Cognitive Computing and Information Processing T.N. Nagabhushan
Cognitive Computing and Information Processing T.N. Nagabhushan
Cognitive Computing and Information Processing T.N. Nagabhushan
Cognitive Computing and Information Processing T.N. Nagabhushan
1. Cognitive Computing and Information Processing
T.N. Nagabhushan pdf download
https://textbookfull.com/product/cognitive-computing-and-
information-processing-t-n-nagabhushan/
Download more ebook instantly today - get yours now at textbookfull.com
2. We believe these products will be a great fit for you. Click
the link to download now, or visit textbookfull.com
to discover even more!
Quantum Information Processing, Quantum Computing, and
Quantum Error Correction: An Engineering Approach 2nd
Edition Ivan B. Djordjevic
https://textbookfull.com/product/quantum-information-processing-
quantum-computing-and-quantum-error-correction-an-engineering-
approach-2nd-edition-ivan-b-djordjevic/
Emerging Trends and Applications in Cognitive Computing
Pradeep Kumar Mallick
https://textbookfull.com/product/emerging-trends-and-
applications-in-cognitive-computing-pradeep-kumar-mallick/
Computing Colour Image Processing Alan Parkin
https://textbookfull.com/product/computing-colour-image-
processing-alan-parkin/
Applied Computing and Information Technology Roger Lee
https://textbookfull.com/product/applied-computing-and-
information-technology-roger-lee/
3. Automatic Control, Robotics, and Information Processing
Piotr Kulczycki
https://textbookfull.com/product/automatic-control-robotics-and-
information-processing-piotr-kulczycki/
Cognitive Computing in Human Cognition Perspectives and
Applications Pradeep Kumar Mallick
https://textbookfull.com/product/cognitive-computing-in-human-
cognition-perspectives-and-applications-pradeep-kumar-mallick/
COGNITIVE APPROACH TO NATURAL LANGUAGE PROCESSING 1
Edition Bernadette Sharp
https://textbookfull.com/product/cognitive-approach-to-natural-
language-processing-1st-edition-bernadette-sharp/
Cognitive Superiority: Information to Power Dean S.
Hartley Iii
https://textbookfull.com/product/cognitive-superiority-
information-to-power-dean-s-hartley-iii/
Data Analytics and Learning Proceedings of DAL 2018 P.
Nagabhushan
https://textbookfull.com/product/data-analytics-and-learning-
proceedings-of-dal-2018-p-nagabhushan/
4. 123
T. N. Nagabhushan
V. N. Manjunath Aradhya
Prabhudev Jagadeesh
Seema Shukla
Chayadevi M. L. (Eds.)
Third International Conference, CCIP 2017
Bengaluru, India, December 15–16, 2017
Revised Selected Papers
Cognitive Computing
and Information Processing
Communications in Computer and Information Science 801
5. Communications
in Computer and Information Science 801
Commenced Publication in 2007
Founding and Former Series Editors:
Alfredo Cuzzocrea, Xiaoyong Du, Orhun Kara, Ting Liu, Dominik Ślęzak,
and Xiaokang Yang
Editorial Board
Simone Diniz Junqueira Barbosa
Pontifical Catholic University of Rio de Janeiro (PUC-Rio),
Rio de Janeiro, Brazil
Phoebe Chen
La Trobe University, Melbourne, Australia
Joaquim Filipe
Polytechnic Institute of Setúbal, Setúbal, Portugal
Igor Kotenko
St. Petersburg Institute for Informatics and Automation of the Russian
Academy of Sciences, St. Petersburg, Russia
Krishna M. Sivalingam
Indian Institute of Technology Madras, Chennai, India
Takashi Washio
Osaka University, Osaka, Japan
Junsong Yuan
Nanyang Technological University, Singapore, Singapore
Lizhu Zhou
Tsinghua University, Beijing, China
6. More information about this series at http://www.springer.com/series/7899
7. T. N. Nagabhushan • V. N. Manjunath Aradhya
Prabhudev Jagadeesh • Seema Shukla
Chayadevi M. L. (Eds.)
Cognitive Computing
and Information Processing
Third International Conference, CCIP 2017
Bengaluru, India, December 15–16, 2017
Revised Selected Papers
123
9. Preface
The editorial team is honored to announce the publication of the conference pro-
ceedings of the Third International Conference on Cognitive Computing and Infor-
mation Processing (CCIP 2017). The conference, which was jointly organized by the
Departments of Computer Science and Information Science and Engineering of JSS
Academy of Technical Education, Bengaluru, was the third in the series.
The focus of the conference was to understand the recent advancements in the
cognitive era of computing systems that emulate the capability of human mind. The
conference provided a forum for researchers and practitioners to present and discuss
new research results, practical applications, and also promote collaborative research
activities in cognitive computing and information processing and related field.
There were 130 papers submitted to CCIP-2017 (General track and four special
sessions, namely, Cognitive Computing in Video Analytics, Cognitive Computing for
Applications on Smart City, Cognitive Computing in Medical Information Processing,
and Women in Information Processing) and they all underwent a rigorous review
process. Upholding the quality requirements, around 33% of the papers received were
selected for presentation.
The conference also comprised a pre-conference tutorial from Dr. Manjunath S.,
Samsung Electro Mechanics, and Dr. Punitha, IBM and, as well as keynote talks from
Prof. N. Sundararajan, NTU, Singapore, Prof. Michael Carl, Copenhagen Business
School, Denmark, Dr. M. Pratama, NTU, Singapore, Prof. S. R. M. Prasanna, IIT
Guwahati, Prof. Savitha Ramasamy, ASTAR, Singapore, and Dr. Vigneswaran,
ASTAR Singapore.
We would like to gratefully acknowledge the support received from J.S.S.
Mahavidyapeetha in organizing this conference. We are grateful to all the researchers,
reviewers, speakers, and the organizing team for helping us attain the objectives
of the conference. We are sure that this conference has opened up a new platform for
the researchers to share their ideas for continuous improvement. We hope that the
conference proceedings will be inspiring to readers to pursue further research in the
area of cognitive computing and information processing.
March 2018 T. N. Nagabhushan
V. N. Manjunath Aradhya
Prabhudev Jagadeesh
Seema Shukla
Chayadevi M. L.
10. Organization
Chief Patron
His Holiness
Jagadguru Sri Shivarathri Deshikendra Mahaswamigalavaru
Veerasimhasana Math, Sutturu Srikshethra, President, JSSMVP, Mysuru
Patrons
C. G. Betsurmath JSSMVP, Mysuru
M. H. Dhananjaya JSSMVP, Mysuru
C. Ranganathaiah JSSMVP, Mysuru
B. G. Sangameshwara JSSSTU, Mysuru
Karisiddappa VTU, Belagavi
B. R. Umakanth JSSMVP, Mysuru
Co-patrons
Mrityunjaya V. Latte JSSATE, Bengaluru
T. N. Nagabhushan SJCE, Mysuru
General Chairs
Prabhudev Jagadeesh JSSATE, Bengaluru
Chayadevi M. L. JSSATE, Bengaluru
Advisory Committee
H. N. Jagannatha Reddy VTU, Belagavi, India
Satish Annigeri VTU, Belagavi, India
D. K. Subramanian IISc, Bengaluru, India
S. S. Iyengar Florida International University, USA
Ajith Abraham MIR Labs (Global Operations), USA
Buyya Rajkumar University of Melbourne, Australia
Venkatesh Babu R. IISc, Bengaluru, India
Erik Cambria SCE, NTU, Singapore
K. Subramanian NTU, Singapore
Haijun Rong Xi’an Jiaotong University, China
V. Mani IISc, Bengaluru, India
R. V. Babu IISc, Bengaluru, India
F. Bremond Inria-Sophia Antipolis, France
11. P. B. Sujit IIIT, Delhi, India
S. Vasaily Catholic University, Seoul, South Korea
G. S. Babu SimTech, Singapore
S. Jagannathan MUST, USA
Guang-Bin Huang NTU, Singapore
B. Tripathi HB Technology, India
Ravindran IIT, Chennai, India
Shigeyoshi Tsutsui Osaka Prefecture University, Japan
Kirill Krinkin Russia
Pradeep Kumar Amphisoft Technologies, Coimbatore, India
Harsha Motorola, Bengaluru, India
Dinesh M. S. Philips, Bengaluru, India
S. R. Mahadeva Prasanna IIT, Guwahati, India
Suryakanth V. Gangashetty IIIT, Hyderabad, India
S. Manjunath Samsung, India
Steering Committee Chair
K. Chidananda Gowda Kuvempu University, Shivamogga, India
Steering Committee
N. Sundararajan EEE, NTU, Singapore
S. Suresh SCE, NTU, Singapore
H. J. Kim Korea University, Seoul, South Korea
Prabhu Shankar UCDavis, USA
Oleg Medvedev Moscow State University, Russia
Hanseok Ko Korea University, Seoul, Korea
S. N. Omkar IISc, Bengaluru, India
Jayadeva IIT, Delhi, India
P. Nagabhushan IIIT, Allahabad, India
Guru D. S. University of Mysore, India
S. K. Padma SJCE, Mysuru, India
Nagabhushana JSSATE, Bengaluru, India
Swamy D. R. JSSATE, Bengaluru, India
Organizing Chairs
N. C. Naveen JSSATE, Bengaluru
Dayananda P. JSSATE, Bengaluru
Technical Program Chair
V. N. Manjunath Aradhya SJCE, Mysuru
VIII Organization
12. Technical Program Co-chairs
D. V. Ashoka JSSATE, Bengaluru
P. B. Mallikarjuna JSSATE, Bengaluru
Special Session Chairs
B. S. Mahanand SJCE, Mysuru
Dinesh R. Samsung, India
Vinita Khemchandani JSSATE, Noida
Anita Sahoo JSSATE, Noida
M. P. Pushpalatha SJCE, Mysuru
M. A. Anusuya SJCE, Mysuru
Publication Chairs
Malini M. Patil JSSATE, Bengaluru
Sneha Y. S. JSSATE, Bengaluru
Seema Shukla JSSATE, Noida
Tutorial Chair
Nagasundara K. B. JSSATE, Bengaluru
Finance Chair
Snehalatha N. JSSATE, Bengaluru
Publicity Chairs
Sharana Basavana Gowda JSSATE, Bengaluru
Abhilash C. B. JSSATE, Bengaluru
Anil B. C. JSSATE, Bengaluru
Organizing Committee
Bhavani B. H.
Rajeshwari K. S.
Shanthala K. V.
Pooja H.
Manjunath Talawar
Niranjan K. C.
Shwetha Kaddi
Savita S.
Pradeep H. K.
Mahesh Kumar
Sreenatha
Renuka Rajendra
Rohitaksha
Rashmi B. N.
Vinutha H. D.
Prasad M. R.
Sangeetha H. S.
Sumathi H. R.
Organization IX
13. Mamatha G.
Apsara M. B.
Nagamani N. Purohit
Rekha P. M.
Nethravathi
Anitha P.
Sudha P. R.
Sowmya K. N.
Fathima Afroz
Nagashree S.
Sahana V.
X Organization
15. A Minimal Cognitive Model for Translating
and Post-editing
Michael Carl
Centre for Research and Innovation in Translation and Translation Technology,
Copenhagen Business School, Frederiksberg, Denmark
mc.ibc@cbs.dk
This study investigates the coordination of reading (input) and writing (output)
activities in from-scratch translation and machine translation post-editing. We segment
logged eye movements and key logging data into minimal units of reading and writing
activity and model the process of post-editing and from-scratch translation as a Markov
model. We show that the time translators and post-editors spend on source or target text
reading predicts with a high degree of accuracy how likely it is that they engage in
successive typing. We further show that the typing probability is also conditioned by
the degree to which source and target text share semantic and syntactic properties. The
minimal Markov model describes very basic factors which are suited to model the
cognitive processes occurring during translation and post-editing.
16. Human Cognition Inspired Learning Strategies
for Particle Swarm Optimization Algorithm
Narasimhan Sundararajan
Nanyang Technological University, Singapore
ENSUNDRA@ntu.edu.sg
These days, the nature of global optimization problems especially for engineering sys-
tems have become extremely complex and it is difficult to locate the true optimum
solutions. For these types of problems, finding the optimal/near-optimal solution in a
quick and efficient way is very important and here only search based methods are found
to be effective. Among the search-based methods, nature inspired optimization algo-
rithms are providing much better solutions. A well-known nature inspired method, the
Particle Swarm Optimization (PSO) algorithm has been mostly preferred due to its
simplicity and ability to provide better solutions and it has been proven to be more
effective for solving complex real-world problems. The limitations associated with PSO
have been extensively researched and different modifications, variations and refinements
to PSO have been proposed for enhancing the performance of the algorithm. These
include parameter tuning, neighbourhood topologies and unique learning strategies.
The PSO variants with unique learning strategies are found to be more effective in
enhancing the convergence characteristics of the basic PSO algorithm. All these variants
have utilized the behaviour of the swarm which limited the usage of intelligence and
motivated us towards exploring human cognitive learning principles for PSO.
As discussed in learning psychology, human beings are known to be intelligent and
have good social cognizance. Therefore, any optimization technique employing
human-like learning strategies should prove to be more effective. In this talk, first the basic
PSO and its variants will be presented to show the status of current work. Then the human
cognition inspired learning strategies will be introduced to address the limitations of PSO
and enhancing its convergence characteristics. By mimicking the human-like behaviour,
the PSO algorithm has shown faster convergence and closer to the optima over diverse set
of problems being a potential choice for complex real-world applications. Recent
developments in this area undertaken by our group will be highlighted.
17. Speech Processing: Human
Cognition vs Cognitive Computing
S. R. Mahadeva Prasanna
Indian Institute of Technology, Guwahati, India
prasanna@iitg.ac.in
Cognitive computing tries to address challenging problems. These include processing
natural data like speech. Human cognition has remarkable ability to perform spoken
communication. Most of the speech processing tasks are trivial for human cognition.
Alternatively, they prove to be harder for cognitive computing. This talk will explain
some speech processing talks to bring the challenges in the field of cognitive com-
puting for speech processing.
18. Data Stream Analytics in Complex
Environments
Mahardhika Pratama
Nanyang Technological University, Singapore
mpratama@ntu.edu.sg
The era of big data in highly complex environments calls for algorithmic development
of advanced machine learning techniques and visualizations to transform massive
amounts of information into useful references to help decision making process in
real-time. This talk aims to discuss online real-time strategies for data stream analytics
that provide concrete solutions to unsolved issues in data streams analytics, namely
uncertainty in data distribution, uncertainty in data representation, uncertainty in data
dimensions, uncertainty in data processing, and uncertainty in data visualization.
19. Understanding Brain Effects
of Neuro-Psychiatric Disorders via MRI
Vigneshwaran
Agency for Science Technology and Research (A*STAR), Singapore
vigneshwaran_subbaraju@sbic.a-star.edu.sg
Neuroimaging technologies, especially functional and structural MRI, are increasingly
being looked upon as tools capable of revealing the complex mechanisms in the human
brain that underlie several neuro-psychiatric conditions. Thus, they have the potential
to influence not just psychiatric diagnosis but also therapy and treatment. The main
stumbling block in translating these tools from the laboratory to the mainstream clinical
environment is the dearth of sufficiently large datasets to derive generalizable and
reproducible conclusions. This is being addressed by the research community, by
collating and releasing disorder specific datasets for open research. Few examples are,
the ABIDE, ADHD-200, ADNI and the SchizConnect initiatives. The release of these
large datasets presents an unprecedented opportunity to perform large scale studies and
uncover the neural mechanism underlying these conditions. The adoption of the
analysis methods in the mainstream clinical process will depend on two factors:
accuracy and interpretability. The emphasis on clinical interpretability is so significant
that the analysis has so far been restricted to simple statistical tools. In this talk, I will
discuss the application of spatial filtering to fMRI analysis that can help achieve high
accuracy and also provide better interpretability. Based on the large datasets in ABIDE
and ADHD-200, I will also show the how these methods can be used touncover
potential compensatory effects within the brain as well.
20. Predictive Analysis for Personalized Clinical
Decision Support
Savita Ramasamy
Institute for Infocomm Research, Data Analytics Department, Singapore
ramasamysa@i2r.a-star.edu.sg
Public healthcare providers are faced with the challenge of providing quality care at
lesser cost. The availability of huge heterogenous data sets available in such healthcare
settings provide a wide scope for the development of clinical decision support using
predictive analytics and data mining tools. Existing clinical decision support tools do
not address the individual needs of patients, and often do not translate to care decisions
that clinicians can leverage on. This talk will focus on our recent work in the devel-
opment of a predictive analytics solution for a personalized clinical decision support
tool. The decision support tool comprises of two main components, namely, neural
network predictor to predict the readmission risk for patients and the cost of care, and a
multi-objective optimization that optimizes the risk and cost based on the model-based
outcomes, constrained based on the desired clinical outcomes. Preliminary results from
the study will also be discussed.
21. Contents
Cognitive Computing in Medical Information Processing
Eyes Open and Eyes Close Activity Recognition Using EEG Signals . . . . . . 3
Barjinder Kaur, Dinesh Singh, and Partha Pratim Roy
Analysis of Breast Thermal Images Using Anisotropic Diffusion Filter
Based Modified Level Sets and Efficient Fractal Algorithm . . . . . . . . . . . . . 10
S. Prabha, S. S. Suganthi, and C. M. Sujatha
An Empirical Evaluation of Savitzky-Golay (SG) Filter for Denoising
ST Segment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
C. K. Roopa and B. S. Harish
Detection of Exudates Through Local Binary Pattern
in Diabetic Retinopathy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
R. Suma, Deepashree Devaraj, and S. C. Prasanna Kumar
Automated Lung Parenchyma Segmentation in the Presence of High
Attenuation Patterns Using Modified Robust Spatial Kernel FCM . . . . . . . . . 40
Shyla Raj, D. S. Vinod, and Nagaraj Murthy
A Heuristic Approach to Automatically Segment Signal
from Background in DNA Microarray Images . . . . . . . . . . . . . . . . . . . . . . 51
S. S. Manjunath, Priya Nandihal, and Lalitha Rangarajan
Filter Based Approach for Automated Detection of Candidate Lung
Nodules in 3D Computed Tomography Images. . . . . . . . . . . . . . . . . . . . . . 63
K. Bhavanishankar and M. V. Sudhamani
Liveness Detection Based on Eye Flicker. . . . . . . . . . . . . . . . . . . . . . . . . . 71
Rekha A. Shidnekoppa, Manjunath Kammar, and K. S. Shreedhar
Influence of Health Service Infrastructure on the Infant Mortality Rate:
An Econometric Analysis of Indian States . . . . . . . . . . . . . . . . . . . . . . . . . 81
C. Arun, Sangita Khare, Deepa Gupta, and Amalendu Jyotishi
Health and Nutritional Status of Children: Survey, Challenges
and Directions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93
Sangita Khare, Deepa Gupta, K. Prabhavathi, M. G. Deepika,
and Amalendu Jyotishi
22. An Empirical Analysis of Machine Learning Classifiers for Clinical
Decision Making in Asthma . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105
M. R. Pooja and M. P. Pushpalatha
Web Based Blood Donation Management System (BDMS)
and Notifications. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118
B. M. Shashikala, M. P. Pushpalatha, and B. Vijaya
Silent Speech Recognition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130
Amaresh P. Kandagal, V. Udayashankara, and M. A. Anusuya
Cognitive Computing and Its Applications
Swarm Intelligent Approaches for Solving Shortest Path Problems
with Multiple Objectives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 143
Jinil Persis Devarajan and T. Paul Robert
Improved Directionally Driven Self-regulating Particle Swarm Optimizer . . . . 157
Saumya Jariwala
Judgement of Learning for Metacognitive Type-2 Fuzzy Inference System . . . 170
Khyati Mahajan
Inter Intensity and Color Channel Co-occurrence Histogram for Color
Texture Classification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 182
S. Shivashankar, Madhuri R. Kagale, and Prakash S. Hiremath
LDA Based Discriminant Features for Texture Classification Using WT
and PDE Approach . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 191
Rohini A. Bhusnurmath and P. S. Hiremath
Position Error Analysis of IRNSS Data Using Big Data Analytics. . . . . . . . . 201
M. Geetha Priya and D. C. Kiran Kumar
Cluster Representation and Discrimination Based on Regression Line . . . . . . 210
M. S. Bhargavi and Sahana D. Gowda
Recognition of Traffic Sign Based on Support Vector Machine
and Creation of the Indian Traffic Sign Recognition Benchmark . . . . . . . . . . 227
Vidyagouri B. Hemadri and Umakant P. Kulkarni
Neural Network Based Characterization and Reliable Routing of Data
in Wireless Body Sensor Networks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 239
Biradar Shilpa, S. G. Hiremath, and G. Thippeswamy
Automata Approach to Reduce Power Consumption in Smart Grid Cloud
Data Center . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 248
J. Usha, S. R. Jayasimha, and S. G. Srivani
XX Contents
23. Hybrid Optimization in Big Data: Error Detection and Data Repairing
by Big Data Cleaning Using CSO-GSA. . . . . . . . . . . . . . . . . . . . . . . . . . . 258
K. V. Rama Satish and N. P. Kavya
Application of Optimization Technique for Performance and Emission
Characteristics of a CNG-Diesel Dual Fuel Engine: A Comparison Study . . . 274
A. Adarsh Rai, B. R. Shrinivasa Rao, Narasimha K. Bailkeri,
and P. Srinivasa Pai
Use of Hybrid Algorithm for Surface Roughness Optimization
in Ti-6Al-4V Machining . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 285
Grynal D’Mello, P. Srinivasa Pai, and Adarsh Rai
Eigenvalue Analysis with Hough Transform for Shape Representation
and Classification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 299
Bharathi Pilar and B. H. Shekar
Event Data Analysis in Large Virtualized Environment . . . . . . . . . . . . . . . . 313
M. B. Bharath and D. V. Ashoka
Noisy Speech Recognition Using Kernel Fuzzy C Means. . . . . . . . . . . . . . . 324
H. Y. Vani and M. A. Anusuya
An Enhanced Water Pipeline Monitoring System in Remote Areas
Using Flow Rate and Vibration Sensors. . . . . . . . . . . . . . . . . . . . . . . . . . . 331
Praveen M. Dhulavvagol, K. R. Ankita, G. Sohan, and Renuka Ganiger
Smart Helmet with Cloud GPS GSM Technology for Accident
and Alcohol Detection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 346
Praveen M. Dhulavvagol, Ranjitha Shet, Prateeksha Nashipudi,
Anand S. Meti, and Renuka Ganiger
Text-Dependent Speaker Recognition System Using Symbolic Modelling
of Voiceprint . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 358
Shanmukhappa A. Angadi and Sanjeevakumar M. Hatture
An IOT Based Smart Shopping Cart for Smart Shopping . . . . . . . . . . . . . . . 373
Srinidhi Karjol, Anusha K. Holla, and C. B. Abhilash
Pathnet: A Neuronal Model for Robotic Motion Planning . . . . . . . . . . . . . . 386
V. M. Aparanji, Uday V. Wali, and R. Aparna
Impact of Named Entity Recognition on Kannada Documents Classification. . . 395
R. Jayashree, Basavaraj S. Anami, and S. Teju
Big Data Analysis - An Approach to Improve Power System Data Analysis
and Load Research . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 403
Sandhya S. Shankarlinga, K. T. Veeramanju, and R. Nagaraja
Contents XXI
24. Backward – Forward Algorithm Approach for Computation of Losses
in LVDS and Proposed HVDS - Towards Loss Minimization
and Voltage Improvement in Agricultural Sector. . . . . . . . . . . . . . . . . . . . . 415
G. B. Prakruthi and K. T. Veeramanju
Analysis of Segmentation Methods on Isolated Balinese Characters
from Palm Leaf Manuscripts. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 430
Deepak Kumar, K. Vatsala, Sushmitha Pattanashetty, and S. Sandhya
Energy Harvesting from Dairy and Hospital Wastewater
Using Microbial Fuel Cell (MFC) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 440
C. Shakunthala and Surekha Manoj
Cognitive Computing in Video Analytics
Anomalous Event Detection in Videos Using Supervised Classifier . . . . . . . . 449
K. Seemanthini and S. S. Manjunath
Classification and Clustering of Infected Leaf Plant
Using K-Means Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 468
Prathyakshini, Akshaya, and C. V. Aravinda
Human Action Detection and Recognition Using SIFT and SVM . . . . . . . . . 475
Praveen M. Dhulavvagol and Niranjan C. Kundur
Novel Real-Time Video Surveillance Framework for Precision
Pesticide Control in Agribusiness . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 492
Nayana G. Bhat and Guruprasad M. Bhat
Author Index . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 501
XXII Contents
27. Thus, based on these measurements EEG signals are segregated into five rhythms,
namely, delta (0.5–<4 Hz), theta (4–7 Hz), alpha (8–15 Hz), beta (16–32 Hz) and gamma
(32 Hz above) that are omnipresent in different parts of the brain [5]. EEG helps in
detecting the various abnormalities of the brain like sleeping disorders, emotional
variance, seizures detection, and in the recent past researchers have been widely using
EEG signals for proposing user identification systems [5, 6], Neuromarketing [14],
rating prediction systems [4] and envisioned speech recognition [7]. Although normal
EEGpatterns are easilyrecognizable, but to evaluate the reason of change in EEG signals
is a cumbersome task. The human brain consists of about 86 million neurons which helps
in controlling all the conscious and unconscious daily decisions [3]. Recognizing and
detecting the activity that could have lead to abnormal behavior of the neuro signals has
made the researchers to analyze the activity happened during the course of action.
Saghafi et al. [11] used power spectrum, variance, maximum, and range features to
discriminate between the eye state change. The authors have used Logistic Regression
and Artificial Neural Network (ANN) classifier to evaluate the system performance
whereas an auto regressive power feature has been used to discriminate between eyes
close and eyes open state. High frequency power has been reported in frontal, parietal,
and occipital areas in eyes close state.
Öner et al. [8] investigated the moments of the eyes using one-channel. The
authors focused on the ocular movements of the eye. The features were selected
using analysis of variance (ANOVA) function and a linear fit model has been used
to report the higher presence of delta rhythm while performing the task. However,
their study was conducted with EEG data of 2 subjects. In [13], the authors have
analyzed left and right hemisphere of the brain using EEG signals recorded in eyes
open state. Occipital lobe and left hemisphere were found more active by analyzing
alpha band waves. Qidwai et al. [10] analyzed the data of six subjects to discrimi‐
nate the two motor activities EO and EC. Different angle features of the eye states
were used for feature extraction and fed directly into a Multilayer Perception (MLP)
based Neural Network classifier for recognition purpose. The authors in [2] have
proposed a methodology to detect the left and right fist motor movement activity
using EEG signals of 6 subjects only. The signals were filtered with a notch filter and
were further preprocessed using Automatic Artifact Removal (AAR) technique. They
have used DWT based signal decomposition technique and three different features,
namely, power, mean and energy were extracted for classification purpose. Simi‐
larly, the classification of imagined left and right fists movement was proposed in [1]
using EEG signals of 20 users. Root Mean Square (RMS) and Mean Absolute Value
(MAV) features were extracted and modeled using SVM and ANN classifiers where
accuracies of 84.5% and 82.1% were recorded from 3 channels, respectively.
Accurate recognition of the performed activity by analyzing EEG signals not only
proves helpful in healthcare but also contributes towards self-evaluation of changes in
daily health parameters. Therefore, in this paper, we analyzed the neuro signals for
activity recognition. For this, two activities, namely, eyes open (EO) and eyes close (EC)
are considered. Figure 1 depicts the flow diagram of the proposed approach, where brain
signals are recorded in one of the two states i.e. EO and EC. The recorded signals are
then preprocessed and two features, namely, Standard Deviation (STD) and RMS are
4 B. Kaur et al.
28. extracted. Finally, the recognition of activities is performed using Support Vector
Machine (SVM) classifier.
Fig. 1. Framework for eyes open and eyes close activity recognition using EEG Signals.
Rest of the paper is organized as follows. The description of signals preprocessing
and feature extraction techniques are presented in Sect. 2. Section 3 presents the exper‐
imental results. Finally, we conclude the paper in Sect. 4 by highlighting some future
possibilities of the present work.
2 Signal Preprocessing and Features
Here, we present the details of the preprocessing techniques used to filter the raw signal
data and the features extracted before classification of the activities.
Preprocessing. It has been analyzed that while recording the data, the EEG signals are
always contaminated with unwanted noise from the surroundings, hair, ocular move‐
ments etc. To get the enhanced performance of the system these artifacts need to be
removed. Bio-signals being non-stationary in nature tends to get distorted due to sensi‐
tiveness of the device. Also, it has been researched that the human brain activities are
limited upto 40 Hz, where higher value signifies noise. Therefore, to remove such noise
and to restrict the frequency till 40 Hz, a low pass filter is used. For this, we have used
a Butterworth low pass filter of 5th
order to preprocess [9] the EEG signals. The filter
can be defined using (1).
H(z) =
q(1) + q(2)z−1
+ … + q(n + 1)z−n
1 + p(2)z−1 + … + q(n + 1)z−1
(1)
where n denotes the filter order with normalized cutoff frequency Wn. It returns the filter
coefficients of length n + 1 as row vectors q and p, along with the coefficients z in
descending powers.
Wavelet Analysis and Statistical Features. As EEG signals are non-stationary, there-
fore, DWT provides a flexible way to analyze the signals in time-frequency domain [5,
14]. It is an analysis technique that is based on sub-band decomposition coding pro-
viding easy implementation and also helps in reducing the computation time. DWT is
Eyes Open and Eyes Close Activity Recognition Using EEG Signals 5
29. widely used in applications including emotion detection, security, seizure detection and
gaming, etc. In this work, we have used Daubechies-4 (DB-4) wavelet to decompose
the EEG signals into five sub-bands, namely, gamma, beta, alpha, theta and delta. Next,
two statistical features i.e. STD and RMS have been extracted from the sub-bands. More
details about the DWT and features can be found in [5].
2.1 Activity Recognition Using SVM
SVM has been widely used by researchers for the classification of EEG signals. It sepa‐
rates the samples into two different classes using the hyperplane [5]. It transforms the
original feature space into a high dimensional space with maximum margin. Different
kernel functions are used to perform the mapping by performing calculations in the data
space and returns it to feature space. For given training data, (x1, y1), (x2, y2), (xn, yn), the
decision function f (x) is defined in (2).
f(x) = sgn{(w ⋅ x) + b} = sgn
(
∑
i=1
yiaik < xi, x > +b
)
(2)
Here (w ⋅ x) represents the dot product between weight vector w and x data with
binary class. The parameter b is defined as a scalar that is often referred to as the bias.
The term αi denotes the embedding coefficients and k <xi, x> is the kernel represented
by the dot product i.e. <., .>. The experimental results are classified by varying kernel
functions i.e. linear and Radial Basis Function (RBF).
3 Results
Here, the details of the dataset and the results of activity recognition are presented. The
computation of the results has been performed using 2-fold cross validation. The details
are as follows.
3.1 DataSet Description
For activity recognition, a freely online available EEG-based motor movement and
imaginary dataset provided by PhysioNet BCI [12] has been used. EEG signals were
recorded from all 64 channels for 1 min. Two baseline tasks, eyes open (EO) and eyes
close (EC) resting state have been used to collect the data from 109 users and are
considered in this work. In order to detect each activity accurately, the EEG data has
been segmented into 10 s. Thus, a total of 1308 EEG files (i.e. 654 for EC and 654 for
EO) have been created for analysis.
3.2 Activity Recognition Results Using SVM
The SVM classifier has been trained for recognizing the activity performed by the users
using the extracted features. The accuracies have been computed for all 5 sub-bands.
6 B. Kaur et al.
30. The recognition results are depicted in Fig. 2, where the maximum accuracy of 86.08%
is recorded on gamma band features.
Fig. 2. Activity recognition results on different sub-bands.
Recognition results for EO and EC have also been evaluated for the gamma band
waves as depicted in Fig. 3, where accuracies of 92.05% and 80.10% are recorded for
both the activities, respectively.
Fig. 3. Recognition rates of EO and EC activities.
A comparative analysis has also been performed by varying SVM kernels. For this,
we have trained the SVM with Linear kernel using gamma band features and compared
the performance with RBF kernel for activity recognition purpose. The comparison is
depicted in Fig. 4, where the proposed RBF kernel based activity recognition outper-
form the other by a margin of 14.37%.
Eyes Open and Eyes Close Activity Recognition Using EEG Signals 7
31. Fig. 4. Comparative performance analysis with linear kernel based SVM.
4 Conclusion
The human brain is a complex structure. Therefore, recognizing the activity performed
by the user is a challenging task. As eyes open (EO) and eyes close (EC) are the most
commonly used baseline activities that users perform while recording EEG signals. In
this paper, we have proposed an activity recognition framework for the two activities
using EEG signals. DWT based signals decomposition technique has been used to
extract statistical features. An online freely available dataset Physionet has been used
in this work that consists EEG signals data of 109 users. The recognition of activities
has been performed using SVM classifier achieving an accuracy of 86.08%. In future,
more activities can be recognized using the proposed framework that will prove helpful
for various healthcare applications.
References
1. Alomari, M.H., Baniyounes, A.M., Awada, E.A.: EEG-based classification of imagined fists
movements using machine learning and wavelet transform analysis. Int. J. Adv. Electron.
Electr. Eng. 83–87 (2014)
2. Alomari, M.H., Samaha, A., AlKamha, K.: Automated classification of L/R hand movement
EEG signals using advanced feature extraction and machine learning. Int. J. Adv. Comput.
Sci. Appl. 4, 207–212 (2013)
3. Azevedo, F.A., Carvalho, L.R., Grinberg, L.T., Farfel, J.M., Ferretti, R.E., Leite, R.E., Lent,
R., Herculano-Houzel, S., et al.: Equal numbers of neuronal and nonneuronal cells make the
human brain an isometrically scaled-up primate brain. J. Comp. Neurol. 513, 532–541 (2009)
4. Gauba, H., Kumar, P., Roy, P.P., Singh, P., Dogra, D.P., Raman, B.: Prediction of
advertisement preference by fusing EEG response and sentiment analysis. Neural Networks
92, 77–88 (2017)
5. Kaur, B., Singh, D., Roy, P.P.: A novel framework of EEG-based user identification by
analyzing music-listening behavior. Multimed. Tools Appl. 76, 1–22 (2017)
8 B. Kaur et al.
32. 6. Kumar, P., Saini, R., Roy, P.P., Dogra, D.P.: A bio-signal based framework to secure mobile
devices. J. Netw. Comput. Appl. 89, 62–71 (2017)
7. Kumar, P., Saini, R., Roy, P.P., Sahu, P.K., Dogra, D.P.: Envisioned speech recognition using
EEG sensors. Pers. Ubiquit. Comput. 22(1–15), 2017 (2017)
8. Öner, M., Hu, G.: Analyzing one-channel EEG signals for detection of close and open eyes
activities. In: International Conference on Advanced Applied Informatics, pp. 318–323
(2013)
9. Palaniappan, R., Ravi, K.: A new method to identify individuals using signals from the brain.
In: International Conference on Information, Communications and Signal Processing, vol. 3,
pp 1442–1445 (2003)
10. Qidwai, U.,khazaalShams, W.: A source-discriminationapproach fordetection of ASD using
EEG data. Int. J. Biosci. Biochem. Bioinf. 3, 492–496 (2013)
11. Saghafi, A., Tsokos, C.P., Goudarzi, M., Farhidzadeh, H.: Random eye state change detection
in real-time using EEG signals. Expert Syst. Appl. 72, 42–48 (2017)
12. Schalk, G., McFarland, D.J., Hinterberger, T., Birbaumer, N., Wolpaw, J.R.: BCI 2000: a
general-purpose brain-computer interface (BCI) system. IEEE Trans. Biomed. Eng. 51,
1034–1043 (2004)
13. Trivedi, P., Bhargava, N.: Comparing alpha wave activity of left and right hemisphere of
brain recorded using EEGlab. Int. J. Sci., Eng. Technol. Res. 6, 170–174 (2017)
14. Yadava, M., Kumar, P., Saini, R., Roy, P.P., Dogra, D.P.: Analysis of EEG signals and its
application to neuromarketing. Multimed. Tools Appl. 76(18), 19087–19111 (2017)
Eyes Open and Eyes Close Activity Recognition Using EEG Signals 9
34. prorsus alienos ab omni pietate, humanitate, dementia, et induat eos
crudelitate et malicia diabolica. Talis enim hie Laban describitur, qui
avaritia adeo 35 ferus, adeo crudelis et äoTogyos redditur, ut ne
ungulam quidem de toto grege libens concedat genero et filiabus.
Haec est sententia huius pacti, in quo simul immanis avaritia Laban
amplificanda et exagitanda est. lam et textum videamus, qui, ut dixi,
propter Eclipsim verborum est obscurior. Primum dicit se
separaturum 40 omne pecus punctatum, etiamsi unum tantum
punctum habeat. Ut si nigro pecori unus aliquis punctus albus sit in
fronte aut alibi: vel album pecus hal)eat unicam nigram notam,
quacunque parte corporis. Et Lac 7
35. 688 Sotlcfungcn über 1. TOofe üon 1535—45. appellatione
videtur compraehendere tanquara sub genere, vel per synecdochen
omnia pecora, nou una tanhim, sed pluribus et quidem parvis
maculis sive punclis respersa. Hoc enim Hebraeis est pecus Nakocl.
Deinde maculosa pecora dicit {Tlialn) quae nos proprie reddimus,
bunte. Sic eiiim diseernmitiir hae duae appellationes. Haee sunt
notata s maculis graudioribus et latioribus, groffe fitctte ^)le^ ^
duorum colorum, albi aut nigri, lila sunt respersa maculis minoribus.
Tertio pecus rufum in agnis segregaturum se ait, hoc est, rufos
agnellos, Differunt autem {Schch et Kaemef) illud generis nomen est
conveniens omnibus aliis pecudibus. Hoc significat agnum anniculum
aut minorem. Quando excessit annum, nun lu vocatur amplius
Kucsacf. Nos paschalem agnum dicimus, ein Ofterlemlein. Quarto:
etiam in caprarum grege maculosas ot punctata« separat, perinde ut
in ovibus. Sed ex agnellis tantum rufos deligit. Sequitur auteui : '
Tdque erit merces mea.' Hie eclipsis est, et est subintelligendum.
Quicquid erit hinc natum istis simile, et maculosnm ex is albis.
Yidetur enim miln relictum esse lacob tantum alborum gregem,
quanquam alii etiam nigras pecudes additas putant. Et est sententia:
Quicquid ex albis nascetur varium et sparso vellere, hoc erit meum.
Tuum vero, quod natum fuerit album. Est igitur admodum iniqua
conditio, siquidem conti-a naturam est ex albis capris aut ovibus
generari rufas aut 20 maculosas. Tarnen eam offert homini avaro :
Tu enim, inquit: respondebit mihi iustitia mea, id est. ero iustus.
Quia pendet haec pactio ex Fortuna at casu, si forte eveniat, ut ex
albis mihi nascantur pecudes maculosae, ne quid insidiose aut
fraudulenter a me fieri suspiceris, quanquam nullam unquani tibi feci
iniui'iam. Porro quicquid non varium, sed unius coloris 25 et album
apud me inventum fuerit, id furto tibi surreptum dicito. et libere me
furti arguito. Valde dura obligatio est viri tam sancti et iusti apud
nebulonem impurissimum. Et apparet inde, Laban saepe conviciis
incessisse lacob, si quando non satisfactum fuit cupiditati et avaritiae
ipsius, tanquam furto 30 aliquid ablatum esset, aut familia lacob
mactasset et comedisset oves, capras etc. de grege. Aut saltem
eiusmodi increpationibus et conviciis intermiriari et cavere voluit, ne
36. quid in suuni commodum verteret laoob: Tametsi de fide eius et
diligentia non posset dubitare. 30,34 Dixitque Laban: Age, utinam
fiat iuxta verbum tuum. 35 Videtur Laban adhuc dubitare et diffidere
lacob. Utinam, inquit, vel modo fiat, quod dixisti. Age experiamur,
donec videam, an respondeat foetura meae expectationi. Quanquam
suae avaritiae accommodata omnia videt: tarnen nondum pro rato
accipit: sed cum conditione, ur possit 3 Nakod] "ip: 1 ( Thata)] XlVu
S/9 {Sclieh et Kaemef)] nc et 3B3 ') = Flecken.
37. SBotleiunaeii übet 1. SKofe Aap. 30, 32 -34. 6^9 mutare et
rescindere pactum, quando aut quotios velit. Slcut infra audiemiis
decoiu vicibus mutatum esse. Augescit igitur magis ac magis
detestatio avaritiae Laban. Quia ringitur adhuc, cum offert gener
aequissimam couditionem et sibi iniquisaimam. Non adsentitur
liquido: Non ideo, quin 5 utilem sibi et amplectendam statueret. sed
ut retineat potestatem, ad quemlibet eventum retraetandi et
recusandi. Viden, avaritia quid facit? Praeclare igitur a Poeta dictum
est^: Auri sacra fames, quid non mortalia cogis pectora? Ita enim
mutantur homines, ut niiiil humani rotineant, sed fiant statuae et
simulachra sine omni sensu humanitatis. Et 10 pulchre huc
accommodatur id, quod Psalra[0 1 1 1} [!]. dicitur: 'Simulachrn uf-
iis, 4. ( gentium argentum et aurum, similes illis fiant, qui faciuiit ca,
et omnes, qui confidunt in eis.' Usurarii, raptores, avari non sunt
homines. 'Oculos tü.ns, sf. habent, et non vident. Aures habent, et
non audiunt.' Et Ecclesiast[ico 10. Sit. iu,7 scriptum est: Avaro nihil
esse scelestius. Sunt enim homines äarogyoi, i.i immanes. crudeles,
qui si omnium hominum vitam obulo possent rcdimere, non darent:
Sunt igitur latrones et homieidae, quia rapiunt ea et vorant, quibus
alii frui et sustentari deberent. Quod si vel exigua scintilla
humanitatis in Laban fuisset reliqua, debuisset flecti ad humanitatem
et beneficentiam virtute et liberalitate 20 generi, et cogitare: Video
generum meum ingenio bono et honesto piaeditum, et adeo
mearum rerura studiosum, ut conditionem non modo tolerabilem,
sed et maxime quaestuosam offerat; Sed avertat Deus, ut eam
accipiam. Habet filias meas uxores, cum quibus honeste et amanter
vivit. et fideliter mihi quatuordecim annis serviit. Nae ego crudelior
fuerim 25 quavi^ bestia. Si mea commoda ex eius compararem
incommodis: Sed nihil herum ne pei* somnium quidem cogitat, quia
avaritia omnem humanitatem, verecundiam et ipsara naturam
hominis extinguit, et efficit simulachra argenti et auri etc. Itaque
valde mihi placet Poetarum fabula de Mida rege, cuius 3u attactu
scribunt omnia in aurum vera esse, quemadmodum voto optaverat
fieri. Tales nimirum sunt avari instar statuarum argentearum aut
aurearum, sine ullo sensu humanitatis. Et praeclare alibi dictum est
39. 690 Sotleiiingctt über 1. IlJofe Don 1535-45.
30,.i5.36Separavit igitur eadeni die hircos notis et maculis respersos,
omnesque capras punctatas et maculosas. omnes. inquaiii. in quibus
albedinis aliquid erat. Deinde quiequid erat nigruin in agnis, et dedit
eas siib manus filiorum suoruni. Posiiit vero spacium itineris trium
dierum inter se et inter lacob, qui ■■■ pascebat reliquos gregea
Laban. Moses hie aliis nominibus iititur, quam antea. Supra dixit:
rufum pecus in agnis. Item punctatum in nvibus et capris. Hie hircos
nominat, ut significet ingentem et inexplebilem cu])iditatem Laban,
qui etiam eas pecudes segregarit, quae non fuerunt noniinatae in
pacto. Quanquam enim i» id per Syriecdoehen supra fieri diximus,
tamen non temere videtur diversis appellationibus priores mutasse
{Ekudim) Hircos maiores signiticat, qui praecedunt gregem. Sicut
(Thaischim) Hircos minores sive capreolos, qui aluntur ad escam,
non ad foeturam. Etymologiam vocis {Ekudim) non scio. (Akad)
significat vincire. Ideo i.-. exponunt pro hircis. qui habent circuhim
album in nigris pedibus, aut econtra, quo quasi revincti pedes
videntur. Aut. quod mihi magis phxcet, eos intelligit, qui per dorsum
habent maculas oblongas, ein laugen ftnemen *, cuiusmodi fere
omnes hirci habent. Ut hoc quoque conveniat ad amplificandam
avaritiam Laban, qui exquisitissimo separavit etiam eos. quorum 20
maculae vix notari poterant. Ideo enim dicit: Omne, quod erat in eis
album, et omne nigrum in ovibus, quasi diceret: Cum iam pecudes
sparsis pellibus separasset, hane curam quoque adhibuit, ut in
singulis, quae unius coloris erant, etiam pilos dispiceret in podibus
aut barba, si qui essent diverso colore notati. Tarn anxia et solicita
segregatione usus est erga 25 ■filias et generum, ut declararet
animum sordidissimura omnium mortalium, et Dei odio dignum.
Atque hactenus de pacto. 30,.S7— ssPorro lacob accepit virgas de
populo viridi. de corilo et castanea, et decorticavit eas, ut albedo
appareret, denudans scilicet, quod album erat in virgis. Et posuit
virgas, quas decorticavit, 30 in canales aquarum ante oculos oviuin,
ut potum venientes in aspectu earum concipcrent. Concipiobant
itaque oves ante virgas, et pariebant diverso coloro asperaaa, ac
punctis et maculis notatas. Audivimus Laban avide et anxie novae
40. rapinae inhiasse. Sed quid .is fity üeus monstrat lacob singulare
artificium, quo corrigat et mutet naturam. Sumit enim virgas ex
tribus arboribus, et eas deglubit, non quod corticem prorsus
detrahat, sed ut varietatem quandam colorum albi 12 (Ekudim)] D-
i^p? 13 (Thaischim)] n''Bi^n 15 (Akad)] Ipf ') = Slrei/'en.
41. The text on this page is estimated to be only 29.23%
accurate
Süotlefungcn übev 1. Woe Aap. 30, 35— 39. (i;)| et nigri
efficiat: ita iit una parte album propter detractum coiticem, altei'k
niirruin rclicto cortice appareat. Has ponit in canales aquarios, ut
oves ante ocuioss virgaa habeant. c^t in aspectu earum eoiicipiant.
Fuit ingeniosa l'liilosophia sive niagia. (pia cff'ecit, ut oves in ardore
libidinis, 5 aspectu variaruin virgaruni vaiios foetus procrearent.
Atque ita ex grege albo aut nigro nati sunt multicolores et maculosi.
Concipiebant, in llebraeo est Jehemu a Jahum: calofaciel)ant se oves
ad virgas, id est, coibant. Psal^moSl.; 'In peccatis {Jechmatcni)
concaluit, concepit nie mater mea', «(. r.i, 7 id est, ardore libidinis et
turpi pruritu carnis conceptus suin. Significatur 10 calor generans,
qui ante lapsuiii fuit purus: et ad generationem conditus et
necessarius. Sed iam infectus est peccato originali. Non est innoxius
ardor, sicut fuit initio, sed est libidine et concupiscentia corruptus: Sic
igitur arte atque ingenio, aut magia naturali fallit lacob artem, sive
potius malitiam Laban, quam magiam Patres sive usu longiore, sive
ex institu15 tione maiorum didicerunt. lauob enim haud dubio ab
aliquo Patriarcharum aut instinctu divino per spirituni sauctuin
edoctus fuit. Et est res certa, et conveniens cum doctrina
medicorum, qui adfirmant, in conceptu oronium animaliuni, non
brutorum tantuni. sed et hominum, peculiares formas aut maculas
imprimi foetibus. cum ex imaginatione, tum ex variis obiectis 20
animo aut oculis obversantibus. non solum in ipso ardore conceptus,
sed etiam post impraegnationcni. Hieronymus et Physici recitant
exemplum reginae, quae enixa fuit infantem forma et facie
Aethiopis, propter fortem imaginationem Aethiopis depicti in tabella
ad lectum. Aliam item narrant fuisse accusatam de 25 adulierio,
quod deformis ipsa peperisset formosum infantem, uti'ique parenti et
toti generi dissimilem: et damnata esset, nisi Hyppocrates eam
liberasset, monens, ut ex ea quaereretur, an iiabuisset pictam
aliquam tabellam in cubieulo, cuius aspectu esset delectata, quae
cum esset inventa, absoluta est a iudicibus. Sic in facie, oculis. genis,
cervice bifantuni sparsas inter30 dum maculas sanguineas aut
42. alterius coloris videmus; Quando nimirum gravidae subito aspectu
aut terrore rei inusitatae percitae manus illis membris admoverunr.
Vidimus hie Witebergae civem facie cadaverosa, qui dixit matrem
ferentem uterum subito oblato oculis cadavere ita fuisse exterritam.
ut facies foetus in utero cadaveris formam indueret. 3", Idem fieri
studiose solet in admissione pecudum et iumentorum. Sicut adfirmat
Hieronymus, apud Hispanos generosissimos equos statui ante equas
in admissura. ut illis similes pulli procreentur. Ideo non est iocandum
cum praegnantibus, sed dUigens eura earum habenda est propter
foetum. Infinita enim sunt pericula abortuum, monstrorum,
deformitatum 40 variarum. Maritus igitur tum maxime 'secundum
scientiam', ut inquiti*ctrt3,7 7 Jehemu a Jaham] man- a on^ S
{Jechmateni)] "^^nsri^ 44*
43. 692 Sßotlcf Uligen übet 1. OToic üpii 1535—45. Petrus: oiiin
uxorc hubiteh Memini nie puero Isenaci formosam et pudicam
inatronain eniti glirem: quod eo iiccidit, (juia ex viciuis aliquis gliri
suspenderat iiolam, ad cuius sonitum reliqui fugaientur. Is occurrit
mulieri gravidae, quae ignara rei subito occursu et aspectu gliris ita
est conterrita, ut foetus in utero degeneraret in formani bestiolae.
Talia exempla nimis s usitata sunt, quando pracgnantes saepe subitis
adfectibus et pavoribus concitantur, cum vitae discrimine. Cavendum
itaque est, ne accidant eis vehementiores cum corporis, tum animi
commotiones. Qui enim gravidarum non habent rationem, nee
parcnnt teilen» fuetui, fiunt homicidae et parricidae. Sieut quidam
usque i" adeii crudeles sunt, ut etiani verberibus saeviant in
gravidas: fortes scilicet et aniniosi in sexuni imbecillem. alioqui vovo
ignavissimi. Nani nuper audivimus Prineipem queiidam, multis aliis
sceleribus et flagiciis nobileni, in coniugem languentem et adfixani
lectulo sti-inxisse gladium. Egregiuni vero heroem, et militem
strenuum. Atqui id niinime heroicum: sed flagi- 's ciosum est et
turpissimum. Si enim vir es, invenies parem, cum quo congrediaris.
Heroes sunt fortes contra fortes, et infirmi erga infirmos. Quid est,
quod adversus puerum et mulierem praegnantem pugnam cies. Satis
superque satis alioqui periculorum est huic sexui, etiam apud
moderatos maritos, a vicinis, a Diabolo, a variis spectris et
imaginibus brutorum. ■-
44. The text on this page is estimated to be only 29.64%
accurate
'Jottcfiniiicu iibci 1. l'fofc fia). .'iO, 37—43. 693 Altera
iiiduistria est de verno et autumnali conccptu. Usus enim ost Iaci)b
suo artificio in primo, id est, veriiu conceptii, quando ovcs sunt
tortiores: tum posuit virgas in canales, ut robustiores footus fiereiit
vaiii, qui ad se pertinebant. [n autiimnali autem et serotina
admissura oves ."> debiiiores sunt, propteroa quod dcstitiiuntur
caloro «olis. quem liabent in vcre. Ideo tum non ])()ncbat virgas, ut
securidum naturam nascerentur unius coloris agni, qui uil Laban
pertinebant. Vernae autem admissurae idoo sunt meliores, quia fiunt
ascendentc sole, quando redit oalor, et omnium herbarum et
animalium vires augentur. 10 Curavit igitur lacob, ut haberet oves
meliores et fortiores, Vernas scilicet, bic fviiling, Sicut autumnales et
serotini dicuntnr bic f^ietling unb iüinter^ fdjaff. ('actcrum haec satis
ingeniosa industria, imo calliditas et propuinodum nequitia fuit. Et
tarnen ibi quoque aequitatem et moderationem talem servavit lacob,
ne moveret suspicionem avaro socero, quod arte li fallerotur. Tn
admissura hyberna nihil mutabat, ut et Laban aliquam ])artem
retineret, nee in totum spoliaretur. Egrogie igitur circumvontus est,
nee ])otuit intelligere, qui fieret, quod foetus verni ederentur sparsis
pellibus, et autumnales sequerentur naturam. Cogitavit id fnrtuito
aut benedictiono divina fieri. Ideo mutavit pactum, ut infra dicntur.
decies, -'11 übi. si unquam antea, maxime insigne et detestandum
specimen avaritiae suae aedit. Quia enim videbat vernos foetus
meliores et robustiores esse, rescindebat pactum, et deligebat
varios. Ibi cum lacob non corrigeret naturam suo artificio, edebantur
unius coloris, et iterum obveniebant lacob meliores, rursus igitur
fallebatur. et rursus ipse mutabat tertia, quarta, imo -'5 decima vice.
0 turpem et conspuendam ab omnibus avaritiam. Flagellant autem
me Rabini nostri, quod male reddiderim hunc locum in translatione
germanica.' Addunt enim ipsi tertiam industriam ex eo, quod dicitur
posuisse separatum gregem ad oves in grege Laban etc. Id sie
interpraetantur, quod maculosos agnos in unum gregem redactos
fecerit 3u antecedere gregem ovium Laban, ut sequentes oves
45. contemplatione praecedentium variorum alios maculosos foetus
ederent. Sed haec orta sunt a pessimis et avarissimis Rabinis, qui
sanctissimum Patriarcham ex suo ingenio metiuntur, quasi non fuerit
contentus illa magia. Sed etiam in conspectum unicolorium gregum
adduxerit maculosas oves, ut non tantum 35 ex variaruni virgarum,
sed etiam ex varii gregis aspectu varietatem quandam induerent
foetus. Cum tarnen Moses tantum de virgis loquatur, et prorsus
contrarium velit, videlicet, quod lacob semoverit gregem varium in
alium locum. De agnis enim loquitur, quos segregavit. Sicut hodie
etiam agnellos seorsim ponunt, quando matres in pascua ducunt. Et
40 seiuncti fuerunt duo greges spacio itineris trium dierum. Ideo non
potuerunt simul esse in uno aliquo loco uterque grex, lacob et
Laban. ') Vgl. SU dem ganzen Ahscimitt: Unsre Ausg. Bibel 3, iüOff.
46. 694 üüoittimigeii üDcv 1. 3JJofe Uoii 15:35—15. Hac autem
industria scribit Moses lacob valde looupletatiim esse. Sive, ut est in
Hebraeo. Dirupit vir ille, id est. auctus est supra moduin. Atque haec
mihi quidem videtur esse gennana et genuina sententia huiiis loci
admodum obscuri, congruens cum iudicio omnium oatholicorum, et
sumpta ex collatione consequentium, quae quidem hanc sententiam
inagis s illustiabunt et confirmabunt, et ex accurata consideratione
circumstantiarum omnium. Quaeritur autem, an possit excusari hoc
factum lacob, quod manifesta fraude socerum Fallit. Habet enim
quandam speciem avaririae, vel potius furti et rapinae. Cur enim non
servat ordinem naturae utruque tempore, >" verno et autumnali?
Respondeo: Ex üs, quae supra dicta sunt, et quae sequentur infra.
varia et honesta excusatio sumi potest. Primum iure humane
excusatur, quod concedit iis, qui serviunt dominis avaris et iniquis, si
nihil mercedis solvunt, sed tantum rapiunt, spoliant, expilant, ut
vicissim rapiant, quod debetur eis pro mercede: Sed debito modo:
ne fiat id cum is detrimento domini. Sic filii Israel spoliaverunt
Aegyptum, mercedera accipientes iniustae servitutis, quam Aegypti
nondum persolverant. Ad eundem modum lacob servierat
quatuordecim annis, et multis miseriis, difficultatibus et molestiis
conflictatus t'uerat, et tarnen iusta mercede fraudabatur. Ergo iure
ad eum pertinebat hoc, quod rapiebat, etiani jo invito et inscio
Domino. Haec una responsio est. Secundo, tametsi est dolus et
fallacia, tamen fecit eam lacob autiioritate divina. Quia Angelus
apparuit et monstravit ei hanc magiam naturalem et licitam esse. Ex
Angelo igitur vel ex sanctis patribus lacob eam didicit, qui magnam
rerum experiontiam et cognitionem habuerunt. Quando •„■5 vero
iubet Deus sanctos et fidelos vires aliquid facere, id sine uUa
dubitatione sanctum est et licitum. Tcrtio, infra dicet: (Nam hoc
Caput sine se(]uenti intelligi m)n |)otest) Deus respexit laborera et
adflictionem meam. Ibi audiemus, quibus angustiis impulsus fuerit
ad hanc fraudem struendam. Quod furto peribat, dicet: uu cogebar
solvere: Nisi Deus patris mei Abraham et timor Tsaae adfuisset, nunc
quoquo vacuum me ablegasses. Optimus et fidelissimus lacob nullam
spem habuit comparcendi aut colligendi peculii alicuius propter
47. rapacitatem inexplebilem soceri. Ea profecto non fuit exigua.
calamitas. qua motus est ad rapinam hanc, praesertim cum
accederet autoritas divina, qua iube- 35 batur hoc facere. Plus enim
ex te sensit Laban commodi, dixit Angelus. quam tu ei possis
ra])ere. Idee iure potes uti arte et fallacia, ut ab eo aliquid auferas,
non raptum, .sed a Deo ipso concessum et datum. Itaque et
humano et divino iure et extrema nccessitate excusatus est lacob.
Non autem cuivis imitandum hoc exemplum erit, nisi in simili casu.
4u Alioqui enim oculi nequam in factum ipsuni tantum intuentur,
posthabitis circunstantiis, et pro exemplo aliis rapinis temore
accommodant. Verum
48. The text on this page is estimated to be only 24.85%
accurate
Söotlefungen über 1. 3J?oic Stap. 30, 10-43. 09.')
nequaquam id sequeris, nisi per omnia similis fueris lacob, et omnes
circunstantiae in caau aimili te impiilcrint. Is onim auxit rem
familiärem soceri, vi aervivit tarn duriter avarissimo et rapacissimo
fjabaii: qui ne victum quidem sufficientcin ei praebuit, passus est
vigilias, famem, sitim, s acstum. frigus iioctu dieque sine ulla
compensatione aut premio. Quin insuper cogitavit Laban [lacta
mercede cum spoliare, siquidem retinet arbitrium mutandi pactum,
quoties vult. Hae circumstantiae diligenter aspiciendac et
perpcndendae sunt: tum non accusabitur Taeob avaritiae; neque
quisquam etiani tacile exemphim hoc imitari volet; (iuia est heroi10
cum, sicut alia multa in Patriarchis. De heroicis autem factis supra
diximus. Aliquando ad regulas se accommodant heroici, aliquando
non: Sed lacob hie non peccat contra reguhim: Quia succurrit ei ius
naturae et civile, et Christus inquit: 'Dignus est mercenarius mercede
sua.' watti). lu.io
49. The text on this page is estimated to be only 21.76%
accurate
ÜJftditrägc uub ÜBeriditigungcii. 3u Sanb 42. Ztii S. 370, 6':
— 't'elici culpa' bezieht sich auf die litunjische Sentenz: felis culpa,
quae tantum et talem meiuit habere ledemptorem; «//. Forster,
Ambrosius, Biscliof ron Mailand 1884. S. 297 Nr. 60. V(jl. Unsre
Ausg. Bd. 45, 734 (Nachträge) zu S. 349, 4. [G. B.] 3u SSanb 43. Zu,
S. 671 Anm. 3. — Unsre Ausg. Bibel 3, 199f. hat Luther tiähere
Betrachtungen über Mandragora (Dudaim, Alraun) angestellt. — Die
Judenkirsche, physalis Alkekengi, geliört zur Gattung der Solaneen;
die hindber, rubus Idaeus, ist die Himbeere: dagegen heißt
Brombeere Chamaemm-us (linzykhpädie der gesamten Pharmazie
ed. Moeller und Thoms) [aber auch 'batus (s. Die/fenbach-Wiilcker,
brambeere; chamaebatus also = chamaevim-us, da batus = marus
eine am Boden hriechende Art, Fuchsbeere, Bocksbeere (Heinsius,
Wörterbuch) bezeichnet. 0. B.]. [K. Dr.J Sffltitnar. —
$of=®ii^bni({eiei. <4!apiev »Oll (Dfdrübet ^aifilin in ^Pfuüiiigeii
(JOUrttcmOcva).
50. The text on this page is estimated to be only 0.14%
accurate
Wi ^ * irr a» 'is'Slii ^A
57. The text on this page is estimated to be only 0.03%
accurate
f^'a^* >« w :^m^ ^* ^ ^'::^; '^3^^ 'i^^^: %^'m.;-K
^^lar.". % -:.m :^''m. "S ..■•^. ■■m2^. ^:^^^>ic--«=C: ;.!■!'-,
Mrm-^ ^^*.. vf V. ;* 'a ,^ ■t'^m^^ß^.,^ :5g! ■:^'.,.■ '*■ j'-F
^Mm^^^^^ M. m '-m'^m:::mm£m
58. The text on this page is estimated to be only 0.45%
accurate
09 ^p ■■ ^ ««JT*^' .^«-^ , 1 * -» -»
59. Welcome to our website – the ideal destination for book lovers and
knowledge seekers. With a mission to inspire endlessly, we offer a
vast collection of books, ranging from classic literary works to
specialized publications, self-development books, and children's
literature. Each book is a new journey of discovery, expanding
knowledge and enriching the soul of the reade
Our website is not just a platform for buying books, but a bridge
connecting readers to the timeless values of culture and wisdom. With
an elegant, user-friendly interface and an intelligent search system,
we are committed to providing a quick and convenient shopping
experience. Additionally, our special promotions and home delivery
services ensure that you save time and fully enjoy the joy of reading.
Let us accompany you on the journey of exploring knowledge and
personal growth!
textbookfull.com