SlideShare a Scribd company logo
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
Clustering Using Differential Evolution
Navdha Sah
Thesis Adviser: Dr. Thang N. Bui
Department of Math & Computer Science
Penn State Harrisburg
Spring 2016
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
Background DEC Algorithm Results Conclusion
Outline
1 Background
2 DEC Algorithm
3 Results
4 Conclusion
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
Background DEC Algorithm Results Conclusion
Outline
1 Background
2 DEC Algorithm
3 Results
4 Conclusion
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
Background DEC Algorithm Results Conclusion
Clustering?
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
Background DEC Algorithm Results Conclusion
Clustering?
What is clustering?
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
Background DEC Algorithm Results Conclusion
Clustering?
What is clustering?
The problem of partitioning a collection of objects into groups.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
Background DEC Algorithm Results Conclusion
Clustering?
What is clustering?
The problem of partitioning a collection of objects into groups.
Objects in the same group are similar.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
Background DEC Algorithm Results Conclusion
Clustering?
What is clustering?
The problem of partitioning a collection of objects into groups.
Objects in the same group are similar.
Objects in different groups are dissimilar.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
Background DEC Algorithm Results Conclusion
Clustering?
What is clustering?
The problem of partitioning a collection of objects into groups.
Objects in the same group are similar.
Objects in different groups are dissimilar.
Why clustering?
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
Background DEC Algorithm Results Conclusion
Clustering?
What is clustering?
The problem of partitioning a collection of objects into groups.
Objects in the same group are similar.
Objects in different groups are dissimilar.
Why clustering?
Useful in finding natural groupings within a data set
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
Background DEC Algorithm Results Conclusion
Clustering?
What is clustering?
The problem of partitioning a collection of objects into groups.
Objects in the same group are similar.
Objects in different groups are dissimilar.
Why clustering?
Useful in finding natural groupings within a data set
Useful in analysis, description and utilization of valuable information
hidden within groups
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
Background DEC Algorithm Results Conclusion
Example
What is “natural” grouping?
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
Background DEC Algorithm Results Conclusion
Example
Grouping by shapes?
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
Background DEC Algorithm Results Conclusion
Example
Grouping by colors?
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
Background DEC Algorithm Results Conclusion
Example
The Ground Truth!
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
Background DEC Algorithm Results Conclusion
Example
Data Set Grouping by Shape
Grouping by Color The Ground Truth
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
Background DEC Algorithm Results Conclusion
What is a clustering?
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
Background DEC Algorithm Results Conclusion
What is a clustering?
Data set
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
Background DEC Algorithm Results Conclusion
What is a clustering?
Data set
Let X = {X1, X2, . . . , Xn} be a set of n data items, where Xi ∈ IRf
, i = 1, . . . , n,
that is, Xi = (Xi1, . . . , Xif ), where Xij ’s are called features of Xi .
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
Background DEC Algorithm Results Conclusion
What is a clustering?
Data set
Let X = {X1, X2, . . . , Xn} be a set of n data items, where Xi ∈ IRf
, i = 1, . . . , n,
that is, Xi = (Xi1, . . . , Xif ), where Xij ’s are called features of Xi .
Clustering
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
Background DEC Algorithm Results Conclusion
What is a clustering?
Data set
Let X = {X1, X2, . . . , Xn} be a set of n data items, where Xi ∈ IRf
, i = 1, . . . , n,
that is, Xi = (Xi1, . . . , Xif ), where Xij ’s are called features of Xi .
Clustering
A clustering of X is then a partition C = (C1, . . . , Ck ) of X such that:
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
Background DEC Algorithm Results Conclusion
What is a clustering?
Data set
Let X = {X1, X2, . . . , Xn} be a set of n data items, where Xi ∈ IRf
, i = 1, . . . , n,
that is, Xi = (Xi1, . . . , Xif ), where Xij ’s are called features of Xi .
Clustering
A clustering of X is then a partition C = (C1, . . . , Ck ) of X such that:
∪k
i=1 Ci = X,
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
Background DEC Algorithm Results Conclusion
What is a clustering?
Data set
Let X = {X1, X2, . . . , Xn} be a set of n data items, where Xi ∈ IRf
, i = 1, . . . , n,
that is, Xi = (Xi1, . . . , Xif ), where Xij ’s are called features of Xi .
Clustering
A clustering of X is then a partition C = (C1, . . . , Ck ) of X such that:
∪k
i=1 Ci = X,
Ci ∩ Cj = ϕ ∀i, j ∈ {1, 2, . . . , k}, i ̸= j,
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
Background DEC Algorithm Results Conclusion
What is a clustering?
Data set
Let X = {X1, X2, . . . , Xn} be a set of n data items, where Xi ∈ IRf
, i = 1, . . . , n,
that is, Xi = (Xi1, . . . , Xif ), where Xij ’s are called features of Xi .
Clustering
A clustering of X is then a partition C = (C1, . . . , Ck ) of X such that:
∪k
i=1 Ci = X,
Ci ∩ Cj = ϕ ∀i, j ∈ {1, 2, . . . , k}, i ̸= j,
Ci ̸= ϕ ∀i ∈ {1, 2, . . . , k}.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
Background DEC Algorithm Results Conclusion
How is clustering measured?
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
Background DEC Algorithm Results Conclusion
How is clustering measured?
Need to measure similarity or dissimilarity between items.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
Background DEC Algorithm Results Conclusion
How is clustering measured?
Need to measure similarity or dissimilarity between items.
Similarity can be measured using distance measures.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
Background DEC Algorithm Results Conclusion
Distance Measures
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
Background DEC Algorithm Results Conclusion
Distance Measures
Euclidean distance
d(Xi , Xj ) =
f∑
p=1
(Xip − Xjp)2 ,
where Xi and Xj are two f-dimensional items.
It is a special case of the Minkowsky metric (α = 2)
d(Xi , Xj ) =


f∑
p=1
(Xip − Xjp)α


1/α
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
Background DEC Algorithm Results Conclusion
Distance Measures
MinMax distance
d(Xi , Xj ) =
f∑
p=1
|Xip − Xjp|
MAXp − MINp
,
where Xip and Xjp are the pth
feature values for items Xi and Xj , and
MAXp and MINp are the maximum and minimum values for the pth
feature across the data set, that is,
MAXp = max{Xip | i = 1, . . . , n},
MINp = min{Xip | i = 1, . . . , n}.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
Background DEC Algorithm Results Conclusion
Clustering Validity Indexes
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
Background DEC Algorithm Results Conclusion
Clustering Validity Indexes
Used to analyze the quality of a clustering solution on a
quantitative basis.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
Background DEC Algorithm Results Conclusion
Clustering Validity Indexes
Used to analyze the quality of a clustering solution on a
quantitative basis.
A good clustering would be one with compact and distinct
clusters.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
Background DEC Algorithm Results Conclusion
Clustering Validity Indexes
Used to analyze the quality of a clustering solution on a
quantitative basis.
A good clustering would be one with compact and distinct
clusters.
A validity index helps capture the notion of compactness
and separation in a clustering solution.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
Background DEC Algorithm Results Conclusion
Clustering Validity Indexes
Used to analyze the quality of a clustering solution on a
quantitative basis.
A good clustering would be one with compact and distinct
clusters.
A validity index helps capture the notion of compactness
and separation in a clustering solution.
Need the distance measure and the clustering to calculate
the validity index.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
Background DEC Algorithm Results Conclusion
DB Index
FDB(C, D)
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
Background DEC Algorithm Results Conclusion
DB Index
FDB(C, D)
A clustering
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
Background DEC Algorithm Results Conclusion
DB Index
FDB(C, D)
A clustering
Distance function
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
Background DEC Algorithm Results Conclusion
DB Index
FDB(C, D) =
1
K
K∑
i=1
Di
A clustering
Distance function
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
Background DEC Algorithm Results Conclusion
DB Index
FDB(C, D) =
1
K
K∑
i=1
Di
A clustering
Distance function
Number of clusters
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
Background DEC Algorithm Results Conclusion
DB Index
FDB(C, D) =
1
K
K∑
i=1
Di
Di = max
0≤i,j≤K
i̸=j
{
Si + Sj
Mij
}
A clustering
Distance function
Number of clusters
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
Background DEC Algorithm Results Conclusion
DB Index
FDB(C, D) =
1
K
K∑
i=1
Di
Si =

 1
|Ci|
∑
X∈Ci
D(X, ωi)q


1
q
Di = max
0≤i,j≤K
i̸=j
{
Si + Sj
Mij
}
A clustering
Distance function
Number of clusters
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
Background DEC Algorithm Results Conclusion
DB Index
FDB(C, D) =
1
K
K∑
i=1
Di average distance of items from centroid
Si =

 1
|Ci|
∑
X∈Ci
D(X, ωi)q


1
q
Di = max
0≤i,j≤K
i̸=j
{
Si + Sj
Mij
}
A clustering
Distance function
Number of clusters
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
Background DEC Algorithm Results Conclusion
DB Index
FDB(C, D) =
1
K
K∑
i=1
Di average distance of items from centroid
Si =

 1
|Ci|
∑
X∈Ci
D(X, ωi)q


1
q
Mij = D(ωi, ωj), i ̸= j Di = max
0≤i,j≤K
i̸=j
{
Si + Sj
Mij
}
A clustering
Distance function
Number of clusters
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
Background DEC Algorithm Results Conclusion
DB Index
FDB(C, D) =
1
K
K∑
i=1
Di average distance of items from centroid
Si =

 1
|Ci|
∑
X∈Ci
D(X, ωi)q


1
q
Mij = D(ωi, ωj), i ̸= j Di = max
0≤i,j≤K
i̸=j
{
Si + Sj
Mij
}
A clustering
Distance function
Number of clusters
distance between clusters i and j
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
Background DEC Algorithm Results Conclusion
CS Index
FCS(C, D) =
1
K
K∑
i=1
[
1
|Ci |
∑
Xi ∈Ci
max
Xj ∈Ci
{
D(Xi, Xj)
}
]
1
K
K∑
i=1
[
min
j∈K,j̸=i
{
D(ωi, ωj)
}
]
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
Background DEC Algorithm Results Conclusion
CS Index
FCS(C, D) =
1
K
K∑
i=1
[
1
|Ci |
∑
Xi ∈Ci
max
Xj ∈Ci
{
D(Xi, Xj)
}
]
1
K
K∑
i=1
[
min
j∈K,j̸=i
{
D(ωi, ωj)
}
]
A clustering
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
Background DEC Algorithm Results Conclusion
CS Index
FCS(C, D) =
1
K
K∑
i=1
[
1
|Ci |
∑
Xi ∈Ci
max
Xj ∈Ci
{
D(Xi, Xj)
}
]
1
K
K∑
i=1
[
min
j∈K,j̸=i
{
D(ωi, ωj)
}
]
A clustering
Distance function
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
Background DEC Algorithm Results Conclusion
CS Index
FCS(C, D) =
1
K
K∑
i=1
[
1
|Ci |
∑
Xi ∈Ci
max
Xj ∈Ci
{
D(Xi, Xj)
}
]
1
K
K∑
i=1
[
min
j∈K,j̸=i
{
D(ωi, ωj)
}
]
A clustering
Distance function
Number of clusters
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
Background DEC Algorithm Results Conclusion
CS Index
average distance of furthest away items in Ci
FCS(C, D) =
1
K
K∑
i=1
[
1
|Ci |
∑
Xi ∈Ci
max
Xj ∈Ci
{
D(Xi, Xj)
}
]
1
K
K∑
i=1
[
min
j∈K,j̸=i
{
D(ωi, ωj)
}
]
A clustering
Distance function
Number of clusters
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
Background DEC Algorithm Results Conclusion
CS Index
average distance of furthest away items in Ci
FCS(C, D) =
1
K
K∑
i=1
[
1
|Ci |
∑
Xi ∈Ci
max
Xj ∈Ci
{
D(Xi, Xj)
}
]
1
K
K∑
i=1
[
min
j∈K,j̸=i
{
D(ωi, ωj)
}
]
average minimum distance between closest centroids
A clustering
Distance function
Number of clusters
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
Background DEC Algorithm Results Conclusion
PBM Index
FPBM(C, D) =
1
K
×
E
EK
× DK
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
Background DEC Algorithm Results Conclusion
PBM Index
FPBM(C, D) =
1
K
×
E
EK
× DK
A clustering
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
Background DEC Algorithm Results Conclusion
PBM Index
FPBM(C, D) =
1
K
×
E
EK
× DK
A clustering
Distance function
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
Background DEC Algorithm Results Conclusion
PBM Index
FPBM(C, D) =
1
K
×
E
EK
× DK
A clustering
Distance function
Number of clusters
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
Background DEC Algorithm Results Conclusion
PBM Index
E =
n∑
i=1
D(Xi, ωx )
FPBM(C, D) =
1
K
×
E
EK
× DK
A clustering
Distance function
Number of clusters
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
Background DEC Algorithm Results Conclusion
PBM Index
E =
n∑
i=1
D(Xi, ωx )
FPBM(C, D) =
1
K
×
E
EK
× DK
A clustering
Distance function
Number of clusters
sum of distance of all items from global centroid
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
Background DEC Algorithm Results Conclusion
PBM Index
E =
n∑
i=1
D(Xi, ωx )
FPBM(C, D) =
1
K
×
E
EK
× DK
EK =
K∑
k=1
∑
X∈Ck
D(X, ωk )
A clustering
Distance function
Number of clusters
sum of distance of all items from global centroid
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
Background DEC Algorithm Results Conclusion
PBM Index
E =
n∑
i=1
D(Xi, ωx )
FPBM(C, D) =
1
K
×
E
EK
× DK
EK =
K∑
k=1
∑
X∈Ck
D(X, ωk )
A clustering
Distance function
Number of clusters
sum of distance of all items from global centroid
sum of distance of all items from their centroid
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
Background DEC Algorithm Results Conclusion
PBM Index
E =
n∑
i=1
D(Xi, ωx )
FPBM(C, D) =
1
K
×
E
EK
× DK
DK = max
0≤i,j≤K
i̸=j
{D(ωi, ωj)}
EK =
K∑
k=1
∑
X∈Ck
D(X, ωk )
A clustering
Distance function
Number of clusters
sum of distance of all items from global centroid
sum of distance of all items from their centroid
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
Background DEC Algorithm Results Conclusion
PBM Index
E =
n∑
i=1
D(Xi, ωx )
FPBM(C, D) =
1
K
×
E
EK
× DK
DK = max
0≤i,j≤K
i̸=j
{D(ωi, ωj)}
EK =
K∑
k=1
∑
X∈Ck
D(X, ωk )
A clustering
Distance function
Number of clusters
sum of distance of all items from global centroid
max distance between centroids
sum of distance of all items from their centroid
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
Background DEC Algorithm Results Conclusion
The Clustering Problem
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
Background DEC Algorithm Results Conclusion
The Clustering Problem
Definition
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
Background DEC Algorithm Results Conclusion
The Clustering Problem
Definition
Input: Data set X = {X1, . . . , Xn} where Xi ∈ IRf
, a distance function
D and a validity index F.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
Background DEC Algorithm Results Conclusion
The Clustering Problem
Definition
Input: Data set X = {X1, . . . , Xn} where Xi ∈ IRf
, a distance function
D and a validity index F.
Output: A clustering C = {C1, . . . , Ck } of X such that F(C, D) is opti-
mized over all possible clusterings of X.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
Background DEC Algorithm Results Conclusion
The Clustering Problem
Definition
Input: Data set X = {X1, . . . , Xn} where Xi ∈ IRf
, a distance function
D and a validity index F.
Output: A clustering C = {C1, . . . , Ck } of X such that F(C, D) is opti-
mized over all possible clusterings of X.
The problem is known to be NP-Hard.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
Background DEC Algorithm Results Conclusion
Applications
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
Background DEC Algorithm Results Conclusion
Applications
Marketing
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
Background DEC Algorithm Results Conclusion
Applications
Marketing
Medical sciences
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
Background DEC Algorithm Results Conclusion
Applications
Marketing
Medical sciences
Engineering
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
Background DEC Algorithm Results Conclusion
Applications
Marketing
Medical sciences
Engineering
Recommender systems
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
Background DEC Algorithm Results Conclusion
Applications
Marketing
Medical sciences
Engineering
Recommender systems
Community detection
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
Background DEC Algorithm Results Conclusion
Related Work
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
Background DEC Algorithm Results Conclusion
Related Work
K-Means algorithm
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
Background DEC Algorithm Results Conclusion
Related Work
K-Means algorithm
Evolution Strategy (ES) algorithms
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
Background DEC Algorithm Results Conclusion
Related Work
K-Means algorithm
Evolution Strategy (ES) algorithms
Particle Swarm Optimization (PSO) algorithms
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
Background DEC Algorithm Results Conclusion
Related Work
K-Means algorithm
Evolution Strategy (ES) algorithms
Particle Swarm Optimization (PSO) algorithms
Genetic Algorithms (GA)
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
Background DEC Algorithm Results Conclusion
Related Work
K-Means algorithm
Evolution Strategy (ES) algorithms
Particle Swarm Optimization (PSO) algorithms
Genetic Algorithms (GA)
Differential Evolution (DE) algorithms
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
Background DEC Algorithm Results Conclusion
Differential Evolution
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
Background DEC Algorithm Results Conclusion
Differential Evolution
Similar to genetic algorithms.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
Background DEC Algorithm Results Conclusion
Differential Evolution
Similar to genetic algorithms.
Population based search methodology.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
Background DEC Algorithm Results Conclusion
Differential Evolution
Similar to genetic algorithms.
Population based search methodology.
A population of candidate solutions is maintained and
evolved.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
Background DEC Algorithm Results Conclusion
Differential Evolution
Similar to genetic algorithms.
Population based search methodology.
A population of candidate solutions is maintained and
evolved.
Differs from Genetic Algorithms in terms of offspring
creation.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
Background DEC Algorithm Results Conclusion
Outline
1 Background
2 DEC Algorithm
3 Results
4 Conclusion
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
Background DEC Algorithm Results Conclusion
Differential Evolution Clustering (DEC)
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
Background DEC Algorithm Results Conclusion
Differential Evolution Clustering (DEC)
DEC has two main stages:
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
Background DEC Algorithm Results Conclusion
Differential Evolution Clustering (DEC)
DEC has two main stages:
Initialization stage
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
Background DEC Algorithm Results Conclusion
Differential Evolution Clustering (DEC)
DEC has two main stages:
Initialization stage
Evolution stage
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
Background DEC Algorithm Results Conclusion
Differential Evolution Clustering (DEC)
DEC has two main stages:
Initialization stage
Evolution stage
In the initialization stage, a population of individuals is generated.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
Background DEC Algorithm Results Conclusion
Differential Evolution Clustering (DEC)
DEC has two main stages:
Initialization stage
Evolution stage
In the initialization stage, a population of individuals is generated.
In the evolution stage, the population evolves through a number of
cycles.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
Background DEC Algorithm Results Conclusion
Differential Evolution Clustering (DEC)
DEC has two main stages:
Initialization stage
Evolution stage
In the initialization stage, a population of individuals is generated.
In the evolution stage, the population evolves through a number of
cycles.
Each cycle has two phases:
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
Background DEC Algorithm Results Conclusion
Differential Evolution Clustering (DEC)
DEC has two main stages:
Initialization stage
Evolution stage
In the initialization stage, a population of individuals is generated.
In the evolution stage, the population evolves through a number of
cycles.
Each cycle has two phases:
Exploration phase
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
Background DEC Algorithm Results Conclusion
Differential Evolution Clustering (DEC)
DEC has two main stages:
Initialization stage
Evolution stage
In the initialization stage, a population of individuals is generated.
In the evolution stage, the population evolves through a number of
cycles.
Each cycle has two phases:
Exploration phase
Exploitation phase
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
Background DEC Algorithm Results Conclusion
Differential Evolution Clustering (DEC)
DEC has two main stages:
Initialization stage
Evolution stage
In the initialization stage, a population of individuals is generated.
In the evolution stage, the population evolves through a number of
cycles.
Each cycle has two phases:
Exploration phase
Exploitation phase
Best individual is returned at the end.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
Background DEC Algorithm Results Conclusion
Differential Evolution Clustering (DEC)
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
Background DEC Algorithm Results Conclusion
Differential Evolution Clustering (DEC)
DEC Algorithm
P ← Initialization
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
Background DEC Algorithm Results Conclusion
Differential Evolution Clustering (DEC)
DEC Algorithm
P ← Initialization
Repeat
Until some criteria are met
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
Background DEC Algorithm Results Conclusion
Differential Evolution Clustering (DEC)
DEC Algorithm
P ← Initialization
Repeat
while g ≤ number of generations per cycle
end while
Cycle
Until some criteria are met
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
Background DEC Algorithm Results Conclusion
Differential Evolution Clustering (DEC)
DEC Algorithm
P ← Initialization
Repeat
while g ≤ number of generations per cycle
for each individual Ip in P
end for
end while
Cycle
Generation
Until some criteria are met
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
Background DEC Algorithm Results Conclusion
Differential Evolution Clustering (DEC)
DEC Algorithm
P ← Initialization
Repeat
while g ≤ number of generations per cycle
for each individual Ip in P
Perform crossover to generate offspring Ic
end for
end while
Cycle
Generation
Until some criteria are met
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
Background DEC Algorithm Results Conclusion
Differential Evolution Clustering (DEC)
DEC Algorithm
P ← Initialization
Repeat
while g ≤ number of generations per cycle
for each individual Ip in P
Perform crossover to generate offspring Ic
Local optimize Ic
end for
end while
Cycle
Generation
Until some criteria are met
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
Background DEC Algorithm Results Conclusion
Differential Evolution Clustering (DEC)
DEC Algorithm
P ← Initialization
Repeat
while g ≤ number of generations per cycle
for each individual Ip in P
Perform crossover to generate offspring Ic
Local optimize Ic
Compare Ic and Ip and keep one of them in P
end for
end while
Cycle
Generation
Until some criteria are met
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
Background DEC Algorithm Results Conclusion
Differential Evolution Clustering (DEC)
DEC Algorithm
P ← Initialization
Repeat
while g ≤ number of generations per cycle
for each individual Ip in P
Perform crossover to generate offspring Ic
Local optimize Ic
Compare Ic and Ip and keep one of them in P
end for
end while
Cycle
Generation
Perturb P
Until some criteria are met
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
Background DEC Algorithm Results Conclusion
Differential Evolution Clustering (DEC)
DEC Algorithm
P ← Initialization
Repeat
while g ≤ number of generations per cycle
for each individual Ip in P
Perform crossover to generate offspring Ic
Local optimize Ic
Compare Ic and Ip and keep one of them in P
end for
end while
Exploration
[<70%
generations]
Perturb P
Until some criteria are met
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
Background DEC Algorithm Results Conclusion
Differential Evolution Clustering (DEC)
DEC Algorithm
P ← Initialization
Repeat
while g ≤ number of generations per cycle
for each individual Ip in P
Perform crossover to generate offspring Ic
Local optimize Ic
Compare Ic and Ip and keep one of them in P
end for
end while
Exploitation
[≥70%
generations]
Perturb P
Until some criteria are met
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
Background DEC Algorithm Results Conclusion
Differential Evolution Clustering (DEC)
DEC Algorithm
D ← Euclidean distance /*distance measure*/
P ← Initialization
Repeat
while g ≤ number of generations per cycle
for each individual Ip in P
Perform crossover to generate offspring Ic
Local optimize Ic
Compare Ic and Ip and keep one of them in P
end for
end while
Perturb P
D ← MinMax distance [≥ 70% cycles]
Until some criteria are met
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
Background DEC Algorithm Results Conclusion
Differential Evolution Clustering (DEC)
DEC Algorithm
D ← Euclidean distance
P ← Initialization
Repeat
while g ≤ number of generations per cycle
for each individual Ip in P
Perform crossover to generate offspring Ic
Local optimize Ic
Compare Ic and Ip and keep one of them in P
end for
end while
Perturb P
D ← MinMax distance
Until some criteria are met
Return the best clustering found
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
Background DEC Algorithm Results Conclusion
Initialization
DEC Algorithm
D ← Euclidean distance
P ← Initialization
Repeat
while g ≤ number of generations per cycle
for each individual Ip in P
Perform crossover to generate offspring Ic
Local optimize Ic
Compare Ic and Ip and keep better individual in P
end for
end while
Perturb P
If exploitation phase, D ← MinMax distance
Until some criteria are met
Return the best clustering found
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
Background DEC Algorithm Results Conclusion
Encoding
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
Background DEC Algorithm Results Conclusion
Encoding
Each individual I is a triple,
I = (Ω, T , C)
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
Background DEC Algorithm Results Conclusion
Encoding
Each individual I is a triple,
I = (Ω, T , C)
where Ω = {ω1, . . . , ωK } are the centroids,
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
Background DEC Algorithm Results Conclusion
Encoding
Each individual I is a triple,
I = (Ω, T , C)
where Ω = {ω1, . . . , ωK } are the centroids,
T = {t1, . . . , tK }, 0 ≤ ti ≤ 1 , are the thresholds, and
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
Background DEC Algorithm Results Conclusion
Encoding
Each individual I is a triple,
I = (Ω, T , C)
where Ω = {ω1, . . . , ωK } are the centroids,
T = {t1, . . . , tK }, 0 ≤ ti ≤ 1 , are the thresholds, and
C is the clustering for the set of centroids.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
Background DEC Algorithm Results Conclusion
Encoding
1 2 3 K − 1 K
(ω1, t1) (ω2, t2) (ω3, t3) · · · (ωK−1, tK−1) (ωK , tK )
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
Background DEC Algorithm Results Conclusion
Encoding
1 2 3 K − 1 K
(ω1, t1) (ω2, t2) (ω3, t3) · · · (ωK−1, tK−1) (ωK , tK )
C1 C2 ϕ
CK−1
ϕ
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
Background DEC Algorithm Results Conclusion
Encoding
1 2 3 K − 1 K
(ω1, t1) (ω2, t2) (ω3, t3) · · · (ωK−1, tK−1) (ωK , tK )
C1 C2 ϕ
CK−1
ϕ
Inactive centroid Active centroid
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
Background DEC Algorithm Results Conclusion
Setup
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
Background DEC Algorithm Results Conclusion
Setup
Create a population P of N individuals, where
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
Background DEC Algorithm Results Conclusion
Setup
Create a population P of N individuals, where
N/3 individuals have 90% − 100% active centroids
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
Background DEC Algorithm Results Conclusion
Setup
Create a population P of N individuals, where
N/3 individuals have 90% − 100% active centroids
N/3 individuals have up to 70% − 80% active centroids
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
Background DEC Algorithm Results Conclusion
Setup
Create a population P of N individuals, where
N/3 individuals have 90% − 100% active centroids
N/3 individuals have up to 70% − 80% active centroids
N/3 individuals have up to 50% active centroids
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
Background DEC Algorithm Results Conclusion
Setup
Create a population P of N individuals, where
N/3 individuals have 90% − 100% active centroids
N/3 individuals have up to 70% − 80% active centroids
N/3 individuals have up to 50% active centroids
A clustering is then computed by assigning items to their
closest active centroids.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
Background DEC Algorithm Results Conclusion
Setup
Create a population P of N individuals, where
N/3 individuals have 90% − 100% active centroids
N/3 individuals have up to 70% − 80% active centroids
N/3 individuals have up to 50% active centroids
A clustering is then computed by assigning items to their
closest active centroids.
Centroids are recomputed periodically.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
Background DEC Algorithm Results Conclusion
Fitness of Individual
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
Background DEC Algorithm Results Conclusion
Fitness of Individual
Fitness
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
Background DEC Algorithm Results Conclusion
Fitness of Individual
Fitness
Each individual in the population is assigned a fitness determined by the
validity index calculated for its clustering. The validity indexes used are:
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
Background DEC Algorithm Results Conclusion
Fitness of Individual
Fitness
Each individual in the population is assigned a fitness determined by the
validity index calculated for its clustering. The validity indexes used are:
DB index,
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
Background DEC Algorithm Results Conclusion
Fitness of Individual
Fitness
Each individual in the population is assigned a fitness determined by the
validity index calculated for its clustering. The validity indexes used are:
DB index,
CS index, or
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
Background DEC Algorithm Results Conclusion
Fitness of Individual
Fitness
Each individual in the population is assigned a fitness determined by the
validity index calculated for its clustering. The validity indexes used are:
DB index,
CS index, or
PBM index
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
Background DEC Algorithm Results Conclusion
Evolution stage
DEC Algorithm
D ← Euclidean distance
P ← Initialization
Repeat
while g ≤ number of generations per cycle
for each individual Ip in P
Perform crossover to generate offspring Ic
Local optimize Ic
Compare Ic and Ip and keep better individual in P
end for
end while
Perturb P
If exploitation phase, D ← MinMax distance
Until some criteria are met
Return the best clustering found
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
Background DEC Algorithm Results Conclusion
Evolution stage
DEC Algorithm
D ← Euclidean distance
P ← Initialization
Repeat
while g ≤ number of generations per cycle
for each individual Ip in P
Perform crossover to generate offspring Ic
Local optimize Ic
Compare Ic and Ip and keep better individual in P
end for
end while
Perturb P
If exploitation phase, D ← MinMax distance
Until some criteria are met
Return the best clustering found
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
Background DEC Algorithm Results Conclusion
Evolution stage
DEC Algorithm
D ← Euclidean distance
P ← Initialization
Repeat
while g ≤ number of generations per cycle
for each individual Ip in P
Perform crossover to generate offspring Ic
Local optimize Ic
Compare Ic and Ip and keep better individual in P
end for
end while
Perturb P
If exploitation phase, D ← MinMax distance
Until some criteria are met
Return the best clustering found
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
Background DEC Algorithm Results Conclusion
Crossover
DEC Algorithm
D ← Euclidean distance
P ← Initialization
Repeat
while g ≤ number of generations per cycle
for each individual Ip in P
Perform crossover to generate offspring Ic
Local optimize Ic
Compare Ic and Ip and keep better individual in P
end for
end while
Perturb P
If exploitation phase, D ← MinMax distance
Until some criteria are met
Return the best clustering found
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
Background DEC Algorithm Results Conclusion
Crossover
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
Background DEC Algorithm Results Conclusion
Crossover
Idea
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
Background DEC Algorithm Results Conclusion
Crossover
Idea
For each individual Ip (parent) in the population, an offspring Ic is
generated using crossover as follows:
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
Background DEC Algorithm Results Conclusion
Crossover
Idea
For each individual Ip (parent) in the population, an offspring Ic is
generated using crossover as follows:
Ic ← (Ωc, Tc, Cc)
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
Background DEC Algorithm Results Conclusion
Crossover
Idea
For each individual Ip (parent) in the population, an offspring Ic is
generated using crossover as follows:
Ic ← (Ωc, Tc, Cc)
Randomly select three unique individuals Ix , Iy , Iz (donors) from the
population.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
Background DEC Algorithm Results Conclusion
Crossover
Idea
For each individual Ip (parent) in the population, an offspring Ic is
generated using crossover as follows:
Ic ← (Ωc, Tc, Cc)
Randomly select three unique individuals Ix , Iy , Iz (donors) from the
population.
The threshold vector Tc is computed using:
tc
i =
{
tx
i + σt (t
y
i
− tz
i ) if URandom(0, 1) < η
tp otherwise,
where η ∈ [0, 1] is the crossover probability, σt is the scaling factor and
URandom(0, 1) denotes a random number selected from [0, 1].
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
Background DEC Algorithm Results Conclusion
Crossover
Idea
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
Background DEC Algorithm Results Conclusion
Crossover
Idea
The centroid vector, Ωc is computed in a similar fashion,
ωi =
{
ωx
i + σω(g)(ωy
i − ωz
i ) if URandom(0, 1) < η
ωp
i otherwise,
but with a different scaling factor, σω(g), that changes based on
exploration and exploitation phase.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
Background DEC Algorithm Results Conclusion
Crossover
Example of Crossover
Parent Ip ωp
11
. . . ωp
1f
ωp
21
. . . ωp
2f
ωp
i1
. . . ωp
if
ωp
K1
. . . ωp
Kf
. . . .
Donor Ix ωx
11
. . . ωx
1f
ωx
21
. . . ωx
2f
ωx
i1
. . . ωx
if
ωx
K1
. . . ωx
Kf
. . . .
Donor Iy ωy
11
. . . ωy
1f
ωy
21
. . . ωy
2f
ωy
i1
. . . ωy
if
ωy
K1
. . . ωy
Kf
. . . .
Donor Iz ωz
11
. . . ωz
1f
ωz
21
. . . ωz
2f
ωz
i1
. . . ωz
if
ωz
K1
. . . ωz
Kf
. . . .
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
Background DEC Algorithm Results Conclusion
Crossover
Example of Crossover
Parent Ip ωp
11
. . . ωp
1f
ωp
21
. . . ωp
2f
ωp
i1
. . . ωp
if
ωp
K1
. . . ωp
Kf
. . . .
Donor Ix ωx
11
. . . ωx
1f
ωx
21
. . . ωx
2f
ωx
i1
. . . ωx
if
ωx
K1
. . . ωx
Kf
. . . .
Donor Iy ωy
11
. . . ωy
1f
ωy
21
. . . ωy
2f
ωy
i1
. . . ωy
if
ωy
K1
. . . ωy
Kf
. . . .
Donor Iz ωz
11
. . . ωz
1f
ωz
21
. . . ωz
2f
ωz
i1
. . . ωz
if
ωz
K1
. . . ωz
Kf
. . . .
centroid boundary
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
Background DEC Algorithm Results Conclusion
Crossover
Example of Crossover
Parent Ip ωp
11
. . . ωp
1f
ωp
21
. . . ωp
2f
ωp
i1
. . . ωp
if
ωp
K1
. . . ωp
Kf
. . . .
Donor Ix ωx
11
. . . ωx
1f
ωx
21
. . . ωx
2f
ωx
i1
. . . ωx
if
ωx
K1
. . . ωx
Kf
. . . .
Donor Iy ωy
11
. . . ωy
1f
ωy
21
. . . ωy
2f
ωy
i1
. . . ωy
if
ωy
K1
. . . ωy
Kf
. . . .
Donor Iz ωz
11
. . . ωz
1f
ωz
21
. . . ωz
2f
ωz
i1
. . . ωz
if
ωz
K1
. . . ωz
Kf
. . . .
Exploration
From Ip
Offspring ωc
11
. . . ωc
1f
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
Background DEC Algorithm Results Conclusion
Crossover
Example of Crossover
Parent Ip ωp
11
. . . ωp
1f
ωp
21
. . . ωp
2f
ωp
i1
. . . ωp
if
ωp
K1
. . . ωp
Kf
. . . .
Donor Ix ωx
11
. . . ωx
1f
ωx
21
. . . ωx
2f
ωx
i1
. . . ωx
if
ωx
K1
. . . ωx
Kf
. . . .
Donor Iy ωy
11
. . . ωy
1f
ωy
21
. . . ωy
2f
ωy
i1
. . . ωy
if
ωy
K1
. . . ωy
Kf
. . . .
Donor Iz ωz
11
. . . ωz
1f
ωz
21
. . . ωz
2f
ωz
i1
. . . ωz
if
ωz
K1
. . . ωz
Kf
. . . .
Exploration
From Ip From Ix , Iy , Iz
Offspring ωc
11
. . . ωc
1f
ωc
21
. . . ωc
2f
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
Background DEC Algorithm Results Conclusion
Crossover
Example of Crossover
Parent Ip ωp
11
. . . ωp
1f
ωp
21
. . . ωp
2f
ωp
i1
. . . ωp
if
ωp
K1
. . . ωp
Kf
. . . .
Donor Ix ωx
11
. . . ωx
1f
ωx
21
. . . ωx
2f
ωx
i1
. . . ωx
if
ωx
K1
. . . ωx
Kf
. . . .
Donor Iy ωy
11
. . . ωy
1f
ωy
21
. . . ωy
2f
ωy
i1
. . . ωy
if
ωy
K1
. . . ωy
Kf
. . . .
Donor Iz ωz
11
. . . ωz
1f
ωz
21
. . . ωz
2f
ωz
i1
. . . ωz
if
ωz
K1
. . . ωz
Kf
. . . .
Exploration
From Ip From Ix , Iy , Iz From Ix , Iy , Iz
Offspring . . . .ωc
11
. . . ωc
1f
ωc
21
. . . ωc
2f
ωc
i1
. . . ωc
if
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
Background DEC Algorithm Results Conclusion
Crossover
Example of Crossover
Parent Ip ωp
11
. . . ωp
1f
ωp
21
. . . ωp
2f
ωp
i1
. . . ωp
if
ωp
K1
. . . ωp
Kf
. . . .
Donor Ix ωx
11
. . . ωx
1f
ωx
21
. . . ωx
2f
ωx
i1
. . . ωx
if
ωx
K1
. . . ωx
Kf
. . . .
Donor Iy ωy
11
. . . ωy
1f
ωy
21
. . . ωy
2f
ωy
i1
. . . ωy
if
ωy
K1
. . . ωy
Kf
. . . .
Donor Iz ωz
11
. . . ωz
1f
ωz
21
. . . ωz
2f
ωz
i1
. . . ωz
if
ωz
K1
. . . ωz
Kf
. . . .
Exploration
From Ip From Ix , Iy , Iz From Ix , Iy , Iz From Ip
Offspring . . . .ωc
11
. . . ωc
1f
ωc
21
. . . ωc
2f
ωc
i1
. . . ωc
if
ωc
K1
. . . ωc
Kf
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
Background DEC Algorithm Results Conclusion
Crossover
Example of Crossover
Parent Ip ωp
11
. . . ωp
1f
ωp
21
. . . ωp
2f
ωp
i1
. . . ωp
if
ωp
K1
. . . ωp
Kf
. . . .
Donor Ix ωx
11
. . . ωx
1f
ωx
21
. . . ωx
2f
ωx
i1
. . . ωx
if
ωx
K1
. . . ωx
Kf
. . . .
Donor Iy ωy
11
. . . ωy
1f
ωy
21
. . . ωy
2f
ωy
i1
. . . ωy
if
ωy
K1
. . . ωy
Kf
. . . .
Donor Iz ωz
11
. . . ωz
1f
ωz
21
. . . ωz
2f
ωz
i1
. . . ωz
if
ωz
K1
. . . ωz
Kf
. . . .
From Ip From Ix , Iy , Iz From Ix , Iy , Iz From Ip
Exploitation
different σ for each feature f
Offspring . . . .ωc
11
. . . ωc
1f
ωc
21
. . . ωc
2f
ωc
i1
. . . ωc
if
ωc
K1
. . . ωc
Kf
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
Background DEC Algorithm Results Conclusion
Local Optimization
DEC Algorithm
D ← Euclidean distance
P ← Initialization
Repeat
while g ≤ number of generations per cycle
for each individual Ip in P
Perform crossover to generate offspring Ic
Local optimize Ic
Compare Ic and Ip and keep better individual in P
end for
end while
Perturb P
If exploitation phase, D ← MinMax distance
Until some criteria are met
Return the best clustering found
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
Background DEC Algorithm Results Conclusion
Local Optimization
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
Background DEC Algorithm Results Conclusion
Local Optimization
Objective
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
Background DEC Algorithm Results Conclusion
Local Optimization
Objective
Improve the quality of the offspring after crossover.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
Background DEC Algorithm Results Conclusion
Local Optimization
Objective
Improve the quality of the offspring after crossover.
How
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
Background DEC Algorithm Results Conclusion
Local Optimization
Objective
Improve the quality of the offspring after crossover.
How
The three techniques implemented for local optimization are:
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
Background DEC Algorithm Results Conclusion
Local Optimization
Objective
Improve the quality of the offspring after crossover.
How
The three techniques implemented for local optimization are:
BreakUp
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
Background DEC Algorithm Results Conclusion
Local Optimization
Objective
Improve the quality of the offspring after crossover.
How
The three techniques implemented for local optimization are:
BreakUp
Breaking up a large cluster into smaller clusters, where a cluster
with more than 40% items of the data set is considered large.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
Background DEC Algorithm Results Conclusion
Local Optimization
Objective
Improve the quality of the offspring after crossover.
How
The three techniques implemented for local optimization are:
BreakUp
Breaking up a large cluster into smaller clusters, where a cluster
with more than 40% items of the data set is considered large.
Merge
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
Background DEC Algorithm Results Conclusion
Local Optimization
Objective
Improve the quality of the offspring after crossover.
How
The three techniques implemented for local optimization are:
BreakUp
Breaking up a large cluster into smaller clusters, where a cluster
with more than 40% items of the data set is considered large.
Merge
Merging two close clusters to see if fitness can be improved.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
Background DEC Algorithm Results Conclusion
Local Optimization
Objective
Improve the quality of the offspring after crossover.
How
The three techniques implemented for local optimization are:
BreakUp
Breaking up a large cluster into smaller clusters, where a cluster
with more than 40% items of the data set is considered large.
Merge
Merging two close clusters to see if fitness can be improved.
Scatter
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
Background DEC Algorithm Results Conclusion
Local Optimization
Objective
Improve the quality of the offspring after crossover.
How
The three techniques implemented for local optimization are:
BreakUp
Breaking up a large cluster into smaller clusters, where a cluster
with more than 40% items of the data set is considered large.
Merge
Merging two close clusters to see if fitness can be improved.
Scatter
Redistributing items of a cluster to other clusters to see if fitness
can be improved.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
Background DEC Algorithm Results Conclusion
Local Optimization
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
Background DEC Algorithm Results Conclusion
Local Optimization
Exploration phase
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
Background DEC Algorithm Results Conclusion
Local Optimization
Exploration phase
BreakUp
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
Background DEC Algorithm Results Conclusion
Local Optimization
Exploration phase
BreakUp
Exploitation phase
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
Background DEC Algorithm Results Conclusion
Local Optimization
Exploration phase
BreakUp
Exploitation phase
BreakUp
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
Background DEC Algorithm Results Conclusion
Local Optimization
Exploration phase
BreakUp
Exploitation phase
BreakUp
Merge
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
Background DEC Algorithm Results Conclusion
Local Optimization
Exploration phase
BreakUp
Exploitation phase
BreakUp
Merge
Scatter
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
Background DEC Algorithm Results Conclusion
BreakUp : A clustering of an individual
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
Background DEC Algorithm Results Conclusion
BreakUp : A clustering of an individual
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
Background DEC Algorithm Results Conclusion
BreakUp : Largest cluster
Largest Cluster
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
Background DEC Algorithm Results Conclusion
BreakUp : Largest cluster
Largest Cluster
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
Background DEC Algorithm Results Conclusion
BreakUp : Largest cluster
Largest Cluster
marks the closest item selected
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
Background DEC Algorithm Results Conclusion
BreakUp : Largest cluster
Largest Cluster
marks the closest item selected
marks the centroid for the red items.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
Background DEC Algorithm Results Conclusion
BreakUp : Largest cluster
Largest Cluster
marks the closest item selected
marks the centroid for the red items.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
Background DEC Algorithm Results Conclusion
BreakUp : Largest cluster
Largest Cluster
marks the closest item selected
marks the centroid for the red items.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
Background DEC Algorithm Results Conclusion
BreakUp : Largest cluster
Largest Cluster
marks the closest item selected
marks the centroid for the red items.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
Background DEC Algorithm Results Conclusion
BreakUp : Largest cluster
Largest Cluster
marks the closest item selected
marks the centroid for the red items.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
Background DEC Algorithm Results Conclusion
BreakUp : Largest cluster
Largest Cluster
marks the closest item selected
marks the centroid for the red items.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
Background DEC Algorithm Results Conclusion
BreakUp : Largest cluster
Largest Cluster
marks the closest item selected
marks the centroid for the red items.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
Background DEC Algorithm Results Conclusion
Merge
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
Background DEC Algorithm Results Conclusion
Merge
Objective
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
Background DEC Algorithm Results Conclusion
Merge
Objective
The aim is to improve the clustering by recombining clusters that are similar.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
Background DEC Algorithm Results Conclusion
Merge
Objective
The aim is to improve the clustering by recombining clusters that are similar.
How
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
Background DEC Algorithm Results Conclusion
Merge
Objective
The aim is to improve the clustering by recombining clusters that are similar.
How
Find closest clusters Ci and Cj in offspring I.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
Background DEC Algorithm Results Conclusion
Merge
Objective
The aim is to improve the clustering by recombining clusters that are similar.
How
Find closest clusters Ci and Cj in offspring I.
If on combining Ci and Cj , fitness of I improves, merge and form one
bigger cluster.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
Background DEC Algorithm Results Conclusion
Merge
Objective
The aim is to improve the clustering by recombining clusters that are similar.
How
Find closest clusters Ci and Cj in offspring I.
If on combining Ci and Cj , fitness of I improves, merge and form one
bigger cluster.
Else, search for next closest pair of clusters.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
Background DEC Algorithm Results Conclusion
Merge
Objective
The aim is to improve the clustering by recombining clusters that are similar.
How
Find closest clusters Ci and Cj in offspring I.
If on combining Ci and Cj , fitness of I improves, merge and form one
bigger cluster.
Else, search for next closest pair of clusters.
Repeat till k pairs of clusters have been merged, or all pairs have been
considered.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
Background DEC Algorithm Results Conclusion
Scatter
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
Background DEC Algorithm Results Conclusion
Scatter
Objective
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
Background DEC Algorithm Results Conclusion
Scatter
Objective
The aim is to get rid of clusters that might affect the fitness adversely.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
Background DEC Algorithm Results Conclusion
Scatter
Objective
The aim is to get rid of clusters that might affect the fitness adversely.
How
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
Background DEC Algorithm Results Conclusion
Scatter
Objective
The aim is to get rid of clusters that might affect the fitness adversely.
How
Find the smallest cluster C in I.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
Background DEC Algorithm Results Conclusion
Scatter
Objective
The aim is to get rid of clusters that might affect the fitness adversely.
How
Find the smallest cluster C in I.
If fitness of I improves on redistributing items from C to other clusters,
do it.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
Background DEC Algorithm Results Conclusion
Scatter
Objective
The aim is to get rid of clusters that might affect the fitness adversely.
How
Find the smallest cluster C in I.
If fitness of I improves on redistributing items from C to other clusters,
do it.
Else, search for the next smallest cluster.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
Background DEC Algorithm Results Conclusion
Scatter
Objective
The aim is to get rid of clusters that might affect the fitness adversely.
How
Find the smallest cluster C in I.
If fitness of I improves on redistributing items from C to other clusters,
do it.
Else, search for the next smallest cluster.
Repeat till k clusters have been scattered, or every cluster has been
considered.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
Background DEC Algorithm Results Conclusion
Replacement
DEC Algorithm
D ← Euclidean distance
P ← Initialization
Repeat
while g ≤ number of generations per cycle
for each individual Ip in P
Perform crossover to generate offspring Ic
Local optimize Ic
Compare Ic and Ip and keep better individual in P
end for
end while
Perturb P
If exploitation phase, D ← MinMax distance
Until some criteria are met
Return the best clustering found
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
Background DEC Algorithm Results Conclusion
Replacement
If fitness of Ic is better than Ip, replace Ip with Ic in the
population.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
Background DEC Algorithm Results Conclusion
Replacement
If fitness of Ic is better than Ip, replace Ip with Ic in the
population.
Else, accept Ic with a probability µ, where µ decreases with
time.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
Background DEC Algorithm Results Conclusion
Perturb
DEC Algorithm
D ← Euclidean distance
P ← Initialization
Repeat
while g ≤ number of generations per cycle
for each individual Ip in P
Perform crossover to generate offspring Ic
Local optimize Ic
Compare Ic and Ip and keep better individual in P
end for
end while
Perturb P
If exploitation phase, D ← MinMax distance
Until some criteria are met
Return the best clustering found
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
Background DEC Algorithm Results Conclusion
Perturb population
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
Background DEC Algorithm Results Conclusion
Perturb population
Idea
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
Background DEC Algorithm Results Conclusion
Perturb population
Idea
In order to prevent premature convergence and avoid getting stuck in local
optima, the population is perturbed at the end of every cycle.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
Background DEC Algorithm Results Conclusion
Perturb population
Idea
In order to prevent premature convergence and avoid getting stuck in local
optima, the population is perturbed at the end of every cycle.
How
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
Background DEC Algorithm Results Conclusion
Perturb population
Idea
In order to prevent premature convergence and avoid getting stuck in local
optima, the population is perturbed at the end of every cycle.
How
Randomly select a number of individuals (not the best) to be modified
from the current population.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
Background DEC Algorithm Results Conclusion
Perturb population
Idea
In order to prevent premature convergence and avoid getting stuck in local
optima, the population is perturbed at the end of every cycle.
How
Randomly select a number of individuals (not the best) to be modified
from the current population.
Tweak the centroids and threshold values for the selected individual
with a small probability.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
Background DEC Algorithm Results Conclusion
Perturb population
Idea
In order to prevent premature convergence and avoid getting stuck in local
optima, the population is perturbed at the end of every cycle.
How
Randomly select a number of individuals (not the best) to be modified
from the current population.
Tweak the centroids and threshold values for the selected individual
with a small probability.
Recompute the clustering.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
Background DEC Algorithm Results Conclusion
Change Distance Measure
DEC Algorithm
D ← Euclidean distance
P ← Initialization
Repeat
while g ≤ number of generations per cycle
for each individual Ip in P
Perform crossover to generate offspring Ic
Local optimize Ic
Compare Ic and Ip and keep better individual in P
end for
end while
Perturb P
If exploitation phase, D ← MinMax distance
Until some criteria are met
Return the best clustering found
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
Background DEC Algorithm Results Conclusion
Change Distance Measure
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
Background DEC Algorithm Results Conclusion
Change Distance Measure
In Euclidean distance, features with larger magnitudes
dominate the distance calculation.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
Background DEC Algorithm Results Conclusion
Change Distance Measure
In Euclidean distance, features with larger magnitudes
dominate the distance calculation.
This problem is addressed by using MinMax distance.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
Background DEC Algorithm Results Conclusion
Termination condition
DEC Algorithm
D ← Euclidean distance
P ← Initialization
Repeat
while g ≤ number of generations per cycle
for each individual Ip in P
Perform crossover to generate offspring Ic
Local optimize Ic
Compare Ic and Ip and keep better individual in P
end for
end while
Perturb P
If exploitation phase, D ← MinMax distance
Until some criteria are met
Return the best clustering found
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
Background DEC Algorithm Results Conclusion
Termination Criteria
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
Background DEC Algorithm Results Conclusion
Termination Criteria
The algorithm stops when one of the following conditions is
met:
2500 generations have passed, or
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
Background DEC Algorithm Results Conclusion
Termination Criteria
The algorithm stops when one of the following conditions is
met:
2500 generations have passed, or
70% cycles have passed and fitness of the best offspring
has not improved in the last 100 generations.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
Background DEC Algorithm Results Conclusion
Return Best
DEC Algorithm
D ← Euclidean distance
P ← Initialization
Repeat
while g ≤ number of generations per cycle
for each individual Ip in P
Perform crossover to generate offspring Ic
Local optimize Ic
Compare Ic and Ip and keep better individual in P
end for
end while
Perturb P
If exploitation phase, D ← MinMax distance
Until some criteria are met
Return the best clustering found
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
Background DEC Algorithm Results Conclusion
Notes
An individual in DEC can have at most K number of
clusters.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
Background DEC Algorithm Results Conclusion
Notes
An individual in DEC can have at most K number of
clusters.
A clustering solution in DEC needs to have at least two
clusters.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
Background DEC Algorithm Results Conclusion
Notes
An individual in DEC can have at most K number of
clusters.
A clustering solution in DEC needs to have at least two
clusters.
The user can set the minimum number of clusters a
solution must have.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
Background DEC Algorithm Results Conclusion
Notes
An individual in DEC can have at most K number of
clusters.
A clustering solution in DEC needs to have at least two
clusters.
The user can set the minimum number of clusters a
solution must have.
The minimum number of clusters set affects the quality of
the solution obtained.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
Background DEC Algorithm Results Conclusion
Outline
1 Background
2 DEC Algorithm
3 Results
4 Conclusion
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
Background DEC Algorithm Results Conclusion
Implementation Details
Implemented in C++ and compiled using g++ and the -O3
optimization flag.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
Background DEC Algorithm Results Conclusion
Implementation Details
Implemented in C++ and compiled using g++ and the -O3
optimization flag.
Testing machines: Intel Core i5-3570 CPU at 3.40 GHz
and 32 GB of RAM with Ubuntu 14.04 OS.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
Background DEC Algorithm Results Conclusion
Experimental Setup
Data sets Size # of features # of clusters
Cancer 683 9 2
Cleveland 297 13 5
Dermatology 358 34 6
E.coli 336 7 8
Glass 214 9 6
Haberman 306 3 2
Heart 270 13 2
Ionosphere 351 33 2
Iris 150 4 3
M.Libras 360 90 15
Pendigits 3497 16 10
Pima 768 8 2
Sonar 208 60 2
Vehicle 846 18 4
Vowel 990 13 11
Wine 178 13 3
Yeast 1484 8 10
Tested with a total of 17
data sets.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
Background DEC Algorithm Results Conclusion
Experimental Setup
Data sets Size # of features # of clusters
Cancer 683 9 2
Cleveland 297 13 5
Dermatology 358 34 6
E.coli 336 7 8
Glass 214 9 6
Haberman 306 3 2
Heart 270 13 2
Ionosphere 351 33 2
Iris 150 4 3
M.Libras 360 90 15
Pendigits 3497 16 10
Pima 768 8 2
Sonar 208 60 2
Vehicle 846 18 4
Vowel 990 13 11
Wine 178 13 3
Yeast 1484 8 10
Tested with a total of 17
data sets.
Data sets selected based
on:
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
Background DEC Algorithm Results Conclusion
Experimental Setup
Data sets Size # of features # of clusters
Cancer 683 9 2
Cleveland 297 13 5
Dermatology 358 34 6
E.coli 336 7 8
Glass 214 9 6
Haberman 306 3 2
Heart 270 13 2
Ionosphere 351 33 2
Iris 150 4 3
M.Libras 360 90 15
Pendigits 3497 16 10
Pima 768 8 2
Sonar 208 60 2
Vehicle 846 18 4
Vowel 990 13 11
Wine 178 13 3
Yeast 1484 8 10
Tested with a total of 17
data sets.
Data sets selected based
on:
Number of items [150
to 3500 items],
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
Background DEC Algorithm Results Conclusion
Experimental Setup
Data sets Size # of features # of clusters
Cancer 683 9 2
Cleveland 297 13 5
Dermatology 358 34 6
E.coli 336 7 8
Glass 214 9 6
Haberman 306 3 2
Heart 270 13 2
Ionosphere 351 33 2
Iris 150 4 3
M.Libras 360 90 15
Pendigits 3497 16 10
Pima 768 8 2
Sonar 208 60 2
Vehicle 846 18 4
Vowel 990 13 11
Wine 178 13 3
Yeast 1484 8 10
Tested with a total of 17
data sets.
Data sets selected based
on:
Number of items [150
to 3500 items],
Number of
classifications [2 to 15
classes],
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
Background DEC Algorithm Results Conclusion
Experimental Setup
Data sets Size # of features # of clusters
Cancer 683 9 2
Cleveland 297 13 5
Dermatology 358 34 6
E.coli 336 7 8
Glass 214 9 6
Haberman 306 3 2
Heart 270 13 2
Ionosphere 351 33 2
Iris 150 4 3
M.Libras 360 90 15
Pendigits 3497 16 10
Pima 768 8 2
Sonar 208 60 2
Vehicle 846 18 4
Vowel 990 13 11
Wine 178 13 3
Yeast 1484 8 10
Tested with a total of 17
data sets.
Data sets selected based
on:
Number of items [150
to 3500 items],
Number of
classifications [2 to 15
classes],
Number of features [3
to 90 features]
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
Background DEC Algorithm Results Conclusion
Experimental Setup
Data sets Size # of features # of clusters
Cancer 683 9 2
Cleveland 297 13 5
Dermatology 358 34 6
E.coli 336 7 8
Glass 214 9 6
Haberman 306 3 2
Heart 270 13 2
Ionosphere 351 33 2
Iris 150 4 3
M.Libras 360 90 15
Pendigits 3497 16 10
Pima 768 8 2
Sonar 208 60 2
Vehicle 846 18 4
Vowel 990 13 11
Wine 178 13 3
Yeast 1484 8 10
Tested with a total of 17
data sets.
Data sets selected based
on:
Number of items [150
to 3500 items],
Number of
classifications [2 to 15
classes],
Number of features [3
to 90 features]
30 runs for each data set.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
Background DEC Algorithm Results Conclusion
Results
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
Background DEC Algorithm Results Conclusion
Results
Results for DEC were collected to analyze:
the quality of the solution based on different validity
indexes,
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
Background DEC Algorithm Results Conclusion
Results
Results for DEC were collected to analyze:
the quality of the solution based on different validity
indexes,
the impact of distance measures on the performance of the
algorithm,
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
Background DEC Algorithm Results Conclusion
Results
Results for DEC were collected to analyze:
the quality of the solution based on different validity
indexes,
the impact of distance measures on the performance of the
algorithm,
different methods for computing clustering,
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
Background DEC Algorithm Results Conclusion
Results
Results for DEC were collected to analyze:
the quality of the solution based on different validity
indexes,
the impact of distance measures on the performance of the
algorithm,
different methods for computing clustering,
the effect of minimum number of clusters (Kmin), and
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
Background DEC Algorithm Results Conclusion
Results
Results for DEC were collected to analyze:
the quality of the solution based on different validity
indexes,
the impact of distance measures on the performance of the
algorithm,
different methods for computing clustering,
the effect of minimum number of clusters (Kmin), and
the running time of the algorithm.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
Background DEC Algorithm Results Conclusion
Results
Results for DEC algorithm were collected to analyze:
the quality of the solution based on different validity
indexes,
the impact of distance measures on the performance of the
algorithm,
different methods for computing clustering,
the effect of minimum number of clusters (Kmin),and
the running time of the algorithm.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
Background DEC Algorithm Results Conclusion
Effect of Validity Index
Wine
Ground Truth
Class 1 Class 2 Class 3
59 items 71 items 48 items
Cluster 1 51 4 0
55 items
Cluster 2 8 64 0
72 items
Cluster 3 0 3 48
51 items
Using DB Index
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
Background DEC Algorithm Results Conclusion
Effect of Validity Index
Wine
Ground Truth
Class 1 Class 2 Class 3
59 items 71 items 48 items
Cluster 1 51 4 0
55 items
Cluster 2 8 64 0
72 items
Cluster 3 0 3 48
51 items
Using DB Index
Wine
Ground Truth
Class 1 Class 2 Class 3
59 items 71 items 48 items
Cluster 1 36 0 0
36 items
Cluster 2 23 63 0
86 items
Cluster 3 0 8 48
56 items
Using CS Index
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
Background DEC Algorithm Results Conclusion
Effect of Validity Index
Wine
Ground Truth
Class 1 Class 2 Class 3
59 items 71 items 48 items
Cluster 1 51 4 0
55 items
Cluster 2 8 64 0
72 items
Cluster 3 0 3 48
51 items
Using DB Index
Wine
Ground Truth
Class 1 Class 2 Class 3
59 items 71 items 48 items
Cluster 1 36 0 0
36 items
Cluster 2 23 63 0
86 items
Cluster 3 0 8 48
56 items
Using CS Index
Wine
Ground Truth
Class 1 Class 2 Class 3
59 items 71 items 48 items
Cluster 1 49 6 0
55 items
Cluster 2 4 13 1
18 items
Cluster 3 6 52 47
105 items
Using PBM Index
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
Background DEC Algorithm Results Conclusion
Effect of Validity Index
Wine
Ground Truth
Class 1 Class 2 Class 3
59 items 71 items 48 items
Cluster 1 51 4 0
55 items
Cluster 2 8 64 0
72 items
Cluster 3 0 3 48
51 items
Using DB Index
Wine
Ground Truth
Class 1 Class 2 Class 3
59 items 71 items 48 items
Cluster 1 36 0 0
36 items
Cluster 2 23 63 0
86 items
Cluster 3 0 8 48
56 items
Using CS Index
Wine
Ground Truth
Class 1 Class 2 Class 3
59 items 71 items 48 items
Cluster 1 49 6 0
55 items
Cluster 2 4 13 1
18 items
Cluster 3 6 52 47
105 items
Using PBM Index
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
Background DEC Algorithm Results Conclusion
Results
Results for DEC algorithm were collected to analyze:
the quality of the solution based on different validity
indexes,
the impact of distance measures on the performance of the
algorithm,
different methods for computing clustering,
the effect of minimum number of clusters (Kmin),and
the running time of the algorithm.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
Background DEC Algorithm Results Conclusion
Effect of distance measure
Wine
Ground Truth
Class 1 Class 2 Class 3
59 items 71 items 48 items
Cluster 1 17 1 0
18 items
Cluster 2 14 70 48
132 items
Cluster 3 28 0 0
28 items
Euclidean distance (0.47)
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
Background DEC Algorithm Results Conclusion
Effect of distance measure
Wine
Ground Truth
Class 1 Class 2 Class 3
59 items 71 items 48 items
Cluster 1 17 1 0
18 items
Cluster 2 14 70 48
132 items
Cluster 3 28 0 0
28 items
Euclidean distance (0.47)
Wine
Ground Truth
Class 1 Class 2 Class 3
59 items 71 items 48 items
Cluster 1 47 0 0
47 items
Cluster 2 12 69 0
81 items
Cluster 3 0 2 48
50 items
MinMax distance (1.65)
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
Background DEC Algorithm Results Conclusion
Effect of distance measure
Wine
Ground Truth
Class 1 Class 2 Class 3
59 items 71 items 48 items
Cluster 1 17 1 0
18 items
Cluster 2 14 70 48
132 items
Cluster 3 28 0 0
28 items
Euclidean distance (0.47)
Wine
Ground Truth
Class 1 Class 2 Class 3
59 items 71 items 48 items
Cluster 1 47 0 0
47 items
Cluster 2 12 69 0
81 items
Cluster 3 0 2 48
50 items
MinMax distance (1.65)
Wine
Ground Truth
Class 1 Class 2 Class 3
59 items 71 items 48 items
Cluster 1 51 4 0
55 items
Cluster 2 8 64 0
72 items
Cluster 3 0 3 48
51 items
Euclidean & MinMax (1.12)
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
Background DEC Algorithm Results Conclusion
Effect of distance measure
Wine
Ground Truth
Class 1 Class 2 Class 3
59 items 71 items 48 items
Cluster 1 17 1 0
18 items
Cluster 2 14 70 48
132 items
Cluster 3 28 0 0
28 items
Euclidean distance (0.47)
Wine
Ground Truth
Class 1 Class 2 Class 3
59 items 71 items 48 items
Cluster 1 47 0 0
47 items
Cluster 2 12 69 0
81 items
Cluster 3 0 2 48
50 items
MinMax distance (1.65)
Wine
Ground Truth
Class 1 Class 2 Class 3
59 items 71 items 48 items
Cluster 1 51 4 0
55 items
Cluster 2 8 64 0
72 items
Cluster 3 0 3 48
51 items
Euclidean & MinMax (1.12)
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
Background DEC Algorithm Results Conclusion
Effect of distance measure
Wine
Ground Truth
Class 1 Class 2 Class 3
59 items 71 items 48 items
Cluster 1 17 1 0
18 items
Cluster 2 14 70 48
132 items
Cluster 3 28 0 0
28 items
Euclidean distance (0.47)
Wine
Ground Truth
Class 1 Class 2 Class 3
59 items 71 items 48 items
Cluster 1 47 0 0
47 items
Cluster 2 12 69 0
81 items
Cluster 3 0 2 48
50 items
MinMax distance (1.65)
Wine
Ground Truth
Class 1 Class 2 Class 3
59 items 71 items 48 items
Cluster 1 51 4 0
55 items
Cluster 2 8 64 0
72 items
Cluster 3 0 3 48
51 items
Euclidean & MinMax (1.12)
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
Background DEC Algorithm Results Conclusion
Effect of distance measure
Wine
Ground Truth
Class 1 Class 2 Class 3
59 items 71 items 48 items
Cluster 1 17 1 0
18 items
Cluster 2 14 70 48
132 items
Cluster 3 28 0 0
28 items
Euclidean distance (0.47)
Wine
Ground Truth
Class 1 Class 2 Class 3
59 items 71 items 48 items
Cluster 1 47 0 0
47 items
Cluster 2 12 69 0
81 items
Cluster 3 0 2 48
50 items
MinMax distance (1.65)
Wine
Ground Truth
Class 1 Class 2 Class 3
59 items 71 items 48 items
Cluster 1 51 4 0
55 items
Cluster 2 8 64 0
72 items
Cluster 3 0 3 48
51 items
Euclidean & MinMax (1.12)
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
Background DEC Algorithm Results Conclusion
Results
Results for DEC algorithm were collected to analyze:
the quality of the solution based on different validity
indexes,
the impact of distance measures on the performance of the
algorithm,
different methods for computing clustering,
the effect of minimum number of clusters (Kmin), and
the running time of the algorithm.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
Background DEC Algorithm Results Conclusion
Effect of clustering method
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
Background DEC Algorithm Results Conclusion
Effect of clustering method
Different clusterings can be obtained for a given set of
centroids.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
Background DEC Algorithm Results Conclusion
Effect of clustering method
Different clusterings can be obtained for a given set of
centroids.
DEC uses the following two methods to recompute
clustering for the final set of centroids, Ω:
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
Background DEC Algorithm Results Conclusion
Effect of clustering method
Different clusterings can be obtained for a given set of
centroids.
DEC uses the following two methods to recompute
clustering for the final set of centroids, Ω:
The clustering is recomputed using one iteration of
K-means algorithm on Ω (CA1).
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
Background DEC Algorithm Results Conclusion
Effect of clustering method
Different clusterings can be obtained for a given set of
centroids.
DEC uses the following two methods to recompute
clustering for the final set of centroids, Ω:
The clustering is recomputed using one iteration of
K-means algorithm on Ω (CA1).
Same as above but centroids are recomputed as well
(CA2).
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
Background DEC Algorithm Results Conclusion
Effect of clustering method
GTK
Ground Truth
Class 1 Class 2 Class 3
59 items 71 items 48 items
Cluster 1 50 3 1
54 items
Cluster 2 0 49 17
66 items
Cluster 3 9 19 30
58 items
GT Using CA1 (1.14)
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
Background DEC Algorithm Results Conclusion
Effect of clustering method
GTK
Ground Truth
Class 1 Class 2 Class 3
59 items 71 items 48 items
Cluster 1 50 3 1
54 items
Cluster 2 0 49 17
66 items
Cluster 3 9 19 30
58 items
GT Using CA1 (1.14)
Wine
Ground Truth
Class 1 Class 2 Class 3
59 items 71 items 48 items
Cluster 1 51 4 0
55 items
Cluster 2 8 64 0
72 items
Cluster 3 0 3 48
51 items
Using DEC (1.12)
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
Background DEC Algorithm Results Conclusion
Effect of clustering method
GTK
Ground Truth
Class 1 Class 2 Class 3
59 items 71 items 48 items
Cluster 1 50 3 1
54 items
Cluster 2 0 49 17
66 items
Cluster 3 9 19 30
58 items
GT Using CA1 (1.14)
Wine
Ground Truth
Class 1 Class 2 Class 3
59 items 71 items 48 items
Cluster 1 51 4 0
55 items
Cluster 2 8 64 0
72 items
Cluster 3 0 3 48
51 items
Using DEC (1.12)
Wine
Ground Truth
Class 1 Class 2 Class 3
59 items 71 items 48 items
Cluster 1 50 4 2
56 items
Cluster 2 0 43 8
51 items
Cluster 3 9 24 38
71 items
DEC Using CA1 (1.80)
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
Background DEC Algorithm Results Conclusion
Effect of clustering method
GTK
Ground Truth
Class 1 Class 2 Class 3
59 items 71 items 48 items
Cluster 1 50 3 1
54 items
Cluster 2 0 49 17
66 items
Cluster 3 9 19 30
58 items
GT Using CA1 (1.14)
Wine
Ground Truth
Class 1 Class 2 Class 3
59 items 71 items 48 items
Cluster 1 51 4 0
55 items
Cluster 2 8 64 0
72 items
Cluster 3 0 3 48
51 items
Using DEC (1.12)
Wine
Ground Truth
Class 1 Class 2 Class 3
59 items 71 items 48 items
Cluster 1 50 4 2
56 items
Cluster 2 0 43 8
51 items
Cluster 3 9 24 38
71 items
DEC Using CA1 (1.80)
Wine
Ground Truth
Class 1 Class 2 Class 3
59 items 71 items 48 items
Cluster 1 46 1 0
47 items
Cluster 2 0 50 17
67 items
Cluster 3 13 20 31
64 items
DEC Using CA2 (0.62)
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
Background DEC Algorithm Results Conclusion
Results
Results for DEC algorithm were collected to analyze:
the quality of the solution based on different validity
indexes,
the impact of distance measures on the performance of the
algorithm,
different methods for computing clustering,
the effect of minimum number of clusters (Kmin), and
the running time of the algorithm.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
Background DEC Algorithm Results Conclusion
Effect of Kmin
2 4 6 8 10
1
2
3
4
Wine-GT
Wine-GTk
Glass-GT
Glass-GTk
E.coli-GT
E.coli-GTk
Minimum Number of Clusters Required (Kmin)
DBValidityIndex
E.coli-DB
Wine-DB
Glass-DB
Better fitness with
lower value of Kmin.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
Background DEC Algorithm Results Conclusion
Effect of Kmin
2 4 6 8 10
0
1
2
3
4
Wine-GT
Wine-GTk
Glass-GT
Glass-GTk
E.coli-GTE.coli-GTk
Minimum Number of Clusters Required (Kmin)
CSValidityIndex
E.coli-CS
Wine-CS
Glass-CS
Better fitness with
lower value of Kmin.
Worse fitness for
ground truth
shows that external
factors
might have been
used to
determine the
clustering.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
Background DEC Algorithm Results Conclusion
Effect of Kmin
2 4 6 8 10
0
200
400
Wine-GT
Wine-GTk
Glass-GT Glass-GTk
E.coli-GT
E.coli-GTk
Minimum Number of Clusters Required (Kmin)
PBMValidityIndex
E.coli-PBM
Wine-PBM
Glass-PBM
Better fitness with
lower value of Kmin.
Worse fitness for
ground truth
shows that external
factors
might have been
used to
determine the
clustering.
DEC converges to
Kmin
clusters due to this
characteristic of the
validity index.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
Background DEC Algorithm Results Conclusion
Results
Results for DEC algorithm were collected to analyze:
the quality of the solution based on different validity
indexes,
the impact of distance measures on the performance of the
algorithm,
different methods for computing clustering,
the effect of minimum number of clusters (Kmin),and
the running time of the algorithm.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
Background DEC Algorithm Results Conclusion
Running Time
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
Background DEC Algorithm Results Conclusion
Running Time
The DEC algorithm has a running time of O(n2).
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
Background DEC Algorithm Results Conclusion
Running Time
The DEC algorithm has a running time of O(n2).
DEC takes longer to finish for CS Index as compared to DB
and PBM indexes.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
Background DEC Algorithm Results Conclusion
Running Time
The DEC algorithm has a running time of O(n2).
DEC takes longer to finish for CS Index as compared to DB
and PBM indexes.
Example approximate run times of DEC:
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
Background DEC Algorithm Results Conclusion
Running Time
The DEC algorithm has a running time of O(n2).
DEC takes longer to finish for CS Index as compared to DB
and PBM indexes.
Example approximate run times of DEC:
size = 200, f ∈ [2, 15]: 200 seconds
size = 300, f > 30: 600 seconds
size = 700, f ∈ [2, 15]: upto 30 minutes
size ≥ 1000, f ∈ [2, 15]: upto 5 hours
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
Background DEC Algorithm Results Conclusion
DEC vs Existing Algorithms
Data Set Algorithm
CS DB
# of clusters Index # of clusters Index
Cancer
DEC(2) 2.00 1.13 2.82 0.58
ACDE 2.00 0.45 2.05 0.52
DCPSO 2.25 0.48 2.50 0.57
GCUK 2.00 0.61 2.50 0.63
Classical DE 2.25 0.89 2.10 0.51
Average Link 2.00 0.90 2.00 0.76
Glass
DEC(6) 6.00 0.30 6.00 1.02
DEC(2) 2.00 0.10 2.00 0.84
ACDE 6.05 0.33 6.05 1.01
DCPSO 5.95 0.76 5.95 1.51
GCUK 5.85 1.47 5.85 1.83
Classical DE 5.60 0.78 5.60 1.66
Average Link 6.00 1.02 6.00 1.85
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
Background DEC Algorithm Results Conclusion
DEC vs Existing Algorithms
Data Set Algorithm
CS DB
# of clusters Index # of clusters Index
Cancer
DEC(2) 2.00 1.13 2.82 0.58
ACDE 2.00 0.45 2.05 0.52
DCPSO 2.25 0.48 2.50 0.57
GCUK 2.00 0.61 2.50 0.63
Classical DE 2.25 0.89 2.10 0.51
Average Link 2.00 0.90 2.00 0.76
Glass
DEC(6) 6.00 0.30 6.00 1.02
DEC(2) 2.00 0.10 2.00 0.84
ACDE 6.05 0.33 6.05 1.01
DCPSO 5.95 0.76 5.95 1.51
GCUK 5.85 1.47 5.85 1.83
Classical DE 5.60 0.78 5.60 1.66
Average Link 6.00 1.02 6.00 1.85
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
Background DEC Algorithm Results Conclusion
DEC vs Existing Algorithms
Data Set Algorithm
CS DB
# of clusters Index # of clusters Index
Cancer
DEC(2) 2.00 1.13 2.82 0.58
ACDE 2.00 0.45 2.05 0.52
DCPSO 2.25 0.48 2.50 0.57
GCUK 2.00 0.61 2.50 0.63
Classical DE 2.25 0.89 2.10 0.51
Average Link 2.00 0.90 2.00 0.76
Glass
DEC(6) 6.00 0.30 6.00 1.02
DEC(2) 2.00 0.10 2.00 0.84
ACDE 6.05 0.33 6.05 1.01
DCPSO 5.95 0.76 5.95 1.51
GCUK 5.85 1.47 5.85 1.83
Classical DE 5.60 0.78 5.60 1.66
Average Link 6.00 1.02 6.00 1.85
DEC(2) represents the results
when Kmin is set to 2
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
Background DEC Algorithm Results Conclusion
DEC vs Existing Algorithms
Data Set Algorithm
CS DB
# of clusters Index # of clusters Index
Cancer
DEC(2) 2.00 1.13 2.82 0.58
ACDE 2.00 0.45 2.05 0.52
DCPSO 2.25 0.48 2.50 0.57
GCUK 2.00 0.61 2.50 0.63
Classical DE 2.25 0.89 2.10 0.51
Average Link 2.00 0.90 2.00 0.76
Glass
DEC(6) 6.00 0.30 6.00 1.02
DEC(2) 2.00 0.10 2.00 0.84
ACDE 6.05 0.33 6.05 1.01
DCPSO 5.95 0.76 5.95 1.51
GCUK 5.85 1.47 5.85 1.83
Classical DE 5.60 0.78 5.60 1.66
Average Link 6.00 1.02 6.00 1.85
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
Background DEC Algorithm Results Conclusion
DEC vs Existing Algorithms
Data Set Algorithm
CS DB
# of clusters Index # of clusters Index
Cancer
DEC(2) 2.00 1.13 2.82 0.58
ACDE 2.00 0.45 2.05 0.52
DCPSO 2.25 0.48 2.50 0.57
GCUK 2.00 0.61 2.50 0.63
Classical DE 2.25 0.89 2.10 0.51
Average Link 2.00 0.90 2.00 0.76
Glass
DEC(6) 6.00 0.30 6.00 1.02
DEC(2) 2.00 0.10 2.00 0.84
ACDE 6.05 0.33 6.05 1.01
DCPSO 5.95 0.76 5.95 1.51
GCUK 5.85 1.47 5.85 1.83
Classical DE 5.60 0.78 5.60 1.66
Average Link 6.00 1.02 6.00 1.85
DEC(k) represents the results
when Kmin is set to known
number of clusters (ground
truth)
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
Background DEC Algorithm Results Conclusion
DEC vs Existing Algorithms
Data Set Algorithm
CS DB
# of clusters Index # of clusters Index
Cancer
DEC(2) 2.00 1.13 2.82 0.58
ACDE 2.00 0.45 2.05 0.52
DCPSO 2.25 0.48 2.50 0.57
GCUK 2.00 0.61 2.50 0.63
Classical DE 2.25 0.89 2.10 0.51
Average Link 2.00 0.90 2.00 0.76
Glass
DEC(6) 6.00 0.30 6.00 1.02
DEC(2) 2.00 0.10 2.00 0.84
ACDE 6.05 0.33 6.05 1.01
DCPSO 5.95 0.76 5.95 1.51
GCUK 5.85 1.47 5.85 1.83
Classical DE 5.60 0.78 5.60 1.66
Average Link 6.00 1.02 6.00 1.85
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
Background DEC Algorithm Results Conclusion
DEC vs Existing Algorithms
Data Set Algorithm
CS DB
# of clusters Index # of clusters Index
Iris
DEC(3) 3.00 0.60 3.00 0.56
DEC(2) 3.00 0.60 2.00 0.42
ACDE 3.25 0.66 3.05 0.46
DCPSO 2.23 0.73 2.25 0.69
GCUK 2.35 0.72 2.30 0.73
Classical DE 2.50 0.76 2.50 0.58
Average Link 3.00 0.78 3.00 0.84
Wine
DEC(3) 3.00 0.94 3.00 1.12
DEC(2) 2.00 0.70 2.00 0.96
ACDE 3.25 0.92 3.25 3.04
DCPSO 3.05 1.87 3.05 4.34
GCUK 2.95 1.58 2.95 5.34
Classical DE 3.50 1.79 3.50 3.39
Average Link 3.00 1.89 3.00 5.72
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
Background DEC Algorithm Results Conclusion
Summary
The clustering returned by DEC is affected by:
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
Background DEC Algorithm Results Conclusion
Summary
The clustering returned by DEC is affected by:
the distance measure,
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
Background DEC Algorithm Results Conclusion
Summary
The clustering returned by DEC is affected by:
the distance measure,
the validity index,
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
Background DEC Algorithm Results Conclusion
Summary
The clustering returned by DEC is affected by:
the distance measure,
the validity index,
the value of Kmin, and
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
Background DEC Algorithm Results Conclusion
Summary
The clustering returned by DEC is affected by:
the distance measure,
the validity index,
the value of Kmin, and
the method for computing the clustering.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
Background DEC Algorithm Results Conclusion
DEC on Iris
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
Background DEC Algorithm Results Conclusion
DEC on Iris
2 2.5 3 3.5 4 4.5
2
4
6
Sepal Width (y)
PetalLength(z)
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
Background DEC Algorithm Results Conclusion
DEC on Iris
2 2.5 3 3.5 4 4.5
2
4
6
Sepal Width (y)
PetalLength(z)
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
Background DEC Algorithm Results Conclusion
DEC on Iris
2 2.5 3 3.5 4 4.5
2
4
6
Sepal Width (y)
PetalLength(z)
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
Background DEC Algorithm Results Conclusion
DEC on Iris
2 2.5 3 3.5 4 4.5
2
4
6
Sepal Width (y)
PetalLength(z)
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
Background DEC Algorithm Results Conclusion
DEC on Iris
2 2.5 3 3.5 4 4.5
2
4
6
Sepal Width (y)
PetalLength(z)
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
Background DEC Algorithm Results Conclusion
DEC on Iris
2 2.5 3 3.5 4 4.5
2
4
6
Sepal Width (y)
PetalLength(z)
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
Background DEC Algorithm Results Conclusion
DEC on Iris
2 2.5 3 3.5 4 4.5
2
4
6
Sepal Width (y)
PetalLength(z)
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
Background DEC Algorithm Results Conclusion
DEC on Iris
2 2.5 3 3.5 4 4.5
2
4
6
Sepal Width (y)
PetalLength(z)
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
Background DEC Algorithm Results Conclusion
DEC on Iris
2 2.5 3 3.5 4 4.5
2
4
6
Sepal Width (y)
PetalLength(z)
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
Background DEC Algorithm Results Conclusion
DEC on Iris
2 2.5 3 3.5 4 4.5
2
4
6
Sepal Width (y)
PetalLength(z)
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
Background DEC Algorithm Results Conclusion
DEC on Iris
2 2.5 3 3.5 4 4.5
2
4
6
Sepal Width (y)
PetalLength(z)
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
Background DEC Algorithm Results Conclusion
DEC on Iris
2 2.5 3 3.5 4 4.5
2
4
6
Sepal Width (y)
PetalLength(z)
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
Background DEC Algorithm Results Conclusion
DEC on Iris
2 2.5 3 3.5 4 4.5
2
4
6
Sepal Width (y)
PetalLength(z)
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
Background DEC Algorithm Results Conclusion
Outline
1 Background
2 DEC Algorithm
3 Results
4 Conclusion
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
Background DEC Algorithm Results Conclusion
Conclusion
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
Background DEC Algorithm Results Conclusion
Conclusion
A clustering algorithm for unlabeled data sets.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
Background DEC Algorithm Results Conclusion
Conclusion
A clustering algorithm for unlabeled data sets.
Uses Differential Evolution algorithms to generate solutions
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
Background DEC Algorithm Results Conclusion
Conclusion
A clustering algorithm for unlabeled data sets.
Uses Differential Evolution algorithms to generate solutions
Local optimization methods are applied to improve the
solution
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
Background DEC Algorithm Results Conclusion
Conclusion
A clustering algorithm for unlabeled data sets.
Uses Differential Evolution algorithms to generate solutions
Local optimization methods are applied to improve the
solution
Robust, works well across a variety of data sets
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
Background DEC Algorithm Results Conclusion
Conclusion
A clustering algorithm for unlabeled data sets.
Uses Differential Evolution algorithms to generate solutions
Local optimization methods are applied to improve the
solution
Robust, works well across a variety of data sets
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
Background DEC Algorithm Results Conclusion
Conclusion
A clustering algorithm for unlabeled data sets.
Uses Differential Evolution algorithms to generate solutions
Local optimization methods are applied to improve the
solution
Robust, works well across a variety of data sets
Performs well against existing algorithms
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
Background DEC Algorithm Results Conclusion
Future Work
Integrate feature-subset selection scheme with DEC.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
Background DEC Algorithm Results Conclusion
Future Work
Integrate feature-subset selection scheme with DEC.
Design a multi-objective algorithm that tries to optimize
multiple validity indexes.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
Background DEC Algorithm Results Conclusion
Thank You!
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
Background DEC Algorithm Results Conclusion
Thank You!
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
Background DEC Algorithm Results Conclusion
Thank You!
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
Background DEC Algorithm Results Conclusion
Thank You!
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
Background DEC Algorithm Results Conclusion
Data Set
DECMinMax DECEuclidean DEC
GT
GTK
Kmin
Korig
GT
GTK
Kmin
Korig
GT
GTK
Kmin
Korig
E.coli 2.66 2.87 1.27 1.51 2.32 2.39 0.97 1.20 2.32 2.39 0.91 1.29
Glass 3.73 3.85 0.76 1.54 3.73 3.76 0.61 1.05 3.73 3.76 0.84 1.02
Wine 1.51 1.55 1.66 1.65 1.51 1.14 0.38 0.47 1.51 1.14 0.96 1.12
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
Background DEC Algorithm Results Conclusion
Data Set
DECMinMax DECEuclidean DEC
GT
GTK
Kmin
Korig
GT
GTK
Kmin
Korig
GT
GTK
Kmin
Korig
E.coli 2.66 2.87 1.27 1.51 2.32 2.39 0.97 1.20 2.32 2.39 0.91 1.29
Glass 3.73 3.85 0.76 1.54 3.73 3.76 0.61 1.05 3.73 3.76 0.84 1.02
Wine 1.51 1.55 1.66 1.65 1.51 1.14 0.38 0.47 1.51 1.14 0.96 1.12

More Related Content

PDF
CSC446: Pattern Recognition (LN4)
PDF
Efficient Analysis of high-dimensional data in tensor formats
PDF
Flink Forward Berlin 2017: David Rodriguez - The Approximate Filter, Join, an...
PDF
CSC446: Pattern Recognition (LN3)
PDF
Interconnections of hybrid systems
PDF
CSC446: Pattern Recognition (LN5)
PPTX
Support Vector Machines Simply
PPTX
K-Means Clustering Simply
CSC446: Pattern Recognition (LN4)
Efficient Analysis of high-dimensional data in tensor formats
Flink Forward Berlin 2017: David Rodriguez - The Approximate Filter, Join, an...
CSC446: Pattern Recognition (LN3)
Interconnections of hybrid systems
CSC446: Pattern Recognition (LN5)
Support Vector Machines Simply
K-Means Clustering Simply

What's hot (13)

PDF
Interactive High-Dimensional Visualization of Social Graphs
PDF
Log Analytics in Datacenter with Apache Spark and Machine Learning
PDF
Predicate-Preserving Collision-Resistant Hashing
PDF
A Signature Scheme as Secure as the Diffie Hellman Problem
PDF
Recommendation System --Theory and Practice
PPTX
Learning Predictive Modeling with TSA and Kaggle
PDF
Lesson 27: Integration by Substitution (Section 4 version)
PDF
Mining Frequent Closed Graphs on Evolving Data Streams
PDF
Iterative methods with special structures
PDF
Relaxation methods for the matrix exponential on large networks
PDF
Hyperparameter optimization with approximate gradient
PDF
Introduction to Big Data Science
PDF
presentazione
Interactive High-Dimensional Visualization of Social Graphs
Log Analytics in Datacenter with Apache Spark and Machine Learning
Predicate-Preserving Collision-Resistant Hashing
A Signature Scheme as Secure as the Diffie Hellman Problem
Recommendation System --Theory and Practice
Learning Predictive Modeling with TSA and Kaggle
Lesson 27: Integration by Substitution (Section 4 version)
Mining Frequent Closed Graphs on Evolving Data Streams
Iterative methods with special structures
Relaxation methods for the matrix exponential on large networks
Hyperparameter optimization with approximate gradient
Introduction to Big Data Science
presentazione
Ad

Similar to ClusteringDEC (20)

PDF
ClusteringClusteringClusteringClustering.pdf
PDF
Ijartes v1-i2-006
PPT
DM_clustering.ppt
PPTX
DS9 - Clustering.pptx
PPTX
Cluster Analysis.pptx
PDF
Chapter 5.pdf
PDF
BIM Data Mining Unit5 by Tekendra Nath Yogi
PPTX
Clustering is an unsupervised machine learning technique that divides the pop...
PDF
Data Clustering Theory Algorithms And Applications Guojun Gan
PDF
iiit delhi unsupervised pdf.pdf
PPT
4 DM Clustering ifor computerscience.ppt
PDF
Module - 5 Machine Learning-22ISE62.pdf
PPT
Clustering &amp; classification
PDF
Mat189: Cluster Analysis with NBA Sports Data
PPTX
Unsupervised%20Learninffffg (2).pptx. application
PPTX
Clustering on DSS
PPTX
Cluster Analysis
PPT
Chap8 basic cluster_analysis
ClusteringClusteringClusteringClustering.pdf
Ijartes v1-i2-006
DM_clustering.ppt
DS9 - Clustering.pptx
Cluster Analysis.pptx
Chapter 5.pdf
BIM Data Mining Unit5 by Tekendra Nath Yogi
Clustering is an unsupervised machine learning technique that divides the pop...
Data Clustering Theory Algorithms And Applications Guojun Gan
iiit delhi unsupervised pdf.pdf
4 DM Clustering ifor computerscience.ppt
Module - 5 Machine Learning-22ISE62.pdf
Clustering &amp; classification
Mat189: Cluster Analysis with NBA Sports Data
Unsupervised%20Learninffffg (2).pptx. application
Clustering on DSS
Cluster Analysis
Chap8 basic cluster_analysis
Ad

ClusteringDEC