SlideShare a Scribd company logo
Pendahuluan Material Komposit
BAB 4 Macromechanical Analysis of a Laminate
Classical Lamination Theory
Qomarul Hadi, ST,MT
Teknik Mesin
Universitas Sriwijaya
Sumber Bacaan
Mechanics of Composite Materials by Kaw
Laminate Stacking Sequence
Fiber Direction

x
z
y
Gambar 4.1
Schematic of a lamina
Laminate Behavior
• Modulus Elastis
• The Stacking Position
• Thickness
• Angles of Orientation
• Coefficients of Thermal Expansion
• Coefficients of Moisture Expansion
x
P
P
P
P
z
x
(a)
z
(c)
x
z
M M
(b)
x
M
M
A
P
=
xx
 (4.1)
Strains in a
Gambar 4.2
A beam under (a) axial load, (b) bending moment,
and (c) combined axial and bending moment.
AE
P
=
xx

I
Mz
=
xx



z
=
xx
M
EI
z
+
P
AE
1
=
xx 






















1
z
+
= 0

 z
+
= 0
Types of loads allowed in CLT analysis
x
y
z
Ny
Nx
Nxy
Nyx
(a)
y
x
z
My
Myx
Mxy
Mx
(b)
Nx = normal force resultant in the x direction (per unit length)
Ny = normal force resultant in the y direction (per unit length)
Nxy = shear force resultant (per unit length)
Gambar 4.3
Resultant forces and moments on a
laminate.
Gambar 4.3
x
y
z
Ny
Nx
Nxy
Nyx
(a)
y
x
z
My
Myx
Mxy
Mx
(b)
Mx = bending moment resultant in the yz plane (per unit length)
My = bending moment resultant in the xz plane (per unit length)
Mxy = twisting moment resultant (per unit length)
Classical Lamination Theory
 Each lamina is orthotropic.
 Each lamina is homogeneous.
 A line straight and perpendicular to the middle surface remains
straight and perpendicular to the middle surface during
deformation. )
0
=
γ
=
γ
( yz
xz .
 The laminate is thin and is loaded only in its plane (plane stress)
)
0
=
τ
=
τ
=
σ
( yz
xz
z .
 Displacements are continuous and small throughout the laminate
|)
h
|
|
w
|
|,
v
|
|,
u
(|  , where h is the laminate thickness.
 Each lamina is elastic.
 No slip occurs between the lamina interfaces.
Gambar 4.4
Cross-Section
after Loading
x
u0
z
z
A


z
A
Mid-Plane
wo
Cross-Section
Before Loading
h/2
h/2
Gambar 4.4
Gambar showing the relationship between displacements through
the thickness of a plate to midplane displacements and curvatures.
Global Strains in a Laminate
















































































y
x
w
y
w
x
w
+ z
x
v
+
y
u
y
v
x
u
=
γ
ε
ε
xy
y
x
0
2
2
0
2
2
0
2
0
0
0
0
2
.
κ
κ
κ
+ z
γ
ε
ε
xy
y
x
xy
y
x





























0
0
0
Gambar 4.5
z
Mid-Plane
Strain Variation Stress Variation
Laminate
Gambar 4.5
Strain and stress variation through the thickness of the laminate.
END
Pendahuluan Material Komposit
BAB 4 Macromechanical Analysis of a Laminate
Relating Loads to Midplane
Strains/Curvatures
Qomarul Hadi, ST,MT
Teknik Mesin
Universitas Sriwijaya
Sumber Bacaan
Mechanics of Composite Materials by Kaw
Laminate Stacking Sequence
Fiber Direction

x
z
y
Gambar 4.1
Schematic of a lamina
Types of loads allowed in CLT
analysis
x
y
z
Ny
Nx
Nxy
Nyx
(a)
y
x
z
My
Myx
Mxy
Mx
(b)
Nx = normal force resultant in the x direction (per unit length)
Ny = normal force resultant in the y direction (per unit length)
Nxy = shear force resultant (per unit length)
Gambar 4.3
Resultant forces and moments on a
laminate.
x
y
z
Ny
Nx
Nxy
Nyx
(a)
y
x
z
My
Myx
Mxy
Mx
(b)
Mx = bending moment resultant in the yz plane (per unit length)
My = bending moment resultant in the xz plane (per unit length)
Mxy = twisting moment resultant (per unit length)
Types of loads allowed in CLT
analysis
Stacking Sequence
hk-1
hk
hn
h2
h1
h0
Mid-Plane
1
2
3
n
k-1
k
k+1
h3
z
h/2
tk
hn-1
h/2
Gambar 4.6
Coordinate locations of plies in the laminate.
Stresses in a Lamina in a Laminate
k
xy
y
x
k
k
xy
y
x
γ
ε
ε
Q
Q
Q
Q
Q
Q
Q
Q
Q
=
τ
σ
σ




































66
26
16
26
22
12
16
12
11
.
κ
κ
κ
Q
Q
Q
Q
Q
Q
Q
Q
Q
+ z
γ
ε
ε
Q
Q
Q
Q
Q
Q
Q
Q
Q
=
xy
y
x
k
xy
y
x
k


















































66
26
16
26
22
12
16
12
11
0
0
0
66
26
16
26
22
12
16
12
11
Forces and Stresses
dz,
τ
σ
σ
=
N
N
N
xy
y
x
h/
-h/
xy
y
x

























2
2
dz,
τ
σ
σ
=
xy
y
x
k
h
h
n
k=
k
k-














1
1
Forces & Midplane
Strains/Curvatures
dz
γ
ε
ε
Q
Q
Q
Q
Q
Q
Q
Q
Q
=
N
N
N
xy
y
x
k
h
h
n
k =
xy
y
x
k
k-








































0
0
0
66
26
16
26
22
12
16
12
11
1 1
z dz
κ
κ
κ
Q
Q
Q
Q
Q
Q
Q
Q
Q
+
xy
y
x
k
h
h
n
k =
k
k



























66
26
16
26
22
12
16
12
11
1 1
Forces & Midplane
Strains/Curvatures

























































0
xy
0
y
0
x
h
h
66
26
16
26
22
12
16
12
11
k
n
1
=
k
xy
y
x
dz
Q
Q
Q
Q
Q
Q
Q
Q
Q
=
N
N
N
k
1
-
k











































xy
y
x
h
h
66
26
16
26
22
12
16
12
11
k
n
1
=
k
dz
z
Q
Q
Q
Q
Q
Q
Q
Q
Q
+
k
1
k
Integrating terms
,
h
h
dz = k -
k
h
h
k
k -
)
( 1
1


,
h
h
zdz = k -
k
h
h
k
k -
)
(
2
1 2
1
2
1


Forces & Midplane
Strains/Curvatures






























































κ
κ
κ
B
B
B
B
B
B
B
B
B
+
γ
ε
ε
A
A
A
A
A
A
A
A
A
=
N
N
N
xy
y
x
xy
y
x
xy
y
x
66
26
16
26
22
12
16
12
11
0
0
0
66
26
16
26
22
12
16
12
11
,
,
,
; j =
,
,
, i =
h
-
h
Q
=
A k -
k
k
ij
n
k =
ij 6
2
1
6
2
1
)
(
)]
[( 1
1

6
2
1
6
2
1
)
(
)]
[(
2
1 2
1
2
1
,
,
; j =
,
,
, i =
h
-
h
Q
=
B k -
k
k
ij
n
k =
ij 
Stiffness Matrices
[A] – Extensional stiffness matrix relating the resultant in-
plane forces to the in-plane strains.
[B] – Coupling stiffness matrix coupling the force and
moment terms to the midplane strains and midplane
curvatures.
Stresses in a Lamina in a Laminate
k
xy
y
x
k
k
xy
y
x
γ
ε
ε
Q
Q
Q
Q
Q
Q
Q
Q
Q
=
τ
σ
σ




































66
26
16
26
22
12
16
12
11
.
κ
κ
κ
Q
Q
Q
Q
Q
Q
Q
Q
Q
+ z
γ
ε
ε
Q
Q
Q
Q
Q
Q
Q
Q
Q
=
xy
y
x
k
xy
y
x
k


















































66
26
16
26
22
12
16
12
11
0
0
0
66
26
16
26
22
12
16
12
11
Moments and Stresses
zdz,
τ
σ
σ
=
M
M
M
xy
y
x
h/
-h/
xy
y
x

























2
2
zdz,
τ
σ
σ
=
xy
y
x
k
h
h
n
k=
k
k-














1
1
Moments & Midplane
Strains/Curvatures
zdz
γ
ε
ε
Q
Q
Q
Q
Q
Q
Q
Q
Q
=
M
M
M
xy
y
x
k
h
h
n
k =
xy
y
x
k
k-










































0
0
0
66
26
16
26
22
12
16
12
11
1 1
dz
z
κ
κ
κ
Q
Q
Q
Q
Q
Q
Q
Q
Q
+
xy
y
x
k
h
h
n
k =
k
k
2
66
26
16
26
22
12
16
12
11
1 1
























































































0
xy
0
y
0
x
h
h
66
26
16
26
22
12
16
12
11
k
n
1
=
k
xy
y
x
zdz
Q
Q
Q
Q
Q
Q
Q
Q
Q
=
M
M
M
k
1
-
k













































xy
y
x
h
h
66
26
16
26
22
12
16
12
11
k
n
1
=
k
dz
z
Q
Q
Q
Q
Q
Q
Q
Q
Q
+
k
1
k
2






























































κ
κ
κ
D
D
D
D
D
D
D
D
D
+
γ
ε
ε
B
B
B
B
B
B
B
B
B
=
M
M
M
xy
y
x
xy
y
x
xy
y
x
66
26
16
26
22
12
16
12
11
0
0
0
66
26
16
26
22
12
16
12
11
.
,
,
; j =
,
,
i =
h
-
h
Q
=
D k -
k
k
ij
n
k =
ij 6
2
1
6
2
1
),
(
)]
[(
3
1 3
1
3
1

6
2
1
6
2
1
)
(
)]
[(
2
1 2
1
2
1
,
,
; j =
,
,
i =
,
h
-
h
Q
=
B k -
k
k
ij
n
k =
ij 
Stiffness Matrices
[A] – Extensional stiffness matrix relating the resultant in-
plane forces to the in-plane strains.
[B] – Coupling stiffness matrix coupling the force and
moment terms to the midplane strains and midplane
curvatures.
[D] – Bending stiffness matrix relating the resultant
bending moments to the plate curvatures.
Forces, Moments, Midplane Strains,
Midplane Curvatures






































































κ
κ
κ
γ
ε
ε
D
D
D
B
B
B
D
D
D
B
B
B
D
D
D
B
B
B
B
B
B
A
A
A
B
B
B
A
A
A
B
B
B
A
A
A
=
M
M
M
N
N
N
xy
y
x
xy
y
x
xy
y
x
xy
y
x
0
0
0
66
26
16
66
26
16
26
22
12
26
22
12
16
12
11
16
12
11
66
26
16
66
26
16
26
22
12
26
22
12
16
12
11
16
12
11
END
Pendahuluan Material Komposit
BAB 4 Macromechanical Analysis of a Laminate
Laminate Analysis Steps
Qomarul Hadi, ST,MT
Teknik Mesin
Universitas Sriwijaya
Sumber Bacaan
Mechanics of Composite Materials by Kaw
Laminate Stacking Sequence
Fiber Direction

x
z
y
Gambar 4.1
Schematic of a lamina
Forces, Moments, Strains,
Curvatures






































































κ
κ
κ
γ
ε
ε
D
D
D
B
B
B
D
D
D
B
B
B
D
D
D
B
B
B
B
B
B
A
A
A
B
B
B
A
A
A
B
B
B
A
A
A
=
M
M
M
N
N
N
xy
y
x
xy
y
x
xy
y
x
xy
y
x
0
0
0
66
26
16
66
26
16
26
22
12
26
22
12
16
12
11
16
12
11
66
26
16
66
26
16
26
22
12
26
22
12
16
12
11
16
12
11
Steps
1. Find the value of the reduced stiffness matrix [Q] for each ply using its four
elastic moduli, E1, E2, v12, G12 in Equation (2.93).
2. Find the value of the transformed reduced stiffness matrix ]
Q
[ for each ply
using the [Q] matrix calculated in Step 1 and the angle of the ply in Equation
(2.104) or Equations (2.137) and (2.138).
3. Knowing the thickness, tk of each ply, find the coordinate of the top and
bottom surface, hi, i = 1, . . . . . . . , n of each ply using Equation (4.20).
4. Use the ]
Q
[ matrices from Step 2 and the location of each ply from Step 3 to
find the three stiffness matrices [A], [B] and [D] from Equation (4.28).
5. Substitute the stiffness matrix values found in Step 4 and the applied forces
and moments in Equation (4.29).
Steps
6. Solve the six simultaneous Equations (4.29) to find the mid-plane strains and
curvatures.
7. Knowing the location of each ply, find the global strains in each ply using
Equation (4.16).
8. For finding the global stresses, use the stress-strain Equation (2.103).
9. For finding the local strains, use the transformation Equation (2.99).
10. For finding the local stresses, use the transformation Equation (2.94).
Step 1: Analysis Procedures for Laminate
Step 1: Find the reduced stiffness matrix [Q] for each ply
ν
ν
-
E
=
Q
12
21
1
11
1 ν
ν
E
ν
=
Q
12
21
2
12
12
1 
ν
ν
E
=
Q
12
21
2
22
1  G
=
Q 12
66
Step 2: Analysis Procedures for Laminate
c
s
Q
+
Q
+
s
Q
+
c
Q
=
Q
2
2
66
12
4
22
4
11
11
)
2
(
2
)
(
)
4
( 4
4
12
2
2
66
22
11
12 s
+
c
Q
+
c
s
Q
Q
+
Q
=
Q 
c
s
Q
Q
Q
s
c
Q
Q
Q
=
Q
3
66
12
22
3
66
12
11
16
)
2
(
)
2
( 




c
s
Q
+
Q
+
c
Q
+
s
Q
=
Q
2
2
66
12
4
22
4
11
22
)
2
(
2
s
c
Q
Q
Q
cs
Q
Q
Q
=
Q
3
66
12
22
3
66
12
11
26
)
2
(
)
2
( 




)
(
)
2
2
( 4
4
66
2
2
66
12
22
11
66 c
+
s
Q
+
c
s
Q
Q
Q
+
Q
=
Q 

Step 2: Find the transformed stiffness matrix [Q] using the
reduced stiffness matrix [Q] and the angle of the ply.
Step 3: Analysis Procedures for Laminates
Step 3: Find the coordinate of the top and bottom surface of
each ply.
hk-1
hk
hn
h2
h1
h0
Mid-Plane
1
2
3
n
k-1
k
k+1
h3
z
h/2
tk
hn-1
h/2
Gambar 4.6
Coordinate locations of plies in the laminate.
Step 4: Analysis Procedures for Laminates
Step 4: Find three stiffness matrices [A], [B], and [D]
6
2
1
6
2
1
)
(
)]
[( 1
1
,
,
; j =
,
,
, i =
h
-
h
Q
=
A k -
k
k
ij
n
k =
ij 
6
2
1
6
2
1
)
(
)]
[(
2
1 2
1
2
1
,
,
; j =
,
,
, i =
h
-
h
Q
=
B k -
k
k
ij
n
k =
ij 
6
2
1
6
2
1
),
(
)]
[(
3
1 3
1
3
1
,
,
; j =
,
,
i =
h
-
h
Q
=
D k -
k
k
ij
n
k =
ij 
Step 5: Analysis Procedure for Laminates
Step 5: Substitute the three stiffness matrices [A], [B], and [D]
and the applied forces and moments.






































































κ
κ
κ
γ
ε
ε
D
D
D
B
B
B
D
D
D
B
B
B
D
D
D
B
B
B
B
B
B
A
A
A
B
B
B
A
A
A
B
B
B
A
A
A
=
M
M
M
N
N
N
xy
y
x
xy
y
x
xy
y
x
xy
y
x
0
0
0
66
26
16
66
26
16
26
22
12
26
22
12
16
12
11
16
12
11
66
26
16
66
26
16
26
22
12
26
22
12
16
12
11
16
12
11
Step 6: Analysis Procedures for Laminates
Step 6: Solve the six simultaneous equations to find the
midplane strains and curvatures.






































































κ
κ
κ
γ
ε
ε
D
D
D
B
B
B
D
D
D
B
B
B
D
D
D
B
B
B
B
B
B
A
A
A
B
B
B
A
A
A
B
B
B
A
A
A
=
M
M
M
N
N
N
xy
y
x
xy
y
x
xy
y
x
xy
y
x
0
0
0
66
26
16
66
26
16
26
22
12
26
22
12
16
12
11
16
12
11
66
26
16
66
26
16
26
22
12
26
22
12
16
12
11
16
12
11
Step 7: Analysis Procedures for Laminates
Step 7: Find the global strains in each ply.



















































xy
y
x
0
xy
0
y
0
x
xy
y
x
z
+
=
Step 8: Analysis Procedure for Laminates
Step 8: Find the global stresses using the stress-strain
equation.












































xy
y
x
66
26
16
26
22
12
16
12
11
xy
y
x
Q
Q
Q
Q
Q
Q
Q
Q
Q
=
Analysis Procedures for Laminated Composites
Step 9: Find the local strains using the transformation equation.

























γ
ε
ε
R
T
R
=
γ
ε
ε
xy
y
x
1
12
2
1
]
[
]
[
]
[










2
0
0
0
1
0
0
0
1
]
[ =
R












s
-
c
sc
-sc
sc
-
c
s
sc
s
c
=
T
2
2
2
2
2
2
2
2
]
[
)
cos(
=
c
)
sin(
=
s
Step 10: Analysis Procedures for Laminates
Step 10: Find the local stresses using the transformation
equation.

























τ
σ
σ
T
=
xy
y
x
12
2
1
1
]
[



















s
c
sc
sc
sc
c
s
sc
s
c
=
T
2
2
2
2
2
2
1
2
2
]
[
)
cos(
=
c
)
sin(

s
END
Pendahuluan Material Komposit
BAB 4 Macromechanical Analysis of a Laminate
Laminate Analysis: Example
Qomarul Hadi, ST,MT
Teknik Mesin
Universitas Sriwijaya
Sumber Bacaan
Mechanics of Composite Materials by Kaw
Laminate Stacking Sequence
Fiber Direction

x
z
y
Gambar 4.1
Schematic of a lamina
Problem
A [0/30/-45] Graphite/Epoxy
laminate is subjected to a load of
Nx = Ny = 1000 N/m. Use the
unidirectional properties from
Table 2.1 of Graphite/Epoxy.
Assume each lamina has a
thickness of 5 mm. Find
a) the three stiffness matrices [A],
[B] and [D] for a three ply [0/30/-
45] Graphite/Epoxy laminate.
b) mid-plane strains and
curvatures.
c) global and local stresses on top
surface of 300 ply.
d) percentage of load Nx taken by
each ply.
0o
30o
-45o
5mm
5mm
5mm
z = -2.5mm
z = 2.5mm
z = 7.5mm
z
z = -7.5mm
Gambar 4.7
Thickness and coordinate locations
of the three-ply laminate.
Solution
A) The reduced stiffness matrix for the Oo Graphite/Epoxy ply
is
0
Pa
)
10
(
7.17
0
0
0
10.35
2.897
0
2.897
181.8
=
[Q] 9










Pa
)
10
(
7.17
0
0
0
10.35
2.897
0
2.897
181.8
=
]
Q
[ 9
0










Pa
)
10
(
36.74
20.05
54.19
20.05
23.65
32.46
54.19
32.46
109.4
=
]
Q
[ 9
30










Pa
)
10
(
46.59
42.87
-
42.87
-
42.87
-
56.66
42.32
42.87
-
42.32
56.66
=
]
Q
[ 9
45
-










Matrices Qbar Untuk Laminas
The total thickness of the laminate is
h = (0.005)(3) = 0.015 m.
h0=-0.0075 m
h1=-0.0025 m
h2=0.0025 m
h3=0.0075 m
0o
30o
-45o
5mm
5mm
5mm
z = -2.5mm
z = 2.5mm
z = 7.5mm
z
z = -7.5mm
Coordinates of top & bottom of
plies
Gambar 4.7
Thickness and coordinate locations
of the three-ply laminate.
Calculating [A] matrix
(-0.0075)]
-
[(-0.0025)
)
10
(
7.17
0
0
0
10.35
2.897
0
2.897
181.8
=
[A] 9










(-0.0025)]
-
[0.0025
)
10
(
36.74
20.05
54.19
20.05
23.65
32.46
54.19
32.46
109.4
+ 9










0.0025]
-
[0.0075
)
10
(
46.59
42.87
-
42.87
-
42.87
-
56.66
42.32
42.87
-
42.32
56.66
+ 9










)
h
-
h
(
]
Q
[
=
A 1
-
k
k
k
ij
3
1
=
k
ij 
)
(
]
[ 1
3
1
h
-
h
Q
=
A k -
k
k
ij
k =
ij 
The [A] matrix
m
-
Pa
)
4.525(10
)
1.141(10
)
5.663(10
)
1.141(10
)
4.533(10
)
3.884(10
)
5.663(10
)
3.884(10
)
1.739(10
=
[A]
8
8
7
8
8
8
7
8
9












Calculating the [B] Matrix
)
h
-
h
(
]
Q
[
2
1
=
B
2
1
-
k
2
k
k
ij
3
1
=
k
ij 
)]
)
(-0.0075
-
)
[(-0.0025
)
10
(
7.17
0
0
0
10.35
2.897
0
2.897
181.2
2
1
=
[B] 2
2
9










 
)
(-0.0025
-
)
(0.0025
)
10
(
36.74
20.05
54.19
20.05
23.65
32.46
54.19
32.46
109.4
2
1
+ 2
2
9










]
)
(0.0025
-
)
[(0.0075
)
10
(
46.59
42.87
42.87
42.87
56.66
42.32
42.87
42.32
56.66
2
1
+ 2
2
9














The [B] Matrix
     
     
     
2
5
6
6
6
6
5
6
5
6
10
855
9
10
072
1
10
072
1
10
072
1
10
158
1
10
855
9
10
072
1
10
855
9
10
129
3
m
Pa
.
.
.
.
.
.
.
.
.
[B] = 















Calculating the [D] matrix
)
h
-
h
(
]
Q
[
3
1
=
D
3
1
-
k
3
k
k
ij
3
1
=
k
ij 
 
3
3
9
)
0075
0
(
)
0025
0
(
)
10
(
17
7
0
0
0
35
10
897
2
0
897
2
8
181
3
1
.
.
.
.
.
.
.
[D] = 












 
3
3
9
)
0025
0
(
)
0025
0
(
)
10
(
74
36
05
20
19
54
05
20
65
23
46
32
19
54
46
32
4
109
3
1
.
.
.
.
.
.
.
.
.
.
.
+ 











 
3
3
9
)
0025
0
)
0075
0
(
)
10
(
59
46
87
42
87
42
87
42
66
56
32
42
87
42
32
42
66
56
3
1
.
- (
.
.
.
.
.
.
.
.
.
.
+














The [D] matrix
     
     
     
3
3
3
3
3
3
3
3
3
4
m
-
Pa
10
7.663
10
5.596
10
5.240
10
5.596
10
9.320
10
6.461
10
5.240
10
6.461
10
3.343
=
[D]














B) Since the applied load is Nx = Ny = 1000 N/m, the mid-
plane strains and curvatures can be found by solving the
following set of simultaneous linear equations






































































κ
κ
κ
γ
ε
ε
)
(
.
)
(
.
-
)
(
.
-
)
(
.
)
(
.
-
)
(
.
-
)
(
.
-
)
(
.
)
(
.
)
(
.
-
)
(
.
)
(
.
)
(
.
-
)
(
.
)
(
.
)
(
.
-
)
(
.
)
(
.
-
)
(
.
)
(
.
-
)
(
.
-
)
(
.
)
(
.
-
)
.
)
(
.
-
)
(
.
)
(
.
)
(
.
-
)
(
.
)
.
)
(
.
-
)
(
.
)
(
.
-
)
(
.
)
(
.
)
.
=
xy
y
x
xy
y
x
0
0
0
3
3
3
5
6
6
3
3
3
6
6
5
3
3
4
6
5
6
5
6
6
8
8
7
6
6
5
8
8
8
6
5
6
7
8
9
10
663
7
10
596
5
10
240
5
10
855
9
10
072
1
10
072
1
10
596
5
10
320
9
10
461
6
10
072
1
10
158
1
10
855
9
10
240
5
10
461
6
10
343
3
10
072
1
10
855
9
10
129
3
10
855
9
10
072
1
10
072
1
10
525
4
10
141
1
10
(
663
5
10
072
1
10
158
1
10
855
9
10
141
1
10
533
4
10
(
884
3
10
072
1
10
855
9
10
129
3
10
663
5
10
884
3
10
(
739
1
0
0
0
0
1000
1000
Setting up the 6x6 matrix
Mid-plane strains and
curvatures
/m
.
.
.
m/m
.
.
.
=
κ
κ
κ
γ
ε
ε
xy
y
x
xy
y
x
1
)
10
(
101
4
)
10
(
285
3
)
10
(
971
2
)
10
(
598
7
)
10
(
492
3
)
10
(
123
3
4
4
5
7
6
7
0
0
0


























































C) The strains and stresses at the top surface of the 300 ply are found
as follows. The top surface of the 300 ply is located at z = h1 = -
0.0025 m.




































)
(
.
)
(
.
-
)
(
.
)
.
+ (-
)
(
.
-
)
(
.
)
(
.
=
γ
ε
ε
-
-
-
-
-
-
xy
y
x
, top
10
101
4
10
285
3
10
971
2
0025
0
10
598
7
10
492
3
10
123
3
4
4
5
7
6
7
300
m/m
)
(
.
-
)
(
.
)
(
.
=
-
-
-












10
785
1
10
313
4
10
380
2
6
6
7
0o
30o
-45o
5mm
5mm
5mm
z = -2.5mm
z = 2.5mm
z = 7.5mm
z
z = -7.5mm
Gambar 4.7 Thickness and coordinate locations of the three-ply laminate.
Global strains (m/m)
 xy
Ply # Position εx εy
1 (00) Top
Middle
Bottom
8.944 (10-8)
1.637 (10-7)
2.380 (10-7)
5.955 (10-6)
5.134 (10-6)
4.313 (10-6)
-3.836 (10-6)
-2.811 (10-6)
-1.785 (10-6)
2 (300) Top
Middle
Bottom
2.380 (10-7)
3.123 (10-7)
3.866 (10-7)
4.313 (10-6)
3.492 (10-6)
2.670 (10-6)
-1.785 (10-6)
-7.598 (10-7)
2.655 (10-7)
3(-450) Top
Middle
Bottom
3.866 (10-7)
4.609 (10-7)
5.352 (10-7)
2.670 (10-6)
1.849 (10-6)
1.028 (10-6)
2.655 (10-7)
1.291 (10-6)
2.316 (10-6)


































)
10
1.785(
-
)
10
4.313(
)
10
2.380(
)
10
(
36.74
20.05
54.19
20.05
23.65
32.46
54.19
32.46
109.4
=
τ
σ
σ
6
-
6
-
-7
9
xy
y
x
top
,
300
Pa
)
10
3.381(
)
10
7.391(
)
10
6.930(
=
4
4
4












Global stresses in 30o
ply
Global stresses (Pa)
Ply # Position σx σy τxy
1 (00) Top
Middle
Bottom
3.351 (104)
4.464 (104)
5.577 (104)
6.188 (104)
5.359 (104)
4.531 (104)
-2.750 (104)
-2.015 (104)
-1.280 (104)
2 (300) Top
Middle
Bottom
6.930 (104)
1.063 (105)
1.434 (105)
7.391 (104)
7.747 (104)
8.102 (104)
3.381 (104)
5.903 (104)
8.426 (104)
3 (-450) Top
Middle
Bottom
1.235 (105)
4.903 (104)
-2.547 (104)
1.563 (105)
6.894 (104)
-1.840 (104)
-1.187 (105)
-3.888 (104)
4.091 (104)
The local strains and local stress as in the 300 ply at the
top surface are found using transformation equations as


































2
)/
10
1.785(
-
)
10
4.313(
)
10
2.380(
0.5000
0.4330
0.4330
-
0.8660
-
0.7500
0.2500
0.8660
0.2500
0.7500
=
/2
γ
ε
ε
6
-
6
-
-7
12
2
1
m/m
.
.
.
=
γ
ε
ε
-
-
-
























)
10
(
636
2
)
10
(
067
4
)
10
(
837
4
6
6
7
12
2
1
Local strains (m/m)
Ply # Position ε1 ε2 γ12
1 (00) Top
Middle
Bottom
8.944 (10-8)
1.637 (10-7)
2.380 (10-7)
5.955(10-6)
5.134(10-6)
4.313(10-6)
-3.836(10-6)
-2.811(10-6)
-1.785(10-6)
2 (300) Top
Middle
Bottom
4.837(10-7)
7.781(10-7)
1.073(10-6)
4.067(10-6)
3.026(10-6)
1.985(10-6)
2.636(10-6)
2.374(10-6)
2.111(10-6)
3 (-450) Top
Middle
Bottom
1.396(10-6)
5.096(10-7)
-3.766(10-7)
1.661(10-6)
1.800(10-6)
1.940(10-6)
-2.284(10-6)
-1.388(10-6)
-4.928(10-7)


































)
10
3.381(
)
10
7.391(
)
10
6.930(
0.5000
0.4330
0.4330
-
.8660
-
0.7500
0.2500
.8660
0.2500
0.7500
=
τ
σ
σ
4
4
4
12
2
1
Pa
)
10
1.890(
)
10
4.348(
)
10
9.973(
=
4
4
4












Local stresses in 30o
ply
Local stresses (Pa)
Ply # Position σ1 σ2 τ12
1 (00) Top
Middle
Bottom
3.351 (104)
4.464 (104)
5.577 (104)
6.188 (104)
5.359(104)
4.531 (104)
-2.750 (104)
-2.015 (104)
-1.280 (104)
2 (300) Top
Middle
Bottom
9.973 (104)
1.502 (105)
2.007 (105)
4.348 (104)
3.356 (104)
2.364 (104)
1.890 (104)
1.702 (104)
1.513 (104)
3 (-450) Top
Middle
Bottom
2.586 (105)
9.786 (104)
-6.285 (104)
2.123 (104)
2.010 (104)
1.898 (104)
-1.638 (104)
-9.954 (103)
-3.533 (103)
D) Portion of load taken by each ply
Portion of load Nx taken by 00 ply = 4.464(104)(5)(10-3) = 223.2 N/m
Portion of load Nx taken by 300 ply = 1.063(105)(5)(10-3) = 531.5 N/m
Portion of load Nx taken by -450 ply = 4.903(104)(5)(10-3) = 245.2 N/m
The sum total of the loads shared by each ply is 1000 N/m, (223.2 +
531.5 + 245.2) which is the applied load in the x-direction, Nx.
0o
30o
-45o
5mm
5mm
5mm
z = -2.5mm
z = 2.5mm
z = 7.5mm
z
z = -7.5mm
Gambar 4.7
Thickness and coordinate locations of the three-ply laminate.
Percentage of load Nx taken by 00 ply
Percentage of load Nx taken by 300 ply
Percentage of load Nx taken by -450 ply
%
22.32
=
100
1000
223.2


%
53.15
=
100
1000
531.5


%
24.52
=
100
1000
245.2


END

More Related Content

PDF
Micromechanics of Composite Materials
PPT
PPT on laminated composite
PPTX
Autoclave molding
PDF
Polymer Composites in Aviation Sector
PPT
Advanced composites
PPTX
Composites
PPT
Composites manufacturing technology
Micromechanics of Composite Materials
PPT on laminated composite
Autoclave molding
Polymer Composites in Aviation Sector
Advanced composites
Composites
Composites manufacturing technology

What's hot (20)

PPTX
FEA good practices presentation
PPT
Finite Element Analysis - UNIT-3
PPT
Finite Element Analysis - UNIT-1
PPSX
Finite Element Analysis -Dr.P.Parandaman
PPT
Finite Element Analysis - UNIT-2
PPTX
Deformation of metals
PPTX
Finite Element Analysis - UNIT-5
PPTX
Deformation
PPTX
theory of failure
PPT
Finite Element Analysis - UNIT-4
PPTX
Strength of materials
PPT
Fatigue and creep
PDF
Thin and Thick Cylinders
PPT
Single degree freedom free vibration
PPTX
METAL MATRIX COMPOSITE
PPTX
1 static failure theories ductile r1
PDF
Solution manual for the finite element method in engineering, fifth edition ...
PDF
Slip Line Field Method
PPTX
Composites
PPTX
Wear measurement
FEA good practices presentation
Finite Element Analysis - UNIT-3
Finite Element Analysis - UNIT-1
Finite Element Analysis -Dr.P.Parandaman
Finite Element Analysis - UNIT-2
Deformation of metals
Finite Element Analysis - UNIT-5
Deformation
theory of failure
Finite Element Analysis - UNIT-4
Strength of materials
Fatigue and creep
Thin and Thick Cylinders
Single degree freedom free vibration
METAL MATRIX COMPOSITE
1 static failure theories ductile r1
Solution manual for the finite element method in engineering, fifth edition ...
Slip Line Field Method
Composites
Wear measurement
Ad

Recently uploaded (20)

PDF
Enhancing Cyber Defense Against Zero-Day Attacks using Ensemble Neural Networks
PDF
SM_6th-Sem__Cse_Internet-of-Things.pdf IOT
PDF
Embodied AI: Ushering in the Next Era of Intelligent Systems
PPTX
Sustainable Sites - Green Building Construction
PPT
CRASH COURSE IN ALTERNATIVE PLUMBING CLASS
PDF
The CXO Playbook 2025 – Future-Ready Strategies for C-Suite Leaders Cerebrai...
PPTX
MCN 401 KTU-2019-PPE KITS-MODULE 2.pptx
PDF
TFEC-4-2020-Design-Guide-for-Timber-Roof-Trusses.pdf
PPTX
bas. eng. economics group 4 presentation 1.pptx
PPTX
Geodesy 1.pptx...............................................
DOCX
ASol_English-Language-Literature-Set-1-27-02-2023-converted.docx
PDF
Well-logging-methods_new................
PPTX
Infosys Presentation by1.Riyan Bagwan 2.Samadhan Naiknavare 3.Gaurav Shinde 4...
PPTX
CH1 Production IntroductoryConcepts.pptx
PPTX
FINAL REVIEW FOR COPD DIANOSIS FOR PULMONARY DISEASE.pptx
PDF
Evaluating the Democratization of the Turkish Armed Forces from a Normative P...
PPTX
Construction Project Organization Group 2.pptx
PDF
keyrequirementskkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkk
PPTX
M Tech Sem 1 Civil Engineering Environmental Sciences.pptx
PPTX
KTU 2019 -S7-MCN 401 MODULE 2-VINAY.pptx
Enhancing Cyber Defense Against Zero-Day Attacks using Ensemble Neural Networks
SM_6th-Sem__Cse_Internet-of-Things.pdf IOT
Embodied AI: Ushering in the Next Era of Intelligent Systems
Sustainable Sites - Green Building Construction
CRASH COURSE IN ALTERNATIVE PLUMBING CLASS
The CXO Playbook 2025 – Future-Ready Strategies for C-Suite Leaders Cerebrai...
MCN 401 KTU-2019-PPE KITS-MODULE 2.pptx
TFEC-4-2020-Design-Guide-for-Timber-Roof-Trusses.pdf
bas. eng. economics group 4 presentation 1.pptx
Geodesy 1.pptx...............................................
ASol_English-Language-Literature-Set-1-27-02-2023-converted.docx
Well-logging-methods_new................
Infosys Presentation by1.Riyan Bagwan 2.Samadhan Naiknavare 3.Gaurav Shinde 4...
CH1 Production IntroductoryConcepts.pptx
FINAL REVIEW FOR COPD DIANOSIS FOR PULMONARY DISEASE.pptx
Evaluating the Democratization of the Turkish Armed Forces from a Normative P...
Construction Project Organization Group 2.pptx
keyrequirementskkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkk
M Tech Sem 1 Civil Engineering Environmental Sciences.pptx
KTU 2019 -S7-MCN 401 MODULE 2-VINAY.pptx
Ad

Classical Lamination Theory