The document discusses various classification techniques in machine learning. It begins with an overview of classification and supervised vs. unsupervised learning. Classification aims to predict categorical class labels by constructing a predictive model from labeled training data. Decision tree induction is then covered as a basic classification algorithm that recursively partitions data based on attribute values until reaching single class leaf nodes. Bayes classification methods are also mentioned, which classify examples based on applying Bayes' theorem to calculate posterior probabilities.
Related topics: