                                                     gSA tcfd
                                                                                                        (i) a leqPp; A dk vo;o gksA
                                                                                                        (ii) b leqPp; B dk vo;o gksA
                                                                                                        (ii) f ds fdlh Hkh nks Øfer ;qXeksa esa çFke lnL; ,d ls ugha gksA
                                                                                                        (iii) A dk çR;sd lnL; fdlh u fdlh ;qXe dk çFke lnL; vo'; gksA
                                                                                                        Qyu ds çdkj & Qyu f : X → Y ,dSdh Qyu dgykrk gS ;fn X ds
                             egÙoiw.kZ lw=k                                                          fHkUu&fHkUu vo;oksa ds Y esa fHkUu&fHkUu çfrfcEc fo|eku gksA ;fn x1, x2, X ds
                                                                                                     dksbZ nks vo;o gks vkSj
                                                                                                             x1 ≠ x2 ⇒ f(x1) ≠ f(x2), f(x1) = f(x2) ⇒ x1 = x2 rc Qyu ,dSdh gksxkA
                                                                                                        (i) cgq,dSdh Qyu & Qyu f : X → Y cgq,dSdh Qyu dgykrk gS ;fn X
                                                                                                     ds fdUgha nks vo;oksa ds çfrfcEc Y esa leku gks] vFkkZr~ f : X → Y cgq,dSdh gksxk
                                                                                                     ;fn x1 ≠ x2 ⇒ f(x1) ≠ f(x2)
                                                                                                        (ii) vkPNknd Qyu & Qyu f : X → Y ,d vkPNknd Qyu dgykrk gS
                                                                                                     ;fn Y ds çR;sd vo;o dk X esa çfrfcEc fo|eku gksA nwljs 'kCnksa esa f dk
                                                                                                     ifjlj = f dk lgçkUrA
                                                                                                        (iii) vUr{ksZih Qyu & Qyu f : X → Y vUr{ksZih Qyu dgykrk gS ;fn Y
                          Rajasthan Knowledge                                                        esa de ls de ,d vo;o ,slk gks ftldk çfrfcEc X esa fo|eku ugha gks vFkkZr~
           IT shapes future CorporationLimited                                                       Y esa de ls de ,d vo;o ,slk gks ftlds fy, f–1(y) = φ rc Qyu vUr{ksZih
                               (A Public Limited Company Promoted by Govt. of Rajasthan)
                                                                                                     gksrk gS] nwljs 'kCnksa esa f dk ifjlj ≠ f dk lgçkUrA
                                                                                                                                                      (2)




  çfrykse Qyu & ;fn f : X → Y ,dSdh vkPNknd gks rks f dk çfrykse f–1                                                    dqN egÙoiw.kZ dks.kksa ds f=kdks.kferh; vuqikr
: X → Y esa Qyu gS tks fd çR;sd vo;o y ∈ Y ds laxr x ∈ X ftlds fy,                                                     (Trigonometrical Ratios for Some Special Angles)
f(x) = y çfrykse Qyu dgykrk gSA                                                                                             1º                                1º
                                                                                                                       7                   15º          22                18º          36º
  fo"ke ,oa le Qyu                                                                                                          2                                 2
  (i) fo"ke Qyu & ,d Qyu f(x) fo"ke Qyu dgykrk gSA ;fn f(–x) =                                                       4 2 6                 3 1 1                        5 1      1
                                                                                                        sin                                        2 2                               10  2 5
–f(x) lHkh x ds fy, fo"ke Qyu dk xzkQ foijhr iknksa esa lefer gksrk gSA                                                 2 2                 2 2   2                         4        4
  (ii) le Qyu & ,d Qyu f(x) le Qyu dgykrk gSA ;fn f(–x) = –f(x)                                                      4 2 6                 3 1 1                1                    5 1
                                                                                                        cos                                        2 2             10  2 5
lHkh x ds fy,A le Qyu dk xzkQ y-v{k ikfjr lefer gksrk gSA                                                               2 2                 2 2   2                4                     4
                                                                                                                                                                    125  10 15
           f=kdks.kehfr; iQyu ,oa f=kdks.kferh; vuqikr                                                  tan       3  2   2  1 2  3               2 1                          52 5
                                                                                                                                                                         5
                      ,d nwljs ds inksa esa f=kdks.kferh; vuqikr
                    (Trigonometrical Ratios in Terms of each Other)                                                              lacaf/kr dks.kksa ds f=kdks.kferh; vuqikr
                                                                                                                             (Trigonometrical Ratios of Allied Angles)
              sin          cos          tan           cot            sec              cosec 
                                                                                                                        f=kdks.kferh; vuqikr
  sin        sin        1  cos 2 
                                          tan             1           sec2   1             1                                                           sin     cos      tan 
                                        1  tan  2
                                                       1  cos  2      sec               cosec                       lacaf/kr dks.k
                                            1            cot              1                                                                         sin  cos   tan 
  cos      1  sin 2      cos 
                                                                                                                                       ;k     
                                        1  tan 2     1  cot 2        sec 
                                                                                                                             90                     cos     sin      cot 
                                                                                                                                          2      
              sin        1  cos 2                      1
  tan                                    tan                         sec2   1                                                         
            1  sin 2      cos                         cot                                                                90    ;k            cos   sin   cot 
                                                                                                                                          2      
  cot 
            1  sin 2      cos            1
                                                         cot 
                                                                           1                   2
                                                                                       cosec  1                            180    ;k            sin   cos   tan 
              sin        1  cos 2      tan                         sec2   1                                           180    ;k            sin   cos  tan 
                                                       1  cot 2                          cosec 
                                                                                                                                         ;k  3   
                1             1
  sec                                  1  tan 2                       sec                                            270                   cos   sin  cot 
                                                                                                                                                     
            1  sin 2      cos                          cot                        cosec2   1                                       2      
                1             1         1  tan 2                       sec                                                            3     
                                                                                                                         270    ;k      cos  sin   cot 
 cosec                                                1  cot 2                          cosec 
              sin                        tan                                                                                           2      
                          1  cos 2                                    sec2   1
                                                                                                                          360    ;k  2     sin  cos   tan 



                                               (3)                                                                                                    (4)
f=kdks.kferh; vuqikrksa ds dks.kksa ds eku                                       (ii) lg[k.M & vo;o aij dk lg[k.M çk;% Fij ls O;Dr fd;k tkrk gS]
                         (Trigonometrical Ratios for Various Angles)                                         tksfd (–1)i+j Mij ds cjkcj gksrk gS tgka M vo;o aij dk milkjf.kd gSA
                                                                                                                              a11     a12     a13
                                                                                                               ;fn          a21     a22     a23
                                                                                                                              a31     a32     a33

                                                                                                                                                         a     a23
                                                                                                               rks        F   1
                                                                                                                           11       11     M11  M11  22
                                                                                                                                                         a32   a33
                                                  lkjf.kd                                                                 F   1
                                                                                                                                     1 2                    a
                                                                                                                                             M12   M12   21
                                                                                                                                                                     a23
                                                                                                                           12
 r`rh; dksfV ds lkjf.kd dk eku                                                                                                                               a31     a33

       a11       a12      a13
                                                                                                              lkjf.kd ds xq.k/keZ &
                                                                                                              (i) fdlh lkjf.kd dh fdlh iafDr ¼LrEHk½ dks fdlh la[;k ls xq.kk djus ij
    a21       a22      a23
      a31       a32      a33                                                                                 lkjf.kd dk eku Hkh ml la[;k ls xq.kk gks tkrk gS vFkkZr~
                                                                                                                            ka kb kc   a b c   ka b c
                  11      a           a23        1 2 a              a23        13 a21        a22                          p q r  k p q r  kp q r
         1         a11 22               1 a12 21                   1
                           a32         a33             a31            a33            a31        a32                         u v w      u v w ku v w
           a            a23      a                a23 a21      a22                                             (ii) fdlh lkjf.kd dh fdlh iafDr ¼LrEHk½ dk çR;sd vo;o ;fn nks inksa dk
       a11 22               a12 21                 
           a32          a33      a31              a33 a31      a32                                           ;ksx gks rks ml lkjf.kd dks mlh dksfV dh nks lkjf.kdksa ds ;ksxQy ds :i esa
 milkjf.kd ,oa lg[k.M                                                                                        O;Dr fd;k tk ldrk gS vFkkZr~
 (i) milkjf.kd                                                                                                              a b c  a b c     
                    a11         a12    a13                                                                                   p   q   r  p q r  p q r
                                                                                     a           a23
      ;fn         a21         a22    a23    rks   a11   dk milkjf.kd          M11  22               blh                   u   v   w   u v w u v w
                                                                                     a32         a33
                       a31      a32    a33
                                                                                                                            a b c   a b            c  b c
           a              a23                                                                                               p q r  p q            r   q r
rjg   M12  21                    lkjf.kd dk eku fuEu çdkj Kkr fd;k tkrk gSA                                   rFkk
           a31            a33                                                                                               u v w u v              w  v w
      Δ = a11 M11 – a12 M12 + a13 M13
 ;k   Δ = –a21 M21 + a22 M22 – a23 M23                                                                         (iii) ;fn fdlh lkjf.kd dh fdlh iafDr ¼LrEHk½ ds çR;sd vo;o esa fdlh
 ;k   Δ = a31 M31 – a32 M32 + a33 M33                                                                        nwljh iafDr ¼LrEHk½ ds laxr vo;oksa dks fdlh ,d dh jkf'k ls xq.kk djds tksM+s
                                                      (5)                                                                                              (6)




;k ?kVk;sa rks lkjf.kd dk eku ugh cnyrkA vFkkZr~
                a b c   a  b   c b c                                                                      vFkkZr~
                p q r  p  q   r q r
                u v w u  v   w v w
                                                                                                                                                     eSfVªDl
 nks lkjf.kdksa dk xq.kuQy                                                                                      eSfVªDl ds çdkj
 nks lkjf.kd ftudh dksfV nks gS dk xq.kuQy fuEu çdkj ifjHkkf"kr gS&
                                                                                                                (i) iafDr eSfVªDl & A=[aij]m×n ,d iafDr eSfVªDl gS ;fn m = 1
       a1    b1 1            m1   a  b                 a1m1  b1m2                                          (ii) LrEHk eSfVªDl & A=[aij]m×n ,d LrEHk eSfVªDl gS ;fn n = 1
                                 1 1 1 2
       a2    b2  2           m2  a2 1  b2  2           a2 m1  b2 m2                                        (iii) oxZ eSfVªDl & A=[aij]m×n ,d oxZ eSfVªDl gS ;fn m = n
 nks lkjf.kd ftudh dksfV rhu gS dk xq.kuQy fuEu çdkj ifjHkkf"kr gS&                                             (iv) ,dy eSfVªDl & A=[aij]m×n ,d ,dy eSfVªDl gS ;fn m = n = 1
                                                                                                                (v) 'kwU; eSfVªDl & A=[aij]m×n ,d 'kwU; eSfVªDl gS ;fn aij = 0 lHkh i rFkk j
       a1    b1        c1 1          m1     n1
                                                                                                             ds fy,
       a2    b2        c2   2       m2     n2
                                                                                                                (vi) fod.kZ eSfVªDl & ,d oxZ eSfVªDl A–[aij]m×n ,d fod.kZ eSfVªDl gS ;fn
       a3    b3        c3  3         m3     n3
                                                                                                             aij = 0 tc i ≠ j
                                                                                                                                                                              0 i  j
        a11  b1 2  c1 3               a1m1  b1m2  c1m3          a1n1  b1n2  c1n3                       (vii) vfn'k eSfVªDl & A= [aij] ,d vfn'k eSfVªDl gSA ;fn aij          tgka
                                                                                                                                                                              k i  j
       a2 1  b2  2  c2  3            a2 m1  b2 m2  c2 m3       a2 n1  b2 n2  c2 n3                 K vpj gSA
           a31  b3 2  c3 3            a3 m1  b3 m2  c3 m3       a3 n1  b3 n2  c3 n3                    (viii) bdkbZ eSfVªDl & ,d oxZ eSfVªDl A=[aij] ,d bdkbZ eSfVªDl gSA ;fn

 lefer lkjf.kd                                                                                                                1 i  j
                                                                                                                        aij  
 ;fn fdl lkjf.kd ds çR;sd vo;o ds aij fy, aij = aji ∀ i, j gks rks mls lefer                                                  0 i  j
lkjf.kd dgrs gSA                                                                                              (ix)  f=kHkqtkdkj eSfVªDl
            a     h      g                                                                                    (a)   Åijh f=kHkqtkdkj eSfVªDl& ,d oxZ eSfVªDl [aij] Åijh f=kHkqtkdkj
 vFkkZr~    h     b      f                                                                                   eSfVªDl dgykrk gS ;fn aij = 0 tcfd i > j.
            g     f      c                                                                                     (b) fuEu f=kHkqtkdkj eSfVªDl& ,d oxZ eSfVªDl [aij] fuEu f=kHkqtkdkj eSfVªDl
 fo"ke lefer lkjf.kd                                                                                         dgykrk gS ;fn aij = 0 tcfd i < j.
 ;fn fdl lkjf.kd ds çR;sd vo;o ds                           aij fy, aij = – aji ∀ i, j gks   rks mls fo"ke     (x) vO;qRØe.kh; vkSj O;qRØe.kh; eSfVªDl&
lefer lkjf.kd dgrs gSA                                                                                              ;fn lkjf.kd |A| = 0 ⇒ vO;qRØe.kh;
                                                                                                                    ;fn lkjf.kd |A| ≠ 0 ⇒ O;qRØe.kh;

                                                      (7)                                                                                              (8)
eSfVªDl dk ;ksx ,oa O;odyu                                                                                                                   1                1          ax
                              ;fn A[aij]m×n rFkk [bij]m×n nks leku dksfV dh eSfVªDl gks rks mudk ;ksx A + B                                            (xvii)     a 2  x 2 dx  2a log a  x  c  x  a 
                             og eSfVªDl gS ftldk çR;sd vo;o eSfVªDl A rFkk B ds laxr vo;oksa ds ;ksx                                                                           1                    x                 x
                                                                                                                                                                                       dx  sin 1    c   cos 1    c
                             ds cjkcj gSA vFkkZr~ A + B = [aij + bij]m×n                                                                               (xviii)
                                                                                                                                                                          a 2  x2                  a                a
                                                                               vfuf'pr lekdyu                                                                                  1                                            x
                                                                                                                                                                                      dx  log x  x 2  a 2  c  sinh 1    c
                                ekud lw=k                                                                                                              (xix)
                                                                                                                                                                          x2  a 2                                          a

                                                          xn 1                                        1                                                                                                                     x
                                                                                                       x dx  loge x  c
                                                                                                                                                                           1
                                         x                      c  n  1                                                                                                         dx  log x  x 2  a 2  c  sinh 1    c
                                              n
                                (i)               dx                                         (ii)
                                                          n 1                                                                                         (xx)
                                                                                                                                                                         x2  a2                                            a

                                                                                                                        ax
                                                                                                      a                                                                                    x 2 2 a 2 1 x
                                                                                                           x
                                                                                                               dx             c  a x log e e  c
                                         e
                                              x
                                                  dx  e x  c
                                (iii)                                                         (iv)
                                                                                                                      log e a                          (xxi)            a 2  x 2 dx 
                                                                                                                                                                                            2
                                                                                                                                                                                              a  x  sin
                                                                                                                                                                                                     2    a
                                                                                                                                                                                                            c

                                (v)       sin xdx   cos x  c                              (vi)     sin xdx  sin x  c                                                                     x 2        a2     x
                                                                                                                                                       (xxii)            x2  a 2 dx            x  a 2  sin 1  c
                                (vii)  tan xdx  log sec x  c   log cos x  c                                                                                                               2          2      a

                                (viii)  cot xdx  log sin x  c                                                                                                                                x 2 2 a2          x
                                                                                                                                                       (xxiii)            x2  a 2 dx           x  a  cos h 1  c
                                                                                                                                                                                                2        2        a
                                                                                                                                              x
                                (ix)      sec xdx  log sec  tan x  c   log sec x  tan x  c  log tan  4  2   c                                                         1          1      x
                                                                                                                                                                                          dx  sec 1  c
                                                                                                                                                     (xxiv)                                a      a
                                                                                                                                                                         x x 2  a2
                                                                                                                                              x
                                (x)       cosec dx   log cosec x  cot x  log cosecx  cot x  c  log tan  2   c
                                                                                                                                                                                        eax                                          eax                        b 
                                                                                                                                                       (xxv)  eax sin bxdx                        a sin bx  b cos bx   c                   sin bx  tan 1     c
                                                                                                                                                                                        a2  b2                                       a 2  b2                    a 
                                (xi)      sec x tan xdx   sec x  c                        (xii)  cosec x cot xdx   cosec x  c
                                                                                                                                                                                            eax                                          eax                       b 
                                (xiii)  sec2 xdx  tan x  c                                                                                                        e
                                                                                                                                                                          ax                           a cos bx  b sin bx   c                cos bx  tan 1     c
                                                                                                        co sec
                                                                                                                  2
                                                                                              (xiv)                   xdx   cot x  c                (xxvi)                  cos bxdx
                                                                                                                                                                                          a 2  b2                                                                 a 
                                                                                                                                                                                                                                       a 2  b2
                                                    2                  1       1 
                                                                                  x
                                (xv)       x2  a 2 dx  a tan                   c
                                                                                 a                                                                   (xxvii)
                                                                                                                                                                                                  1
                                                                                                                                                                         f  ax  b  dx  a   ax  b   c
                                                    1                  1         xa
                                (xvi)      x2  a 2 dx  2a log x  a  c  x  a                                                                                                                           lekdyu
                                                                                                                                                       fuf'pr lekdyu ds xq.k/keZ
                                                                                                (9)                                                                                                                 (10)




     f  x, y 
dy
    1            ;k dy F  y  
                           
                                       dv
                                               
                                                 dx
dx f 2  x, y       dx  x        F v   v    x




                                         b                    b                   b                                                                                      h x 
                                                                                                                                                                           f  t  dt  h  x  f  h  x    g   x  f  g  x  
                                                                                                                                                                   d
                                (i)        f  x  dx   f  t  dt  f  u  du                                                                    (ix)        dx  
                                         a                    a                   a                                                                                  g x
                                         b                         b
                                           f  x  dx    f  x  dx
                                                                                                                                                                                                      vody lehdj.k
                                (ii)
                                          a                        a                                                                                   vody lehdj.k dh dksfV rFkk ?kkr& vodyu lehdj.k esa fo|+eku
                                         b                    c                       b                                                               vodytksa dk mPpre Øe gh ml lehdj.k dh dksfV dgykrk gS rFkk vody
                                (iii)      f  x  dx   f  x  dx   f  x  dx                  a  c  b                                     lehdj.k esa mPpre vodyt dh ?kkr gh ml vody lehdj.k dh ?kkr
                                         a                    a                       c
                                                                                                                                                                                                                             2
                                                                                                                                                                                                           d3y        dy 
                                         a                    a                                                                                       dgykrh gSA vody lehdj.k                                      3   y  ex              dh dksfV 3 rFkk 1 ?kkr gSA
                                                                                                                                                                                                           dx 3       dx 
                                (iv)       f  x  dx   f  a  x  dx
                                          0                   0                                                                                        çFke dksfV o çFke ?kkr vody lehdj.k
                                          a                            
                                                                       a                                                                                        dy            dy
                                                                                                                                                                    f  x      f  x   dy  f  x  dx
                                           f  x  dx  2 f  x  dx  ;fn f   x   f  x  ¼le Qyu½
                                                                       
                                                                       
                                                                                                                                                       (i)
                                                                                                                                                                dx            dx
                                                                                                                                                                                                                                      nksuksa rjQ lekdyu djus ij
                                         a
                                (v)                       0
                                                                        vkSj ;fn f   x    f  x  ¼fo"ke Qyu½
                                         0                             
                                                                                                                                                               dy   f  x  dx  c ;k y   f  x  dx  c
                                                                                                                                                                dy                   dy                      dy
                                                                                                                                                                    f  x g  y      f  x g  y  
                                         2a                        a                      a
                                                                                                                                                                                                                   f  x  dx  c
                                (vi)             f  x  dx   f  x  dx   f  2a  x  dx                 ¼lkekU; :i ls½                         (ii)     dx                   dx                     g  y 
                                          0                        0                      0
                                                                                                                                                                dy                             dv
                                                                                                                                                                    f  ax  by  c   
                                                                                                                                                                                           a  bf  v  
                                            a                                                                                                         (iii)                                            dx
                                          2 f  x  dx  if f  2a  x   f  x 
                                          
                                                                                                                                                                dx
                                                       
                                                       
                                            0
                                                        if f  2a  x    f  x 
                                          0            
                                                                                                                                                      (iv)
                                         an T                             T
                                (vii)                  f  x  dx  n  f  x  dx ¼;fn f  x  T   f  x  vkSj n  N ½                                     dy
                                                                                                                                                                    P y  Q  y e
                                                                                                                                                                                    pdx
                                                                                                                                                                                          Q e
                                                                                                                                                                                                 pdx
                                                                                                                                                                                                     dx  c
                                                                                                                                                       (v)
                                              a                            0                                                                                    dx
                                         b                     b                                                                                                                                                  lfn'k
                                (viii)     f  x  dx   f  a  b  x  dx                                                                           lfn'k ;k ØkWl xq.kuQy& ekuk a rFkk b nks lfn'k gS rFkk θ muds e/; dks.k
                                         a                     a
                                                                                                                                                      gS rc a × b = |a||b| sin θ n ;gka n, a rFkk b ds yEcor~ bdkbZ lfn'k gSA

                                                                                               (11)                                                                                                                 (12)
lfn'k xq.kuQy ds xq.kuQy                                                                                                            f=kfofe; funsZ'kkad T;kfefr
                                
  (i)      a  b  b  a  i.e. a  b  b  a                                                              funsZ'kkad& nks fcUnqvksa rFkk ds e/; nwjh
  (ii)
                                                                                                                   PQ       x2  x1 2   y2  y1 2   z2  z1 2
  (iii)
                  
                                                                                                             ewy fcUnq ls fcUnq  x1 , y1 , z1  dh nwjh
  (iv)     ;fn    a  a1iˆ  a2 ˆ  a3 k
                                j      ˆ   rFkk                        rks
                                                                                                            ;fn fcUnq     P  x1 , y1 , z1    rFkk               dks feykus okyh js[kk dks fcUnq
  (v) a       rFkk      nksuksa ds yEcor~ lfn'k              gksrk gSA
                                                                                                                        vuqikr                             esa foHkkftr djrk gS] rks
                                                                                              
  (vi)        rFkk      ds ry ds yEcor~ bdkbZ lfn'k                          gksrk gSA rFkk ¼ a rFkk
                                                                                                                    m x  m2 x1     m y  m2 y1     m z  m2 z1
                                                                                            
                                                                                                                  x 1 2        ;y  1 2        ;z  1 2
                                                                                                                   m1  m2         m1  m2         m1  m2
      ;k         rFkk    ½ ds ry ds yEcor~             ifjek.k dk ,d lfn'k   a b gksrk
                                                                                       ab                 ¼vUr foHkktu½
gSA                                                                                                                     m1 x2  m2 x1     m y  m2 y1     m z  m2 z1
            ˆ j ˆ
                                                                                                             rFkk x      m1  m2
                                                                                                                                      ;y  1 2
                                                                                                                                            m1  m2
                                                                                                                                                      ;z  1 2
                                                                                                                                                            m1  m2
  (vii) ;fn i , ˆ, k     rhu bdkbZ lfn'k rhu ijLij yEcor~ js[kkvksa ds vuqfn'k gS rks
                                    ;k                                                                     ¼cká foHkktu½
  (viii) ;fn            rFkk         lejs[kh; gS rks                                                         ;fn P  x1 , y1 , z1  rFkk                       dks feykus okyh js[kk dks fcUnq
  (ix)     vk?kw.kZ % cy       tks fcUnq A ij fcUnq B ds lksi{k dk;Zjr gS rks lfn'k                                     vuqikr              esa foHkkftr djrk gS] rks
              cyk?kw.kZ gksrk gSA
  (x)      (a) ;fn ,d f=kHkqt dh nks vklUu Hkqtk,a     rFkk gks rks bldk {ks=kQy
                                                                                                             vUr foHkktu ds fy, /kukRed fpUg rFkk cká foHkktu ds fy, _.kkRed
                                                                                                           fpUg ysrs gSA
                                                                         
   (b) ;fn ,d lekukUrj prqHkqZt dh nks vklUu Hkqtk,a                     a   rFkk     gks rks bldk                                        x  x y  y2 z1  z2 
                                                                                                             PQ   dk ek/; fcUnq          1 2. 1      ,        
{ks=kQy                                                                                                                                   2       2       2 
   (c) ;fn ,d lekukUrj prqHkqZt dh nks fod.kZ rFkk                            gks rks bldk {ks=kQy          ,d f=kHkqt ABC ftlds 'kh"kZ                                       rFkk              gS]
                                                                                                           dk dsUæd gSA
                                                  (13)                                                                                                  (14)




                                                                                                             ?kVuk ds fy, la;ksxkuqikr
                                                                                                                 A ds i{k esa la;ksxkuqikr = m : (n – m)
                                                                                                                 A ds foi{k esa la;ksxkuqikr = m : (n – m) : m
  ,d prq"Qyd ABCD ftlds 'kh"kZ                                                                      rFkk     çkf;drk dk ;ksx fl)kar
                     gS] dk dsUæd gSA                                                                        fLFkfr & 1 : tc ?kVuk,a ijLij viothZ gksa
                                                                                                             ;fn A rFkk B ijLij viothZ ?kVuk,a gks rks


  fnDdksT;k,a ,oa ç{ksi& x- v{k dh fnDdksT;k,a cos0, cosπ/2, cosπ/2 vFkkZr~ 1,                               fLFkfr & 2 : tc ?kVuk,a ijLij viothZ ugha gksa
0, 0 gksrh gSA blh çdkj y rFkk z-v{k dh fnDdksT;k,a Øe'k% (0, 1, 0) rFkk (0, 0,
                                                                                                             ;fn A rFkk B ijLij viothZ ?kVuk,a ugha gks rks
1) gksrh gSA                                                                                                             P  A B   P  A   P  B   P  A B 

                               ;k                                                                                 ;k     P  A B  P  A   P  B  P  A B
                                                                                                            çkf;drk dk xq.ku fl)kar
                                                                                                            fLFkfr & 1 : tc ?kVuk,a Lora=k gks
  fdlh js[kk PQ ds fnd~ vuqikr ¼tgka P rFkk Q Øe'k% (x1, y1, z1) rFkk                        (x2, y2,       ;fn A1,A2,…,An Lora=k ?kVuk,a gks rks P(A1,A2,…,An)
z2) gS½ x2 – x1, y2 – y1, z2 – z1 gksrs gSaA                                                                      P  A1   P  A 2   P  A n 
  ;fn a, b, c fnd~ vuqikr rFkk l, m, n fnd~dksT;k,a gS rks
                                                                                                            ;fn A rFkk B nks Lora=k ?kVuk,a gks rks B dk ?kfVr gksuk A ij dksbZ çHkko ugha
                                                                                                           MkyrkA blfy,
                                                                                                                 P  A/ B   P  A  rFkk P  B/ A   P  B

                                             çkf;drk                                                              rc P  A B   P  A   P  B  ;k P  A B  P  A   P  B
  çkf;drk dh xf.krh; ifjHkk"kk& ;fn                    A dksbZ   ?kVuk gS rks                                fLFkfr & 2 : tc ?kVuk,a Lora=k u gks] nks ?kVuk,a A rFkk B ds ,d lkFk ?kfVr
                                                                                                           gksus dh çkf;drk A dh çkf;drk rFkk B dh çfrcaf/kr çkf;drk ¼tc A ?kfVr gks
             m A dh vuqdwy fLFkfr;ksa dh la[;k
      P A                                                                                              pqdh gks½ ds xq.kuQy ds cjkcj gksrh gS ¼;k B dh çkf;drk rFkk A dh çfrcafèkr
             n  A dh dqy fLFkfr;ksa dh la[;k                                                               çkf;drk ds xq.kuQy ds cjkcj gksrh gSA½ vFkkZr~
  0  P  A  1 ]             P A 
                                         nm     m
                                              1  1 P A                                                  P  A B  P  A   P  B/ A  ;k P  A B   P  B   P  A/ B ;k
                                          n      n
                                                                                                              P  A B   P  A   P  B/ A  ;k P  B  P  A/ B                  
  ∴        P A  P A   1
                                                  (15)                                                                                                  (16)

More Related Content

DOC
sample paper 1(hindi)
DOC
Hindi X Summative Assessmant - l Sample Paper
PDF
Юрий Владимирович Матиясевич. Десятая проблема Гильберта. Решение и применени...
PDF
Akshat Kaushal Discontinue Order
PDF
Digital Literacy Program Order
PDF
RS-CEL TSP Hostel MoU 2014
PDF
sample paper 1(hindi)
Hindi X Summative Assessmant - l Sample Paper
Юрий Владимирович Матиясевич. Десятая проблема Гильберта. Решение и применени...
Akshat Kaushal Discontinue Order
Digital Literacy Program Order
RS-CEL TSP Hostel MoU 2014

More from Rajasthan Knowledge Corporation Limited (20)

PDF
TSP Hostel MoU 2013_2014
PDF
PDF
Effective Counselling in ITGK
PDF
Basic Computer Book by Intel
PDF
PDF
RS-CIT for Teachers Order
PDF
RS-CIT for Minority Order
PDF
RS-CIT Fee Revision Circular
PDF
RKCL Corporate Brochure 2012
PPTX
PPTX
Ideas for RSCIT Marketing 2
PDF
"RSCIT for Secretariat Employees" Order
PDF
PDF
ITI Order for Exam by RKCL
PDF
Akshat Kaushal Yojana - RSCIT Fee Revision Notice
TSP Hostel MoU 2013_2014
Effective Counselling in ITGK
Basic Computer Book by Intel
RS-CIT for Teachers Order
RS-CIT for Minority Order
RS-CIT Fee Revision Circular
RKCL Corporate Brochure 2012
Ideas for RSCIT Marketing 2
"RSCIT for Secretariat Employees" Order
ITI Order for Exam by RKCL
Akshat Kaushal Yojana - RSCIT Fee Revision Notice
Ad

Class X Maths Formula Guide

  • 1. iQyu Qyu & f : A → B esa Qyu gS ;k ugha bldh tkap ds fy, fuEufyf[kr ijh{k.k djrs gSa& (i) A ds çR;sd vo;o dk f- ds vUrxZr B esa çfrfcEc fo|eku gS ;k ughaA (ii) A ds çR;sd vo;o dk f- ds vUrxZr B esa ,d vksj dsoy ,d çfrfcEc xf.kr fo|eku gksuk pkfg,A Qyu&Øfer ;qXeksa ds leqPp; ds :i esa & Qyu f Øfer ;qXeksa (a, b) dk leqPp; gSA tcfd (i) a leqPp; A dk vo;o gksA (ii) b leqPp; B dk vo;o gksA (ii) f ds fdlh Hkh nks Øfer ;qXeksa esa çFke lnL; ,d ls ugha gksA (iii) A dk çR;sd lnL; fdlh u fdlh ;qXe dk çFke lnL; vo'; gksA Qyu ds çdkj & Qyu f : X → Y ,dSdh Qyu dgykrk gS ;fn X ds egÙoiw.kZ lw=k fHkUu&fHkUu vo;oksa ds Y esa fHkUu&fHkUu çfrfcEc fo|eku gksA ;fn x1, x2, X ds dksbZ nks vo;o gks vkSj x1 ≠ x2 ⇒ f(x1) ≠ f(x2), f(x1) = f(x2) ⇒ x1 = x2 rc Qyu ,dSdh gksxkA (i) cgq,dSdh Qyu & Qyu f : X → Y cgq,dSdh Qyu dgykrk gS ;fn X ds fdUgha nks vo;oksa ds çfrfcEc Y esa leku gks] vFkkZr~ f : X → Y cgq,dSdh gksxk ;fn x1 ≠ x2 ⇒ f(x1) ≠ f(x2) (ii) vkPNknd Qyu & Qyu f : X → Y ,d vkPNknd Qyu dgykrk gS ;fn Y ds çR;sd vo;o dk X esa çfrfcEc fo|eku gksA nwljs 'kCnksa esa f dk ifjlj = f dk lgçkUrA (iii) vUr{ksZih Qyu & Qyu f : X → Y vUr{ksZih Qyu dgykrk gS ;fn Y Rajasthan Knowledge esa de ls de ,d vo;o ,slk gks ftldk çfrfcEc X esa fo|eku ugha gks vFkkZr~ IT shapes future CorporationLimited Y esa de ls de ,d vo;o ,slk gks ftlds fy, f–1(y) = φ rc Qyu vUr{ksZih (A Public Limited Company Promoted by Govt. of Rajasthan) gksrk gS] nwljs 'kCnksa esa f dk ifjlj ≠ f dk lgçkUrA (2) çfrykse Qyu & ;fn f : X → Y ,dSdh vkPNknd gks rks f dk çfrykse f–1 dqN egÙoiw.kZ dks.kksa ds f=kdks.kferh; vuqikr : X → Y esa Qyu gS tks fd çR;sd vo;o y ∈ Y ds laxr x ∈ X ftlds fy, (Trigonometrical Ratios for Some Special Angles) f(x) = y çfrykse Qyu dgykrk gSA 1º 1º  7 15º 22 18º 36º fo"ke ,oa le Qyu 2 2 (i) fo"ke Qyu & ,d Qyu f(x) fo"ke Qyu dgykrk gSA ;fn f(–x) = 4 2 6 3 1 1 5 1 1 sin  2 2 10  2 5 –f(x) lHkh x ds fy, fo"ke Qyu dk xzkQ foijhr iknksa esa lefer gksrk gSA 2 2 2 2 2 4 4 (ii) le Qyu & ,d Qyu f(x) le Qyu dgykrk gSA ;fn f(–x) = –f(x) 4 2 6 3 1 1 1 5 1 cos  2 2 10  2 5 lHkh x ds fy,A le Qyu dk xzkQ y-v{k ikfjr lefer gksrk gSA 2 2 2 2 2 4 4 125  10 15 f=kdks.kehfr; iQyu ,oa f=kdks.kferh; vuqikr tan   3  2   2  1 2  3 2 1 52 5 5 ,d nwljs ds inksa esa f=kdks.kferh; vuqikr (Trigonometrical Ratios in Terms of each Other) lacaf/kr dks.kksa ds f=kdks.kferh; vuqikr (Trigonometrical Ratios of Allied Angles) sin  cos  tan  cot  sec  cosec  f=kdks.kferh; vuqikr sin  sin  1  cos 2  tan  1 sec2   1 1 sin  cos  tan  1  tan  2 1  cos  2 sec  cosec  lacaf/kr dks.k 1 cot  1      sin  cos   tan  cos  1  sin 2  cos  ;k      1  tan 2  1  cot 2  sec   90      cos  sin  cot  2  sin  1  cos 2  1 tan  tan  sec2   1  1  sin 2  cos  cot   90    ;k      cos   sin   cot  2  cot  1  sin 2  cos  1 cot  1 2 cosec  1 180    ;k      sin   cos   tan  sin  1  cos 2  tan  sec2   1 180    ;k       sin   cos  tan  1  cot 2  cosec  ;k  3    1 1 sec  1  tan 2  sec   270      cos   sin  cot   1  sin 2  cos  cot  cosec2   1  2  1 1 1  tan 2  sec   3   270    ;k      cos  sin   cot  cosec  1  cot 2  cosec  sin  tan   2  1  cos 2 sec2   1  360    ;k  2     sin  cos   tan  (3) (4)
  • 2. f=kdks.kferh; vuqikrksa ds dks.kksa ds eku (ii) lg[k.M & vo;o aij dk lg[k.M çk;% Fij ls O;Dr fd;k tkrk gS] (Trigonometrical Ratios for Various Angles) tksfd (–1)i+j Mij ds cjkcj gksrk gS tgka M vo;o aij dk milkjf.kd gSA a11 a12 a13 ;fn   a21 a22 a23 a31 a32 a33 a a23 rks F   1 11 11  M11  M11  22 a32 a33 lkjf.kd F   1 1 2 a  M12   M12   21 a23 12 r`rh; dksfV ds lkjf.kd dk eku a31 a33 a11 a12 a13 lkjf.kd ds xq.k/keZ & (i) fdlh lkjf.kd dh fdlh iafDr ¼LrEHk½ dks fdlh la[;k ls xq.kk djus ij   a21 a22 a23 a31 a32 a33 lkjf.kd dk eku Hkh ml la[;k ls xq.kk gks tkrk gS vFkkZr~ ka kb kc a b c ka b c 11 a a23 1 2 a a23 13 a21 a22 p q r  k p q r  kp q r    1 a11 22   1 a12 21   1 a32 a33 a31 a33 a31 a32 u v w u v w ku v w a a23 a a23 a21 a22 (ii) fdlh lkjf.kd dh fdlh iafDr ¼LrEHk½ dk çR;sd vo;o ;fn nks inksa dk  a11 22  a12 21  a32 a33 a31 a33 a31 a32 ;ksx gks rks ml lkjf.kd dks mlh dksfV dh nks lkjf.kdksa ds ;ksxQy ds :i esa milkjf.kd ,oa lg[k.M O;Dr fd;k tk ldrk gS vFkkZr~ (i) milkjf.kd a b c  a b c    a11 a12 a13 p q r  p q r  p q r a a23 ;fn   a21 a22 a23 rks a11 dk milkjf.kd M11  22 blh u v w u v w u v w a32 a33 a31 a32 a33 a b c a b c  b c a a23 p q r  p q r   q r rjg M12  21 lkjf.kd dk eku fuEu çdkj Kkr fd;k tkrk gSA rFkk a31 a33 u v w u v w  v w Δ = a11 M11 – a12 M12 + a13 M13 ;k Δ = –a21 M21 + a22 M22 – a23 M23 (iii) ;fn fdlh lkjf.kd dh fdlh iafDr ¼LrEHk½ ds çR;sd vo;o esa fdlh ;k Δ = a31 M31 – a32 M32 + a33 M33 nwljh iafDr ¼LrEHk½ ds laxr vo;oksa dks fdlh ,d dh jkf'k ls xq.kk djds tksM+s (5) (6) ;k ?kVk;sa rks lkjf.kd dk eku ugh cnyrkA vFkkZr~ a b c a  b   c b c vFkkZr~ p q r  p  q   r q r u v w u  v   w v w eSfVªDl nks lkjf.kdksa dk xq.kuQy eSfVªDl ds çdkj nks lkjf.kd ftudh dksfV nks gS dk xq.kuQy fuEu çdkj ifjHkkf"kr gS& (i) iafDr eSfVªDl & A=[aij]m×n ,d iafDr eSfVªDl gS ;fn m = 1 a1 b1 1 m1 a  b  a1m1  b1m2 (ii) LrEHk eSfVªDl & A=[aij]m×n ,d LrEHk eSfVªDl gS ;fn n = 1   1 1 1 2 a2 b2  2 m2 a2 1  b2  2 a2 m1  b2 m2 (iii) oxZ eSfVªDl & A=[aij]m×n ,d oxZ eSfVªDl gS ;fn m = n nks lkjf.kd ftudh dksfV rhu gS dk xq.kuQy fuEu çdkj ifjHkkf"kr gS& (iv) ,dy eSfVªDl & A=[aij]m×n ,d ,dy eSfVªDl gS ;fn m = n = 1 (v) 'kwU; eSfVªDl & A=[aij]m×n ,d 'kwU; eSfVªDl gS ;fn aij = 0 lHkh i rFkk j a1 b1 c1 1 m1 n1 ds fy, a2 b2 c2   2 m2 n2 (vi) fod.kZ eSfVªDl & ,d oxZ eSfVªDl A–[aij]m×n ,d fod.kZ eSfVªDl gS ;fn a3 b3 c3  3 m3 n3 aij = 0 tc i ≠ j 0 i  j a11  b1 2  c1 3 a1m1  b1m2  c1m3 a1n1  b1n2  c1n3 (vii) vfn'k eSfVªDl & A= [aij] ,d vfn'k eSfVªDl gSA ;fn aij   tgka k i  j  a2 1  b2  2  c2  3 a2 m1  b2 m2  c2 m3 a2 n1  b2 n2  c2 n3 K vpj gSA a31  b3 2  c3 3 a3 m1  b3 m2  c3 m3 a3 n1  b3 n2  c3 n3 (viii) bdkbZ eSfVªDl & ,d oxZ eSfVªDl A=[aij] ,d bdkbZ eSfVªDl gSA ;fn lefer lkjf.kd 1 i  j aij   ;fn fdl lkjf.kd ds çR;sd vo;o ds aij fy, aij = aji ∀ i, j gks rks mls lefer 0 i  j lkjf.kd dgrs gSA (ix) f=kHkqtkdkj eSfVªDl a h g (a) Åijh f=kHkqtkdkj eSfVªDl& ,d oxZ eSfVªDl [aij] Åijh f=kHkqtkdkj vFkkZr~ h b f eSfVªDl dgykrk gS ;fn aij = 0 tcfd i > j. g f c (b) fuEu f=kHkqtkdkj eSfVªDl& ,d oxZ eSfVªDl [aij] fuEu f=kHkqtkdkj eSfVªDl fo"ke lefer lkjf.kd dgykrk gS ;fn aij = 0 tcfd i < j. ;fn fdl lkjf.kd ds çR;sd vo;o ds aij fy, aij = – aji ∀ i, j gks rks mls fo"ke (x) vO;qRØe.kh; vkSj O;qRØe.kh; eSfVªDl& lefer lkjf.kd dgrs gSA ;fn lkjf.kd |A| = 0 ⇒ vO;qRØe.kh; ;fn lkjf.kd |A| ≠ 0 ⇒ O;qRØe.kh; (7) (8)
  • 3. eSfVªDl dk ;ksx ,oa O;odyu 1 1 ax ;fn A[aij]m×n rFkk [bij]m×n nks leku dksfV dh eSfVªDl gks rks mudk ;ksx A + B (xvii)  a 2  x 2 dx  2a log a  x  c  x  a  og eSfVªDl gS ftldk çR;sd vo;o eSfVªDl A rFkk B ds laxr vo;oksa ds ;ksx 1 x  x  dx  sin 1    c   cos 1    c ds cjkcj gSA vFkkZr~ A + B = [aij + bij]m×n (xviii) a 2  x2 a a vfuf'pr lekdyu 1 x  dx  log x  x 2  a 2  c  sinh 1    c ekud lw=k (xix) x2  a 2 a xn 1 1  x  x dx  loge x  c 1 x  c  n  1  dx  log x  x 2  a 2  c  sinh 1    c n (i) dx  (ii) n 1 (xx) x2  a2 a ax a x 2 2 a 2 1 x x dx   c  a x log e e  c e x dx  e x  c (iii) (iv) log e a (xxi)  a 2  x 2 dx  2 a  x  sin 2 a c (v)  sin xdx   cos x  c (vi)  sin xdx  sin x  c x 2 a2 x (xxii)  x2  a 2 dx  x  a 2  sin 1  c (vii)  tan xdx  log sec x  c   log cos x  c 2 2 a (viii)  cot xdx  log sin x  c x 2 2 a2 x (xxiii)  x2  a 2 dx  x  a  cos h 1  c 2 2 a  x (ix)  sec xdx  log sec  tan x  c   log sec x  tan x  c  log tan  4  2   c 1 1 x dx  sec 1  c   (xxiv)  a a x x 2  a2 x (x)  cosec dx   log cosec x  cot x  log cosecx  cot x  c  log tan  2   c   eax eax   b  (xxv)  eax sin bxdx  a sin bx  b cos bx   c  sin bx  tan 1     c a2  b2 a 2  b2   a  (xi)  sec x tan xdx   sec x  c (xii)  cosec x cot xdx   cosec x  c eax eax   b  (xiii)  sec2 xdx  tan x  c e ax  a cos bx  b sin bx   c  cos bx  tan 1     c  co sec 2 (xiv) xdx   cot x  c (xxvi) cos bxdx a 2  b2   a  a 2  b2 2 1 1  x (xv)  x2  a 2 dx  a tan  c a (xxvii) 1  f  ax  b  dx  a   ax  b   c 1 1 xa (xvi)  x2  a 2 dx  2a log x  a  c  x  a  lekdyu fuf'pr lekdyu ds xq.k/keZ (9) (10) f  x, y  dy  1 ;k dy F  y     dv  dx dx f 2  x, y  dx  x  F v   v x b b b h x  f  t  dt  h  x  f  h  x    g   x  f  g  x   d (i)  f  x  dx   f  t  dt  f  u  du (ix) dx   a a a g x b b  f  x  dx    f  x  dx vody lehdj.k (ii) a a vody lehdj.k dh dksfV rFkk ?kkr& vodyu lehdj.k esa fo|+eku b c b vodytksa dk mPpre Øe gh ml lehdj.k dh dksfV dgykrk gS rFkk vody (iii)  f  x  dx   f  x  dx   f  x  dx a  c  b lehdj.k esa mPpre vodyt dh ?kkr gh ml vody lehdj.k dh ?kkr a a c 2 d3y  dy  a a dgykrh gSA vody lehdj.k  3   y  ex dh dksfV 3 rFkk 1 ?kkr gSA dx 3  dx  (iv)  f  x  dx   f  a  x  dx 0 0 çFke dksfV o çFke ?kkr vody lehdj.k a  a dy dy  f  x   f  x   dy  f  x  dx  f  x  dx  2 f  x  dx  ;fn f   x   f  x  ¼le Qyu½   (i) dx dx nksuksa rjQ lekdyu djus ij a (v) 0  vkSj ;fn f   x    f  x  ¼fo"ke Qyu½ 0    dy   f  x  dx  c ;k y   f  x  dx  c dy dy dy  f  x g  y   f  x g  y   2a a a  f  x  dx  c (vi)  f  x  dx   f  x  dx   f  2a  x  dx ¼lkekU; :i ls½ (ii) dx dx g  y  0 0 0 dy dv  f  ax  by  c    a  bf  v   a  (iii)  dx 2 f  x  dx  if f  2a  x   f  x    dx   0  if f  2a  x    f  x  0   (iv) an T T (vii)  f  x  dx  n  f  x  dx ¼;fn f  x  T   f  x  vkSj n  N ½ dy  P y  Q  y e pdx   Q e pdx dx  c (v) a 0 dx b b lfn'k (viii)  f  x  dx   f  a  b  x  dx lfn'k ;k ØkWl xq.kuQy& ekuk a rFkk b nks lfn'k gS rFkk θ muds e/; dks.k a a gS rc a × b = |a||b| sin θ n ;gka n, a rFkk b ds yEcor~ bdkbZ lfn'k gSA (11) (12)
  • 4. lfn'k xq.kuQy ds xq.kuQy f=kfofe; funsZ'kkad T;kfefr         (i) a  b  b  a  i.e. a  b  b  a  funsZ'kkad& nks fcUnqvksa rFkk ds e/; nwjh (ii)  PQ   x2  x1 2   y2  y1 2   z2  z1 2 (iii)  ewy fcUnq ls fcUnq  x1 , y1 , z1  dh nwjh (iv) ;fn a  a1iˆ  a2 ˆ  a3 k j ˆ rFkk rks  ;fn fcUnq P  x1 , y1 , z1  rFkk dks feykus okyh js[kk dks fcUnq (v) a rFkk nksuksa ds yEcor~ lfn'k gksrk gSA vuqikr esa foHkkftr djrk gS] rks  (vi) rFkk ds ry ds yEcor~ bdkbZ lfn'k gksrk gSA rFkk ¼ a rFkk m x  m2 x1 m y  m2 y1 m z  m2 z1  x 1 2 ;y  1 2 ;z  1 2   m1  m2 m1  m2 m1  m2 ;k rFkk ½ ds ry ds yEcor~ ifjek.k dk ,d lfn'k   a b gksrk ab ¼vUr foHkktu½ gSA m1 x2  m2 x1 m y  m2 y1 m z  m2 z1 ˆ j ˆ rFkk x  m1  m2 ;y  1 2 m1  m2 ;z  1 2 m1  m2 (vii) ;fn i , ˆ, k rhu bdkbZ lfn'k rhu ijLij yEcor~ js[kkvksa ds vuqfn'k gS rks ;k ¼cká foHkktu½ (viii) ;fn rFkk lejs[kh; gS rks ;fn P  x1 , y1 , z1  rFkk dks feykus okyh js[kk dks fcUnq (ix) vk?kw.kZ % cy tks fcUnq A ij fcUnq B ds lksi{k dk;Zjr gS rks lfn'k vuqikr esa foHkkftr djrk gS] rks cyk?kw.kZ gksrk gSA (x) (a) ;fn ,d f=kHkqt dh nks vklUu Hkqtk,a rFkk gks rks bldk {ks=kQy vUr foHkktu ds fy, /kukRed fpUg rFkk cká foHkktu ds fy, _.kkRed fpUg ysrs gSA  (b) ;fn ,d lekukUrj prqHkqZt dh nks vklUu Hkqtk,a a rFkk gks rks bldk  x  x y  y2 z1  z2  PQ dk ek/; fcUnq  1 2. 1 ,  {ks=kQy  2 2 2  (c) ;fn ,d lekukUrj prqHkqZt dh nks fod.kZ rFkk gks rks bldk {ks=kQy ,d f=kHkqt ABC ftlds 'kh"kZ rFkk gS] dk dsUæd gSA (13) (14) ?kVuk ds fy, la;ksxkuqikr A ds i{k esa la;ksxkuqikr = m : (n – m) A ds foi{k esa la;ksxkuqikr = m : (n – m) : m ,d prq"Qyd ABCD ftlds 'kh"kZ rFkk çkf;drk dk ;ksx fl)kar gS] dk dsUæd gSA fLFkfr & 1 : tc ?kVuk,a ijLij viothZ gksa ;fn A rFkk B ijLij viothZ ?kVuk,a gks rks fnDdksT;k,a ,oa ç{ksi& x- v{k dh fnDdksT;k,a cos0, cosπ/2, cosπ/2 vFkkZr~ 1, fLFkfr & 2 : tc ?kVuk,a ijLij viothZ ugha gksa 0, 0 gksrh gSA blh çdkj y rFkk z-v{k dh fnDdksT;k,a Øe'k% (0, 1, 0) rFkk (0, 0, ;fn A rFkk B ijLij viothZ ?kVuk,a ugha gks rks 1) gksrh gSA P  A B   P  A   P  B   P  A B  ;k ;k P  A B  P  A   P  B  P  A B çkf;drk dk xq.ku fl)kar fLFkfr & 1 : tc ?kVuk,a Lora=k gks fdlh js[kk PQ ds fnd~ vuqikr ¼tgka P rFkk Q Øe'k% (x1, y1, z1) rFkk (x2, y2, ;fn A1,A2,…,An Lora=k ?kVuk,a gks rks P(A1,A2,…,An) z2) gS½ x2 – x1, y2 – y1, z2 – z1 gksrs gSaA  P  A1   P  A 2   P  A n  ;fn a, b, c fnd~ vuqikr rFkk l, m, n fnd~dksT;k,a gS rks ;fn A rFkk B nks Lora=k ?kVuk,a gks rks B dk ?kfVr gksuk A ij dksbZ çHkko ugha MkyrkA blfy, P  A/ B   P  A  rFkk P  B/ A   P  B çkf;drk rc P  A B   P  A   P  B  ;k P  A B  P  A   P  B çkf;drk dh xf.krh; ifjHkk"kk& ;fn A dksbZ ?kVuk gS rks fLFkfr & 2 : tc ?kVuk,a Lora=k u gks] nks ?kVuk,a A rFkk B ds ,d lkFk ?kfVr gksus dh çkf;drk A dh çkf;drk rFkk B dh çfrcaf/kr çkf;drk ¼tc A ?kfVr gks m A dh vuqdwy fLFkfr;ksa dh la[;k P A   pqdh gks½ ds xq.kuQy ds cjkcj gksrh gS ¼;k B dh çkf;drk rFkk A dh çfrcafèkr n A dh dqy fLFkfr;ksa dh la[;k çkf;drk ds xq.kuQy ds cjkcj gksrh gSA½ vFkkZr~ 0  P  A  1 ] P A  nm m  1  1 P A P  A B  P  A   P  B/ A  ;k P  A B   P  B   P  A/ B ;k n n P  A B   P  A   P  B/ A  ;k P  B  P  A/ B   ∴ P A  P A   1 (15) (16)