SlideShare a Scribd company logo
COMPUTATIONAL
CHEMISTRY
CARLOS J. CABELLO LÓPEZ
NICOLE M. CRUZ REYES
STEPHANNIE ROSARIO GARRIDO
ADRIANA N. SANTIAGO RUIZ
PROF. DALVIN MÉNDEZ
UNIVERSITY OF PUERTO RICO IN CAYEY
DEPARTMENT OF BIOLOGY
RISE PROGRAM
CONTENT
• Introduction:
• Definitions
• Concepts
• Programs  Definition
• Problem & Hypothesis
• Methodology & Results
• Discussion:
• What do our results mean?
• Comparisons
• New Application
• Conclusion
• Cited Literature
INTRODUCTION
COMPUTATIONAL
CHEMISTRY
• Computational Chemistry is a branch of chemistry that uses
the product of theoretical chemistry that is translated into
computational programs to calculate molecular properties and
its changes and also to perform simulation to macromolecular
systems. (Rusdi 2007)
BASIC CONCEPTS
• Chemical compounds  Electronegativity
• Molecular compounds
• Ionic compounds
• Polarity
• Redox Potential
• LUMO/HOMO
M+ NM-
SCHRÖDINGER’S
EQUATION
• H=Hamiltonian operator, total energy of the electron within the atom
• E=Actual energy of the electron
• Ψ=wave function, describes the wavelike nature of the electron (Tro
2014).
By modifying H, various molecular properties can be studied.
Hψ = Eψ
PROGRAMS
• Gabedit (ORCA)
• Excel
• R Studio
OBJECTIVES
• Be able to obtain a knowledge about computational chemistry,
its relevance and application’s in science
• Learn to use the Gabedit program
• Calculate the redox potential of certain molecules
• Assigned
• Created
• Modified
• Analyze the final data using R Studio
PROBLEM
If the molecules are correctly drawn and
the proper chemical group was added to
each model, will the experimental values of
the redox potentials match the postulate
values?
HYPOTHESIS
By analyzing the obtained data of the
molecular models with the Gabedit (ORCA)
program, and using the R Studio to create a
graph of the results, the Redox potentials
will match their postulate values.
+
DISCUSSION
METHODOLOGY
&
RESULTS
PROCEDURES
PROCEDURE #1
1. Draw the molecule in Gabedit (this is mainly visual)
2. Close the tab where the molecule is drawn
3. Click on “ORCA”
4. Write an input file
a. Copy the results the program gives
b. Paste the results in any text-editor program (TextEdit (Mac), Notepad
(Windows), there are many options to choose from)
i. Use the correct format to write before and after the results pasted
c. Save the document with “.inp”
5. Write the “sh” file
a. With an sh file already written change the title of the files being
used
b. Make sure the names are written correctly since those files will be
used by the Super Computer to produce the final file
6. Use the files to reproduce the results using a Super Computer
RESULTS #1
0
0.5
1
1.5
2
2.5
0 1 2 3 4
DipoleMoment(Debye)
# of Cl
Dipole Moment vs # Cl Atoms
exp
HF
DFT
normalized guess
ASSIGNED
MOLECULES
FILES
Input file
“Sh” files
PROCEDURE #2
1. Choose a molecule (or create a completely new one)
2. Add an Electron Donating Group or an Electron
Withdrawing Group
3. Make a prediction of the redox potential
4. Compare the prediction with the results obtained
RESULTS #2
• Explain problem
RESULTS #2
PROCEDURE #3
1. Use the theoric results from the paper titled “Building and
testing correlations for the estimation of one-electron
reduction potentials of a diverse set of organic molecules.”
(Méndez-Hernández et al. 2014)
2. Make a table with the theoric and the experimental results
obtained from procedure #1.
3. Compare and analyze the values on the table
RESULTS #3
Table 4: Results of Dipole Moments (used for Graph 2)
Name Molecule
LUMO E
(eV)
red. Potential
(V)
Adriana N. Santiago-Ruiz 1 -2.0457 -1.9
Adriana N. Santiago-Ruiz 2 -2.5354 -1.6
Adriana Vera-Rios 3 -3.2039 -1.1
Adriana Vera-Rios 4 -3.2977 -0.95
Carlos Cabello-Lopez 5 -3.9205 -0.75
Carlos Cabello-Lopez 14 -3.0212 -0.8
Carlos Villagrasa-Mendez 15 -3.1292 -0.75
Carlos Villagrasa-Mendez 16 -3.2487 -0.63
Cristina Rivera-Quiles 17 -3.3917 -0.58
Cristina Rivera-Quiles 18 -3.5354 -0.47
Edmaritz Hernandez-Pagan 19 -3.7898 -0.34
Edmaritz Hernandez-Pagan 20 -4.0163 -0.18
Emmanuel Santiago-Burgos 21 0
Emmanuel Santiago-Burgos 22 -4.1968 0.02
Gabriel Pastrana-Castellanos 23 -4.2725 0.05
Gabriel Pastrana-Castellanos 24 -4.8039 0.28
Joanly Rivera-Ortiz 25 -5.0953 0.59
Joanly Rivera-Ortiz 26 -5.767 0.9
Laura Diaz-Mendez 39 -1.4753 -2.1
Laura Diaz-Mendez 40 -1.4425 -2.15
Marangely D Martinez-
Justiniano 42 -1.3747 -2.2
Marangely D Martinez-
Justiniano 43 -1.1817 -2.22
Natalia D Rivera-Sanchez 44 -1.8144 -2.4
Natalia D Rivera-Sanchez 69 -0.613 -2.636
Nicole Cruz-Reyes 72 -1.4182 -2.08
Nicole Cruz-Reyes 45 -0.9618 -2.66
Rafael J Cummings-Lopez 48 -1.6345 -2.1
Rafael J Cummings-Lopez 6 -1.8068 -1.98
Stephannie M Rosario-Garrido 7 -1.8144 -1.96
Stephannie M Rosario-Garrido 8 -1.8867 -1.88
Valeria Laboy-Collazo 9 -2.7621 -1.27
Valeria Laboy-Collazo 49 -0.9959 -2.62
GRAPH (EXCEL)
THE “HOLISTIC” TABLE
Molecule LUMO E (eV) red. Potential (V) Theorical estimate residual residual^2
1 -2.0457 -1.9 -1.77684976 -0.1231502 0.01516598
2 -2.5354 -1.6 -1.42269872 -0.1773013 0.03143574
3 -3.042 -1.1 -1.0563256 -0.0436744 0.00190745
4 -3.144 -0.95 -0.9825592 0.0325592 0.0010601
5 -3.648 -0.74 -0.6180664 -0.1219336 0.0148678
14 -3.4684 -0.8 -0.74795312 -0.0520469 0.00270888
15 -3.5674 -0.75 -0.67635632 -0.0736437 0.00542339
16 -3.6795 -0.63 -0.5952856 -0.0347144 0.00120509
17 -3.3917 -0.58 -0.80342256 0.22342256 0.04991764
18 -3.5354 -0.47 -0.69949872 0.22949872 0.05266966
19 -4.2206 -0.34 -0.20396208 -0.1360379 0.01850632
20 -4.4852 -0.18 -0.01260336 -0.1673966 0.02802164
21 -4.754 0 0.1817928 -0.1817928 0.03304862
22 -4.1968 0.02 -0.22117424 0.24117424 0.05816501
23 -4.2725 0.05 -0.166428 0.216428 0.04684108
24 -4.8039 0.28 0.21788048 0.06211952 0.00385883
25 -5.095 0.59 0.428404 0.161596 0.02611327
26 -5.767 0.9 0.9143944 -0.0143944 0.0002072
39 -1.4753 -2.1 -2.18936304 0.08936304 0.00798575
40 -1.4425 -2.15 -2.213084 0.063084 0.00397959
42 -1.3799 -2.2 -2.25835632 0.05835632 0.00340546
43 -1.1773 -2.22 -2.40487664 0.18487664 0.03417937
44 -1.1465 -2.4 -2.4271512 0.0271512 0.00073719
69 -0.613 -2.636 -2.8129784 0.1769784 0.03132135
72 -1.4182 -2.08 -2.23065776 0.15065776 0.02269776
45 -0.9618 -2.66 -2.56072624 -0.0992738 0.00985528
48 -1.9085 -2.1 -1.8760728 -0.2239272 0.05014339
6 -2.2757 -1.98 -1.61051376 -0.3694862 0.13652008
7 -1.8144 -1.96 -1.94412592 -0.0158741 0.00025199
8 -1.8867 -1.88 -1.89183856 0.01183856 0.00014015
9 -2.7621 -1.27 -1.25874928 -0.0112507 0.00012658
49 -0.9959 -2.62 -2.53606512 -0.0839349 0.00704506
RMSD abs(residual) LAD
0.12315024
0.17730128
0.0436744
0.0325592
0.1219336
0.05204688
0.07364368
0.0347144
0.22342256
0.22949872
0.13603792
0.16739664
0.1817928
0.24117424
0.216428
0.06211952
0.161596
0.0143944
0.08936304
0.063084
0.05835632
0.18487664
0.0271512
0.1769784
0.15065776
0.09927376
0.2239272
0.36948624
0.01587408
0.01183856
0.01125072
0.08393488
0.14785051 0.12059179
y = -0.7232x - 3.2563
R² = 0.97897
-7 -6 -5
PROCEDURE #4
1. Import Excel file with the organized collected data
a. Important: choose ‘x’ and ‘y’ columns correctly
2. Use the command in order to tell the program to read all the data needed
3. Create a linear model with the imported data
4. Create a column with the predicted values using the explanatory variable
(le)
5. Calculate the error stats
a. In order to obtain the most accurate amount of data
6. Create the plotting graph with the imported data
a. It is possible to customize the graph with colors
7. Calculate the Root Mean Standard Deviation (RMSD) and the Mean Absolute
Deviation (MAD)
8. Label the axis with the corresponding titles based on the data being
graphed
9. Export graph and save the file
RESULTS
GRAPHED
WITH R
−6 −5 −4 −3 −2 −1 0
−4−202
Ered vs. Î LUMO
Î LUMO / (eV)
Ered/(V)
R2
= 0.979
Ered = -0.72 Î LUMO - 3.3
−6 −5 −4 −3 −2 −1 0
−4−202
Ered vs. Î LUMO
Î LUMO / (eV)
Ered/(V)
R2
= 0.979
Ered = - 0.72 Î LUMO - 3.3
COMPARISON
VS
CONCLUSION
• We were able to obtain a knowledge about computational
chemistry, its relevance and application’s in science
• Learned to use the Gabedit program
• Calculated the redox potential of certain molecules
• Assigned
• Modified
• Redox potential matched the reported values
• Hypothesis was proven
• Analyzed the final data using R Studio
• Benefits of using the programs
APPLICATIONS
• Medical applications
• What is the benefit of making a drug harder to oxidize?
• Metabolism of drugs
(Vogel & Catherine)
CITED LITERATURE
Lynch E, Speelman A, Curry B, Murillo C, Gillmore J. 2012. Expanding and
Testing a Computational Method for Predicting the Ground State
Reduction Potentials of Organic Molecules on the Basis of Empirical
Correlation to Experiment. ACS. 77(15):6423–6430.
Méndez Hernández D, Gusta D, Moorea T, Gillmorea J, Montano L, Moore A,
Mujica, V. 2015. Building and testing correlations for the estimation
of one-electron reduction potentials of a diverse set of organic
molecules. Physical Organic Chemistry. 28(5):320–328.
Reece J, Urry L, Cain M, Wasserman S, Minorsky P, Jackson R. 2014.
Campbell Biology. 10th ed. Glenview, IL: Pearson Education.
28-56 p.
Rusdi, R. Basic definition of computational chemistry [Internet]. [Updated
2007 February 9]. [cited 2016 May 4]. Available from: https://
stalischem.wordpress.com/2007/02/09/basic-definition-of-
computational-chemistry/
ACKNOWLEDGEMENTS
• RISE Program
• Dr. Díaz
• Dr. Ross
• Dr. Bansal
• Special thanks to…
• Dr. Méndez
QUESTIONS?

More Related Content

PDF
Applications of Computational Quantum Chemistry
PDF
Computational Chemistry: From Theory to Practice
PPTX
Huckel Molecular Orbital Theory
PPTX
Advantages and applications of computational chemistry
PPT
Computational Organic Chemistry
PPTX
Dye sensitized solar cells
PPTX
Multicomponent reaction
PPTX
Quantum Chemistry
Applications of Computational Quantum Chemistry
Computational Chemistry: From Theory to Practice
Huckel Molecular Orbital Theory
Advantages and applications of computational chemistry
Computational Organic Chemistry
Dye sensitized solar cells
Multicomponent reaction
Quantum Chemistry

What's hot (20)

PPTX
PPTX
Basis of photochemistry
PDF
Self-assembly-sides 1_RFS
PDF
Molecular geometry and chemical bonding
PPT
Intro. to quantum chemistry
PPTX
Rutherford scattering & the scattering cross-section
PPTX
Mössbauer spectroscopy ppt
PPTX
Reactions in solution [ solution kinetics]
PDF
Group theory questions and answers
PPTX
Density functional theory
PPTX
Kinetics of Thermochemical chain reactions
PPTX
group thoery and character table
PPTX
Flash photolysis and Shock tube method
PPT
Solution combustion method for syntheis of nano particles
PPT
Photochemistry
PDF
Introduction to Photoelectrochemical (PEC) Water Splitting
PDF
Basics of Quantum and Computational Chemistry
PDF
Quantum chemistry & principles 1
PDF
Computational Chemistry- An Introduction
Basis of photochemistry
Self-assembly-sides 1_RFS
Molecular geometry and chemical bonding
Intro. to quantum chemistry
Rutherford scattering & the scattering cross-section
Mössbauer spectroscopy ppt
Reactions in solution [ solution kinetics]
Group theory questions and answers
Density functional theory
Kinetics of Thermochemical chain reactions
group thoery and character table
Flash photolysis and Shock tube method
Solution combustion method for syntheis of nano particles
Photochemistry
Introduction to Photoelectrochemical (PEC) Water Splitting
Basics of Quantum and Computational Chemistry
Quantum chemistry & principles 1
Computational Chemistry- An Introduction
Ad

Similar to Computational Chemistry Workshop Presentation (Final, revised) (20)

PDF
Ai for pharmaceutical industry – a primer
PDF
Chemical Synergies From The Lab To In Silico Modelling Edited By Nuno Ag Band...
PPTX
Quantitative Structure Activity Relationship
PDF
A guide to molecular mechanics and quantum chemical calculations
PPTX
Cheminformatics II
PPTX
IntroCompChemSC.pptx
PPTX
Gaussian presentation
PPTX
Computational chemistry
PDF
Predictive modeling of methylene blue dye removal by using artificial neural ...
PPTX
ChemReader chemical informatics tool
PPTX
Intro to Open Babel
PPT
computationalchemistry_12-6.ppt
PDF
Lecture_No._2_Computational_Chemistry_Tools___Application_of_computational_me...
PPT
Introduction to Computational chemistry-
PDF
Cheminformatics toolkits: a personal perspective
PPT
Prediction Of Bioactivity From Chemical Structure
PPT
Molecular Modeling.ppt.ppt
PPT
M sc it_modelling_biological_systems2005
PPTX
Free online access to experimental and predicted chemical properties through ...
Ai for pharmaceutical industry – a primer
Chemical Synergies From The Lab To In Silico Modelling Edited By Nuno Ag Band...
Quantitative Structure Activity Relationship
A guide to molecular mechanics and quantum chemical calculations
Cheminformatics II
IntroCompChemSC.pptx
Gaussian presentation
Computational chemistry
Predictive modeling of methylene blue dye removal by using artificial neural ...
ChemReader chemical informatics tool
Intro to Open Babel
computationalchemistry_12-6.ppt
Lecture_No._2_Computational_Chemistry_Tools___Application_of_computational_me...
Introduction to Computational chemistry-
Cheminformatics toolkits: a personal perspective
Prediction Of Bioactivity From Chemical Structure
Molecular Modeling.ppt.ppt
M sc it_modelling_biological_systems2005
Free online access to experimental and predicted chemical properties through ...
Ad

Recently uploaded (20)

PDF
GROUP 2 ORIGINAL PPT. pdf Hhfiwhwifhww0ojuwoadwsfjofjwsofjw
PPTX
ognitive-behavioral therapy, mindfulness-based approaches, coping skills trai...
PDF
lecture 2026 of Sjogren's syndrome l .pdf
PPTX
Application of enzymes in medicine (2).pptx
PPT
1. INTRODUCTION TO EPIDEMIOLOGY.pptx for community medicine
PDF
ELS_Q1_Module-11_Formation-of-Rock-Layers_v2.pdf
PDF
Biophysics 2.pdffffffffffffffffffffffffff
PPTX
Science Quipper for lesson in grade 8 Matatag Curriculum
PPT
6.1 High Risk New Born. Padetric health ppt
PDF
Lymphatic System MCQs & Practice Quiz – Functions, Organs, Nodes, Ducts
PDF
. Radiology Case Scenariosssssssssssssss
PPTX
C1 cut-Methane and it's Derivatives.pptx
PDF
Unveiling a 36 billion solar mass black hole at the centre of the Cosmic Hors...
DOCX
Q1_LE_Mathematics 8_Lesson 5_Week 5.docx
PDF
Warm, water-depleted rocky exoplanets with surfaceionic liquids: A proposed c...
PPTX
Biomechanics of the Hip - Basic Science.pptx
PPTX
CORDINATION COMPOUND AND ITS APPLICATIONS
PPTX
POULTRY PRODUCTION AND MANAGEMENTNNN.pptx
PDF
Looking into the jet cone of the neutrino-associated very high-energy blazar ...
PDF
Phytochemical Investigation of Miliusa longipes.pdf
GROUP 2 ORIGINAL PPT. pdf Hhfiwhwifhww0ojuwoadwsfjofjwsofjw
ognitive-behavioral therapy, mindfulness-based approaches, coping skills trai...
lecture 2026 of Sjogren's syndrome l .pdf
Application of enzymes in medicine (2).pptx
1. INTRODUCTION TO EPIDEMIOLOGY.pptx for community medicine
ELS_Q1_Module-11_Formation-of-Rock-Layers_v2.pdf
Biophysics 2.pdffffffffffffffffffffffffff
Science Quipper for lesson in grade 8 Matatag Curriculum
6.1 High Risk New Born. Padetric health ppt
Lymphatic System MCQs & Practice Quiz – Functions, Organs, Nodes, Ducts
. Radiology Case Scenariosssssssssssssss
C1 cut-Methane and it's Derivatives.pptx
Unveiling a 36 billion solar mass black hole at the centre of the Cosmic Hors...
Q1_LE_Mathematics 8_Lesson 5_Week 5.docx
Warm, water-depleted rocky exoplanets with surfaceionic liquids: A proposed c...
Biomechanics of the Hip - Basic Science.pptx
CORDINATION COMPOUND AND ITS APPLICATIONS
POULTRY PRODUCTION AND MANAGEMENTNNN.pptx
Looking into the jet cone of the neutrino-associated very high-energy blazar ...
Phytochemical Investigation of Miliusa longipes.pdf

Computational Chemistry Workshop Presentation (Final, revised)

  • 1. COMPUTATIONAL CHEMISTRY CARLOS J. CABELLO LÓPEZ NICOLE M. CRUZ REYES STEPHANNIE ROSARIO GARRIDO ADRIANA N. SANTIAGO RUIZ PROF. DALVIN MÉNDEZ UNIVERSITY OF PUERTO RICO IN CAYEY DEPARTMENT OF BIOLOGY RISE PROGRAM
  • 2. CONTENT • Introduction: • Definitions • Concepts • Programs  Definition • Problem & Hypothesis • Methodology & Results • Discussion: • What do our results mean? • Comparisons • New Application • Conclusion • Cited Literature
  • 4. COMPUTATIONAL CHEMISTRY • Computational Chemistry is a branch of chemistry that uses the product of theoretical chemistry that is translated into computational programs to calculate molecular properties and its changes and also to perform simulation to macromolecular systems. (Rusdi 2007)
  • 5. BASIC CONCEPTS • Chemical compounds  Electronegativity • Molecular compounds • Ionic compounds • Polarity • Redox Potential • LUMO/HOMO M+ NM-
  • 6. SCHRÖDINGER’S EQUATION • H=Hamiltonian operator, total energy of the electron within the atom • E=Actual energy of the electron • Ψ=wave function, describes the wavelike nature of the electron (Tro 2014). By modifying H, various molecular properties can be studied. Hψ = Eψ
  • 7. PROGRAMS • Gabedit (ORCA) • Excel • R Studio
  • 8. OBJECTIVES • Be able to obtain a knowledge about computational chemistry, its relevance and application’s in science • Learn to use the Gabedit program • Calculate the redox potential of certain molecules • Assigned • Created • Modified • Analyze the final data using R Studio
  • 9. PROBLEM If the molecules are correctly drawn and the proper chemical group was added to each model, will the experimental values of the redox potentials match the postulate values?
  • 10. HYPOTHESIS By analyzing the obtained data of the molecular models with the Gabedit (ORCA) program, and using the R Studio to create a graph of the results, the Redox potentials will match their postulate values.
  • 13. PROCEDURE #1 1. Draw the molecule in Gabedit (this is mainly visual) 2. Close the tab where the molecule is drawn 3. Click on “ORCA” 4. Write an input file a. Copy the results the program gives b. Paste the results in any text-editor program (TextEdit (Mac), Notepad (Windows), there are many options to choose from) i. Use the correct format to write before and after the results pasted c. Save the document with “.inp” 5. Write the “sh” file a. With an sh file already written change the title of the files being used b. Make sure the names are written correctly since those files will be used by the Super Computer to produce the final file 6. Use the files to reproduce the results using a Super Computer
  • 14. RESULTS #1 0 0.5 1 1.5 2 2.5 0 1 2 3 4 DipoleMoment(Debye) # of Cl Dipole Moment vs # Cl Atoms exp HF DFT normalized guess
  • 17. PROCEDURE #2 1. Choose a molecule (or create a completely new one) 2. Add an Electron Donating Group or an Electron Withdrawing Group 3. Make a prediction of the redox potential 4. Compare the prediction with the results obtained
  • 20. PROCEDURE #3 1. Use the theoric results from the paper titled “Building and testing correlations for the estimation of one-electron reduction potentials of a diverse set of organic molecules.” (Méndez-Hernández et al. 2014) 2. Make a table with the theoric and the experimental results obtained from procedure #1. 3. Compare and analyze the values on the table
  • 21. RESULTS #3 Table 4: Results of Dipole Moments (used for Graph 2) Name Molecule LUMO E (eV) red. Potential (V) Adriana N. Santiago-Ruiz 1 -2.0457 -1.9 Adriana N. Santiago-Ruiz 2 -2.5354 -1.6 Adriana Vera-Rios 3 -3.2039 -1.1 Adriana Vera-Rios 4 -3.2977 -0.95 Carlos Cabello-Lopez 5 -3.9205 -0.75 Carlos Cabello-Lopez 14 -3.0212 -0.8 Carlos Villagrasa-Mendez 15 -3.1292 -0.75 Carlos Villagrasa-Mendez 16 -3.2487 -0.63 Cristina Rivera-Quiles 17 -3.3917 -0.58 Cristina Rivera-Quiles 18 -3.5354 -0.47 Edmaritz Hernandez-Pagan 19 -3.7898 -0.34 Edmaritz Hernandez-Pagan 20 -4.0163 -0.18 Emmanuel Santiago-Burgos 21 0 Emmanuel Santiago-Burgos 22 -4.1968 0.02 Gabriel Pastrana-Castellanos 23 -4.2725 0.05 Gabriel Pastrana-Castellanos 24 -4.8039 0.28 Joanly Rivera-Ortiz 25 -5.0953 0.59 Joanly Rivera-Ortiz 26 -5.767 0.9 Laura Diaz-Mendez 39 -1.4753 -2.1 Laura Diaz-Mendez 40 -1.4425 -2.15 Marangely D Martinez- Justiniano 42 -1.3747 -2.2 Marangely D Martinez- Justiniano 43 -1.1817 -2.22 Natalia D Rivera-Sanchez 44 -1.8144 -2.4 Natalia D Rivera-Sanchez 69 -0.613 -2.636 Nicole Cruz-Reyes 72 -1.4182 -2.08 Nicole Cruz-Reyes 45 -0.9618 -2.66 Rafael J Cummings-Lopez 48 -1.6345 -2.1 Rafael J Cummings-Lopez 6 -1.8068 -1.98 Stephannie M Rosario-Garrido 7 -1.8144 -1.96 Stephannie M Rosario-Garrido 8 -1.8867 -1.88 Valeria Laboy-Collazo 9 -2.7621 -1.27 Valeria Laboy-Collazo 49 -0.9959 -2.62
  • 23. THE “HOLISTIC” TABLE Molecule LUMO E (eV) red. Potential (V) Theorical estimate residual residual^2 1 -2.0457 -1.9 -1.77684976 -0.1231502 0.01516598 2 -2.5354 -1.6 -1.42269872 -0.1773013 0.03143574 3 -3.042 -1.1 -1.0563256 -0.0436744 0.00190745 4 -3.144 -0.95 -0.9825592 0.0325592 0.0010601 5 -3.648 -0.74 -0.6180664 -0.1219336 0.0148678 14 -3.4684 -0.8 -0.74795312 -0.0520469 0.00270888 15 -3.5674 -0.75 -0.67635632 -0.0736437 0.00542339 16 -3.6795 -0.63 -0.5952856 -0.0347144 0.00120509 17 -3.3917 -0.58 -0.80342256 0.22342256 0.04991764 18 -3.5354 -0.47 -0.69949872 0.22949872 0.05266966 19 -4.2206 -0.34 -0.20396208 -0.1360379 0.01850632 20 -4.4852 -0.18 -0.01260336 -0.1673966 0.02802164 21 -4.754 0 0.1817928 -0.1817928 0.03304862 22 -4.1968 0.02 -0.22117424 0.24117424 0.05816501 23 -4.2725 0.05 -0.166428 0.216428 0.04684108 24 -4.8039 0.28 0.21788048 0.06211952 0.00385883 25 -5.095 0.59 0.428404 0.161596 0.02611327 26 -5.767 0.9 0.9143944 -0.0143944 0.0002072 39 -1.4753 -2.1 -2.18936304 0.08936304 0.00798575 40 -1.4425 -2.15 -2.213084 0.063084 0.00397959 42 -1.3799 -2.2 -2.25835632 0.05835632 0.00340546 43 -1.1773 -2.22 -2.40487664 0.18487664 0.03417937 44 -1.1465 -2.4 -2.4271512 0.0271512 0.00073719 69 -0.613 -2.636 -2.8129784 0.1769784 0.03132135 72 -1.4182 -2.08 -2.23065776 0.15065776 0.02269776 45 -0.9618 -2.66 -2.56072624 -0.0992738 0.00985528 48 -1.9085 -2.1 -1.8760728 -0.2239272 0.05014339 6 -2.2757 -1.98 -1.61051376 -0.3694862 0.13652008 7 -1.8144 -1.96 -1.94412592 -0.0158741 0.00025199 8 -1.8867 -1.88 -1.89183856 0.01183856 0.00014015 9 -2.7621 -1.27 -1.25874928 -0.0112507 0.00012658 49 -0.9959 -2.62 -2.53606512 -0.0839349 0.00704506 RMSD abs(residual) LAD 0.12315024 0.17730128 0.0436744 0.0325592 0.1219336 0.05204688 0.07364368 0.0347144 0.22342256 0.22949872 0.13603792 0.16739664 0.1817928 0.24117424 0.216428 0.06211952 0.161596 0.0143944 0.08936304 0.063084 0.05835632 0.18487664 0.0271512 0.1769784 0.15065776 0.09927376 0.2239272 0.36948624 0.01587408 0.01183856 0.01125072 0.08393488 0.14785051 0.12059179 y = -0.7232x - 3.2563 R² = 0.97897 -7 -6 -5
  • 24. PROCEDURE #4 1. Import Excel file with the organized collected data a. Important: choose ‘x’ and ‘y’ columns correctly 2. Use the command in order to tell the program to read all the data needed 3. Create a linear model with the imported data 4. Create a column with the predicted values using the explanatory variable (le) 5. Calculate the error stats a. In order to obtain the most accurate amount of data 6. Create the plotting graph with the imported data a. It is possible to customize the graph with colors 7. Calculate the Root Mean Standard Deviation (RMSD) and the Mean Absolute Deviation (MAD) 8. Label the axis with the corresponding titles based on the data being graphed 9. Export graph and save the file
  • 25. RESULTS GRAPHED WITH R −6 −5 −4 −3 −2 −1 0 −4−202 Ered vs. Î LUMO Î LUMO / (eV) Ered/(V) R2 = 0.979 Ered = -0.72 Î LUMO - 3.3
  • 26. −6 −5 −4 −3 −2 −1 0 −4−202 Ered vs. Î LUMO Î LUMO / (eV) Ered/(V) R2 = 0.979 Ered = - 0.72 Î LUMO - 3.3 COMPARISON VS
  • 27. CONCLUSION • We were able to obtain a knowledge about computational chemistry, its relevance and application’s in science • Learned to use the Gabedit program • Calculated the redox potential of certain molecules • Assigned • Modified • Redox potential matched the reported values • Hypothesis was proven • Analyzed the final data using R Studio • Benefits of using the programs
  • 28. APPLICATIONS • Medical applications • What is the benefit of making a drug harder to oxidize? • Metabolism of drugs (Vogel & Catherine)
  • 29. CITED LITERATURE Lynch E, Speelman A, Curry B, Murillo C, Gillmore J. 2012. Expanding and Testing a Computational Method for Predicting the Ground State Reduction Potentials of Organic Molecules on the Basis of Empirical Correlation to Experiment. ACS. 77(15):6423–6430. Méndez Hernández D, Gusta D, Moorea T, Gillmorea J, Montano L, Moore A, Mujica, V. 2015. Building and testing correlations for the estimation of one-electron reduction potentials of a diverse set of organic molecules. Physical Organic Chemistry. 28(5):320–328. Reece J, Urry L, Cain M, Wasserman S, Minorsky P, Jackson R. 2014. Campbell Biology. 10th ed. Glenview, IL: Pearson Education. 28-56 p. Rusdi, R. Basic definition of computational chemistry [Internet]. [Updated 2007 February 9]. [cited 2016 May 4]. Available from: https:// stalischem.wordpress.com/2007/02/09/basic-definition-of- computational-chemistry/
  • 30. ACKNOWLEDGEMENTS • RISE Program • Dr. Díaz • Dr. Ross • Dr. Bansal • Special thanks to… • Dr. Méndez

Editor's Notes

  • #11: Refer to literature
  • #31: “Metabolism refers to the processing and excretion of a drug from the body. If a drug is metabolized too quickly, it will not be present long enough or at sufficient concentrations in the body to perform its function.”