SlideShare a Scribd company logo
1
As we have seen in section 4 conditional probability density
functions are useful to update the information about an
event based on the knowledge about some other related
event (refer to example 4.7). In this section, we shall
analyze the situation where the related event happens to be a
random variable that is dependent on the one of interest.
From (4-11), recall that the distribution function of X given
an event B is
(11-1)
   .
)
(
)
)
(
(
|
)
(
)
|
(
B
P
B
x
X
P
B
x
X
P
B
x
FX







PILLAI
11. Conditional Density Functions and
Conditional Expected Values
2
Suppose, we let
Substituting (11-2) into (11-1), we get
where we have made use of (7-4). But using (3-28) and (7-7)
we can rewrite (11-3) as
To determine, the limiting case we can let
and in (11-4).
 .
)
( 2
1 y
Y
y
B 

 
(11-3)
(11-2)
 
,
)
(
)
(
)
,
(
)
,
(
)
)
(
(
)
(
,
)
(
)
|
(
1
2
1
2
2
1
2
1
2
1
y
F
y
F
y
x
F
y
x
F
y
Y
y
P
y
Y
y
x
X
P
y
Y
y
x
F
Y
Y
XY
XY
X














.
)
(
)
,
(
)
|
( 2
1
2
1
2
1

 




 y
y
Y
x y
y
XY
X
dv
v
f
dudv
v
u
f
y
Y
y
x
F
(11-4)
),
|
( y
Y
x
FX  y
y 
1
y
y
y 


2
PILLAI
3
This gives
and hence in the limit
(To remind about the conditional nature on the left hand
side, we shall use the subscript X | Y (instead of X) there).
Thus
Differentiating (11-7) with respect to x using (8-7), we get
(11-5)
(11-6)
.
)
(
)
,
(
)
|
(
lim
)
|
(
0 y
f
du
y
u
f
y
y
Y
y
x
F
y
Y
x
F
Y
x
XY
X
y
X
 










(11-7)
(11-8)
y
y
f
y
du
y
u
f
dv
v
f
dudv
v
u
f
y
y
Y
y
x
F
Y
x
XY
y
y
y
Y
x y
y
y
XY
X










  







)
(
)
,
(
)
(
)
,
(
)
|
(
.
)
(
)
,
(
)
|
(
|
y
f
du
y
u
f
y
Y
x
F
Y
x
XY
Y
X
 



.
)
(
)
,
(
)
|
(
|
y
f
y
x
f
y
Y
x
f
Y
XY
Y
X 

PILLAI
4
It is easy to see that the left side of (11-8) represents a valid
probability density function. In fact
and
where we have made use of (7-14). From (11-9) - (11-10),
(11-8) indeed represents a valid p.d.f, and we shall refer to it
as the conditional p.d.f of the r.v X given Y = y. We may also
write
From (11-8) and (11-11), we have
(11-9)
|
( , )
( | ) 0
( )
XY
X Y
Y
f x y
f x Y y
f y
  
,
1
)
(
)
(
)
(
)
,
(
)
|
(
| 












 y
f
y
f
y
f
dx
y
x
f
dx
y
Y
x
f
Y
Y
Y
XY
Y
X
(11-10)
(11-11)
,
)
(
)
,
(
)
|
(
|
y
f
y
x
f
y
x
f
Y
XY
Y
X  (11-12)
PILLAI
).
|
(
)
|
( |
| y
x
f
y
Y
x
f Y
X
Y
X 

5
and similarly
If the r.vs X and Y are independent, then
and (11-12) - (11-13) reduces to
implying that the conditional p.d.fs coincide with their
unconditional p.d.fs. This makes sense, since if X and Y are
independent r.vs, information about Y shouldn’t be of any
help in updating our knowledge about X.
In the case of discrete-type r.vs, (11-12) reduces to
)
(
)
(
)
,
( y
f
x
f
y
x
f Y
X
XY 
(11-13)
(11-14)
(11-15)
.
)
(
)
,
(
)
|
(
|
x
f
y
x
f
x
y
f
X
XY
X
Y 
),
(
)
|
(
),
(
)
|
( |
| y
f
x
y
f
x
f
y
x
f Y
X
Y
X
Y
X 

  .
)
(
)
,
(
|
j
j
i
j
i
y
Y
P
y
Y
x
X
P
y
Y
x
X
P






PILLAI
6
Next we shall illustrate the method of obtaining conditional
p.d.fs through an example.
Example 11.1: Given
determine and
Solution: The joint p.d.f is given to be a constant in the
shaded region. This gives
Similarly
and
(11-16)


 



,
otherwise
,
0
,
1
0
,
)
,
(
y
x
k
y
x
fXY
.
2
1
2
)
,
(
1
0
1
0 0





 
   k
k
dy
y
k
dy
dx
k
dxdy
y
x
f
y
XY
)
|
(
| y
x
f Y
X ).
|
(
| x
y
f X
Y
x
y
1
1
Fig. 11.1
,
1
0
),
1
(
)
,
(
)
(
1





 
 x
x
k
dy
k
dy
y
x
f
x
f
x
XY
X
(11-17)
.
1
0
,
)
,
(
)
(
0




 
 y
y
k
dx
k
dx
y
x
f
y
f
y
XY
Y
(11-18)
PILLAI
7
From (11-16) - (11-18), we get
and
We can use (11-12) - (11-13) to derive an important result.
From there, we also have
or
But
and using (11-23) in (11-22), we get
(11-19)
(11-20)
(11-21)
,
1
0
,
1
)
(
)
,
(
)
|
(
| 



 y
x
y
y
f
y
x
f
y
x
f
Y
XY
Y
X
.
1
0
,
1
1
)
(
)
,
(
)
|
(
| 




 y
x
x
x
f
y
x
f
x
y
f
X
XY
X
Y
)
(
)
|
(
)
(
)
|
(
)
,
( |
| x
f
x
y
f
y
f
y
x
f
y
x
f X
X
Y
Y
Y
X
XY 

.
)
(
)
(
)
|
(
)
|
( |
|
x
f
y
f
y
x
f
x
y
f
X
Y
Y
X
X
Y  (11-22)











 | )
(
)
|
(
)
,
(
)
( dy
y
f
y
x
f
dy
y
x
f
x
f Y
Y
X
XY
X (11-23)
PILLAI
8
Equation (11-24) represents the p.d.f version of Bayes’
theorem. To appreciate the full significance of (11-24), one
need to look at communication problems where
observations can be used to update our knowledge about
unknown parameters. We shall illustrate this using a simple
example.
Example 11.2: An unknown random phase  is uniformly
distributed in the interval and where
n  Determine
Solution: Initially almost nothing about the r.v  is known,
so that we assume its a-priori p.d.f to be uniform in the
interval
.
)
(
)
|
(
)
(
)
|
(
)
|
(
|
|






dy
y
f
y
x
f
y
f
y
x
f
x
y
f
Y
Y
X
Y
Y
X
YX (24)
),
2
,
0
(  ,
n
r 

).
,
0
( 2

N ).
|
( r
f 
).
2
,
0
( 
PILLAI
9
In the equation we can think of n as the noise
contribution and r as the observation. It is reasonable to
assume that  and n are independent. In that case

since it is given that is a constant, behaves
like n. Using (11-24), this gives the a-posteriori p.d.f of 
given r to be (see Fig. 11.2 (b))
where
,
n
r 

)
,
(
)
|
( 2


 N
r
f 
θ (11-25)


θ
,
2
0
,
)
(
2
1
)
(
)
|
(
)
(
)
|
(
)
|
(
2
2
2
2
2
2
2
/
)
(
2
0
2
/
)
(
2
/
)
(
2
0


































r
r
r
e
r
d
e
e
d
f
r
f
f
r
f
r
f
.
2
)
( 2
0
2
/
)
( 2
2



 





d
e
r
r
(11-26)
n
r 

PILLAI
10
Notice that the knowledge about the observation r is
reflected in the a-posteriori p.d.f of  in Fig. 11.2 (b). It is
no longer flat as the a-priori p.d.f in Fig. 11.2 (a), and it
shows higher probabilities in the neighborhood of .
r


)
|
(
| r
f r 


(b) a-posteriori p.d.f of 
r


Fig. 11.2
Conditional Mean:
We can use the conditional p.d.fs to define the conditional
mean. More generally, applying (6-13) to conditional p.d.fs
we get
)
(

f

(a) a-priori p.d.f of 

2
1

2
PILLAI
11
 
( ) | ( ) ( | ) .
X
E g X B g x f x B dx


  (11-27)
and using a limiting argument as in (11-2) - (11-8), we get
to be the conditional mean of X given Y = y. Notice
that will be a function of y. Also
In a similar manner, the conditional variance of X given Y
= y is given by
we shall illustrate these calculations through an example.
  






 |
| )
|
(
| dx
y
x
f
x
y
Y
X
E Y
X
Y
X
 (11-28)
)
|
( y
Y
X
E 
  .
)
|
(
| |
| 






 dy
x
y
f
y
x
X
Y
E X
Y
X
Y
 (11-29)
   
 .
|
)
(
)
|
(
|
)
|
(
2
|
2
2
2
|
y
Y
X
E
y
Y
X
E
y
Y
X
E
Y
X
Var
Y
X
Y
X










(11-30)
PILLAI
12
Example 11.3: Let
Determine and
Solution: As Fig. 11.3 shows,
in the shaded area, and zero elsewhere.
From there
and
This gives
and


 



.
otherwise
,
0
,
1
|
|
0
,
1
)
,
(
x
y
y
x
fXY (11-31)
)
|
( Y
X
E ).
|
( X
Y
E
,
1
0
,
2
)
,
(
)
( 


 
x
x
dy
y
x
f
x
f
x
x
XY
X
1
| |
( ) 1 1 | |, | | 1,
Y
y
f y dx y y
   

,
1
|
|
0
,
|
|
1
1
)
(
)
,
(
)
|
(
| 




 x
y
y
y
f
y
x
f
y
x
f
Y
XY
Y
X
.
1
|
|
0
,
2
1
)
(
)
,
(
)
|
(
| 



 x
y
x
x
f
y
x
f
x
y
f
X
XY
X
Y
(11-32)
(11-33)
x
y
1
Fig. 11.3
1
)
,
( 
y
x
fXY
PILLAI
13
Hence
It is possible to obtain an interesting generalization of the
conditional mean formulas in (11-28) - (11-29). More
generally, (11-28) gives
But
.
1
|
|
,
2
|
|
1
|)
|
1
(
2
|
|
1
2
|)
|
1
(
1
|)
|
1
(
)
|
(
)
|
(
2
1
|
|
2
1
|
|
|










  
y
y
y
y
x
y
dx
y
x
dx
y
x
f
x
Y
X
E
y
y
Y
X
.
1
0
,
0
2
2
1
2
)
|
(
)
|
(
2
| 







  x
y
x
dy
x
y
dy
x
y
yf
X
Y
E
x
x
x
x
X
Y
(11-34)
(11-35)
 
 
 
|
( )|
( ) ( ) ( ) ( ) ( , )
( ) ( , ) ( ) ( | ) ( )
( ) | ( )
X XY
XY X Y Y
E g X Y y
Y
E g X g x f x dx g x f x y dydx
g x f x y dxdy g x f x y dx f y dy
E g X Y y f y dy E E
  
  
   
   



 
 
  
  
   
  
 
( ) | .
g X Y y

  |
( ) | ( ) ( | ) .
X Y
E g X Y y g x f x y dx


   (11-36)
(11-37)PILLAI
14
Obviously, in the right side of (11-37), the inner
expectation is with respect to X and the outer expectation is
with respect to Y. Letting g( X ) = X in (11-37) we get the
interesting identity
where the inner expectation on the right side is with respect
to X and the outer one is with respect to Y. Similarly, we
have
Using (11-37) and (11-30), we also obtain
 ,
)
|
(
)
( y
Y
X
E
E
X
E 

 .
)
|
(
)
( x
X
Y
E
E
Y
E 

(11-38)
(11-39)
 .
)
|
(
)
( y
Y
X
Var
E
X
Var 
 (11-40)
PILLAI
15
Conditional mean turns out to be an important concept in
estimation and prediction theory. For example given an
observation about a r.v X, what can we say about a related
r.v Y ? In other words what is the best predicted value of Y
given that X = x ? It turns out that if “best” is meant in the
sense of minimizing the mean square error between Y and
its estimate , then the conditional mean of Y given X = x,
i.e., is the best estimate for Y (see Lecture 16
for more on Mean Square Estimation).
We conclude this lecture with yet another application
of the conditional density formulation.
Example 11.4 : Poisson sum of Bernoulli random variables
Let represent independent, identically
distributed Bernoulli random variables with
Yˆ
)
|
( x
X
Y
E 

3,
2,
1,
, 
i
Xi
q
p
X
P
p
X
P i
i 




 1
)
0
(
,
)
1
(
16
and N a Poisson random variable with parameter that is
independent of all . Consider the random variables
Show that Y and Z are independent Poisson random variables.
Solution : To determine the joint probability mass function
of Y and Z, consider
.
,
1
Y
N
Z
X
Y
N
i
i 

 

(11-41)
i
X

PILLAI































n
m
i
i
N
i
i
n
m
N
P
m
X
P
n
m
N
P
n
m
N
m
X
P
n
m
N
P
n
m
N
m
Y
P
n
m
N
m
Y
P
n
Y
N
m
Y
P
n
Z
m
Y
P
1
1
)
(
)
(
)
(
)
(
)
(
)
(
)
,
(
)
,
(
)
,
(
(11-42)
17
)
)
,
(
~
( of
t
independen
are
and
that
Note
1
N
s
X
p
n
m
B
X i
n
m
i
i 



(11-43)
( )!
! ! ( )!
m n
m n
m n
p q e
m n m n
  

  
 
    

   












 

!
)
(
!
)
(
n
q
e
m
p
e
n
q
m
p 
 

).
(
)
( n
Z
P
m
Y
P 


PILLAI
Thus
and Y and Z are independent random variables.
Thus if a bird lays eggs that follow a Poisson random
variable with parameter , and if each egg survives
)
(
~
)
(
~ and 
 q
P
Z
p
P
Y (11-44)

18
with probability p, then the number of chicks that survive
also forms a Poisson random variable with parameter .

p
PILLAI

More Related Content

PPT
Function of a random variable lect5a.ppt
PPT
Two Random variable based on probability lect7a.ppt
PDF
Actuarial Science Reference Sheet
DOCX
El6303 solu 3 f15 1
PDF
ABC convergence under well- and mis-specified models
PDF
CISEA 2019: ABC consistency and convergence
PDF
FullMLCheatSheetfor engineering students .pdf
PDF
Deep learning .pdf
Function of a random variable lect5a.ppt
Two Random variable based on probability lect7a.ppt
Actuarial Science Reference Sheet
El6303 solu 3 f15 1
ABC convergence under well- and mis-specified models
CISEA 2019: ABC consistency and convergence
FullMLCheatSheetfor engineering students .pdf
Deep learning .pdf

Similar to Conditional density function ectr11a.ppt (20)

PDF
PTSP PPT.pdf
PPT
Random variable, distributive function lect3a.ppt
PDF
Basics of probability in statistical simulation and stochastic programming
PPT
Probability theory lecture about theory 1a.ppt
PPT
lect2a.ppt
DOC
Unit ii rpq
PDF
Notes - Probability, Statistics and Data Visualization.pdf
PDF
R4 m.s. radhakrishnan, probability & statistics, dlpd notes.
PDF
Review20Probability20and20Statistics.pdf
PDF
Transformation of random variables
PDF
Probability Formula sheet
PPTX
Probabilistic systems exam help
PDF
14 Bivariate Transformations
PDF
Tele3113 wk1wed
PDF
comm_ch02_random_en.pdf
PPTX
CMF.pptx
PDF
Intro probability 4
PDF
Probability cheatsheet
PDF
A relability assessment
PDF
Engr 371 final exam april 1999
PTSP PPT.pdf
Random variable, distributive function lect3a.ppt
Basics of probability in statistical simulation and stochastic programming
Probability theory lecture about theory 1a.ppt
lect2a.ppt
Unit ii rpq
Notes - Probability, Statistics and Data Visualization.pdf
R4 m.s. radhakrishnan, probability & statistics, dlpd notes.
Review20Probability20and20Statistics.pdf
Transformation of random variables
Probability Formula sheet
Probabilistic systems exam help
14 Bivariate Transformations
Tele3113 wk1wed
comm_ch02_random_en.pdf
CMF.pptx
Intro probability 4
Probability cheatsheet
A relability assessment
Engr 371 final exam april 1999
Ad

More from sadafshahbaz7777 (20)

PDF
PastandpresentofPunjabi 24567642245(1).pdf
PPTX
resham_localgovts and powers and functions.pptx
PPT
ITPTeaching201026899393876892827799866.ppt
PPTX
IOP-Limit-Less-careers-lesson-for-teachers.pptx
PPT
Ch5_slides Qwertr12234543234433444344.ppt
PPT
Lecture 4-Structure and function of carbohydrates .ppt
PPTX
social_media_for_research 234664445.pptx
PDF
647883385-Role-of-Sufi-in-the-spread-of-Islam-in-subcontinent.pdf
PPT
Kee_Pookong_01.ppt 2579975435676667788888
PPTX
160572975823-intro-to-social-studies.pptx
PPT
C3LC_Waring_ap_Run Through_4-27-15_compressed.ppt
PDF
320936716-c-Constitutional-Development-of-Pakistan-Since-1947-to-Date (2).pdf
PDF
373745833-235433Constitutional-Issues.pdf
PDF
Choudhury-ConstitutionMakingDilemmasPakistan-1955.pdf
PPTX
Adverse Childhood Experiences Supplemental PowerPoint Slides (PPTX).pptx
PDF
DevelopmentofLocalGovernanceandDecentralizationtoempowerCitizensinPakistan-AH...
PPT
Lecture 1-disp2456542234566.2456655555ppt
PPT
First financial management 23566432245556
PPT
lecture_223⁵4323564334555543343333334.ppt
PPTX
CECS ejn working 11-8-246787654455517.pptx
PastandpresentofPunjabi 24567642245(1).pdf
resham_localgovts and powers and functions.pptx
ITPTeaching201026899393876892827799866.ppt
IOP-Limit-Less-careers-lesson-for-teachers.pptx
Ch5_slides Qwertr12234543234433444344.ppt
Lecture 4-Structure and function of carbohydrates .ppt
social_media_for_research 234664445.pptx
647883385-Role-of-Sufi-in-the-spread-of-Islam-in-subcontinent.pdf
Kee_Pookong_01.ppt 2579975435676667788888
160572975823-intro-to-social-studies.pptx
C3LC_Waring_ap_Run Through_4-27-15_compressed.ppt
320936716-c-Constitutional-Development-of-Pakistan-Since-1947-to-Date (2).pdf
373745833-235433Constitutional-Issues.pdf
Choudhury-ConstitutionMakingDilemmasPakistan-1955.pdf
Adverse Childhood Experiences Supplemental PowerPoint Slides (PPTX).pptx
DevelopmentofLocalGovernanceandDecentralizationtoempowerCitizensinPakistan-AH...
Lecture 1-disp2456542234566.2456655555ppt
First financial management 23566432245556
lecture_223⁵4323564334555543343333334.ppt
CECS ejn working 11-8-246787654455517.pptx
Ad

Recently uploaded (20)

PPTX
Lesson notes of climatology university.
PPTX
202450812 BayCHI UCSC-SV 20250812 v17.pptx
PDF
Practical Manual AGRO-233 Principles and Practices of Natural Farming
PDF
RTP_AR_KS1_Tutor's Guide_English [FOR REPRODUCTION].pdf
PDF
Empowerment Technology for Senior High School Guide
PPTX
Chinmaya Tiranga Azadi Quiz (Class 7-8 )
PPTX
Final Presentation General Medicine 03-08-2024.pptx
PPTX
History, Philosophy and sociology of education (1).pptx
PDF
What if we spent less time fighting change, and more time building what’s rig...
PDF
Weekly quiz Compilation Jan -July 25.pdf
PDF
Hazard Identification & Risk Assessment .pdf
PPTX
Final Presentation General Medicine 03-08-2024.pptx
PPTX
Radiologic_Anatomy_of_the_Brachial_plexus [final].pptx
PDF
LNK 2025 (2).pdf MWEHEHEHEHEHEHEHEHEHEHE
PDF
OBE - B.A.(HON'S) IN INTERIOR ARCHITECTURE -Ar.MOHIUDDIN.pdf
PPTX
Introduction to Building Materials
PPTX
UNIT III MENTAL HEALTH NURSING ASSESSMENT
PDF
ChatGPT for Dummies - Pam Baker Ccesa007.pdf
PPTX
Orientation - ARALprogram of Deped to the Parents.pptx
PDF
Indian roads congress 037 - 2012 Flexible pavement
Lesson notes of climatology university.
202450812 BayCHI UCSC-SV 20250812 v17.pptx
Practical Manual AGRO-233 Principles and Practices of Natural Farming
RTP_AR_KS1_Tutor's Guide_English [FOR REPRODUCTION].pdf
Empowerment Technology for Senior High School Guide
Chinmaya Tiranga Azadi Quiz (Class 7-8 )
Final Presentation General Medicine 03-08-2024.pptx
History, Philosophy and sociology of education (1).pptx
What if we spent less time fighting change, and more time building what’s rig...
Weekly quiz Compilation Jan -July 25.pdf
Hazard Identification & Risk Assessment .pdf
Final Presentation General Medicine 03-08-2024.pptx
Radiologic_Anatomy_of_the_Brachial_plexus [final].pptx
LNK 2025 (2).pdf MWEHEHEHEHEHEHEHEHEHEHE
OBE - B.A.(HON'S) IN INTERIOR ARCHITECTURE -Ar.MOHIUDDIN.pdf
Introduction to Building Materials
UNIT III MENTAL HEALTH NURSING ASSESSMENT
ChatGPT for Dummies - Pam Baker Ccesa007.pdf
Orientation - ARALprogram of Deped to the Parents.pptx
Indian roads congress 037 - 2012 Flexible pavement

Conditional density function ectr11a.ppt

  • 1. 1 As we have seen in section 4 conditional probability density functions are useful to update the information about an event based on the knowledge about some other related event (refer to example 4.7). In this section, we shall analyze the situation where the related event happens to be a random variable that is dependent on the one of interest. From (4-11), recall that the distribution function of X given an event B is (11-1)    . ) ( ) ) ( ( | ) ( ) | ( B P B x X P B x X P B x FX        PILLAI 11. Conditional Density Functions and Conditional Expected Values
  • 2. 2 Suppose, we let Substituting (11-2) into (11-1), we get where we have made use of (7-4). But using (3-28) and (7-7) we can rewrite (11-3) as To determine, the limiting case we can let and in (11-4).  . ) ( 2 1 y Y y B     (11-3) (11-2)   , ) ( ) ( ) , ( ) , ( ) ) ( ( ) ( , ) ( ) | ( 1 2 1 2 2 1 2 1 2 1 y F y F y x F y x F y Y y P y Y y x X P y Y y x F Y Y XY XY X               . ) ( ) , ( ) | ( 2 1 2 1 2 1         y y Y x y y XY X dv v f dudv v u f y Y y x F (11-4) ), | ( y Y x FX  y y  1 y y y    2 PILLAI
  • 3. 3 This gives and hence in the limit (To remind about the conditional nature on the left hand side, we shall use the subscript X | Y (instead of X) there). Thus Differentiating (11-7) with respect to x using (8-7), we get (11-5) (11-6) . ) ( ) , ( ) | ( lim ) | ( 0 y f du y u f y y Y y x F y Y x F Y x XY X y X             (11-7) (11-8) y y f y du y u f dv v f dudv v u f y y Y y x F Y x XY y y y Y x y y y XY X                     ) ( ) , ( ) ( ) , ( ) | ( . ) ( ) , ( ) | ( | y f du y u f y Y x F Y x XY Y X      . ) ( ) , ( ) | ( | y f y x f y Y x f Y XY Y X   PILLAI
  • 4. 4 It is easy to see that the left side of (11-8) represents a valid probability density function. In fact and where we have made use of (7-14). From (11-9) - (11-10), (11-8) indeed represents a valid p.d.f, and we shall refer to it as the conditional p.d.f of the r.v X given Y = y. We may also write From (11-8) and (11-11), we have (11-9) | ( , ) ( | ) 0 ( ) XY X Y Y f x y f x Y y f y    , 1 ) ( ) ( ) ( ) , ( ) | ( |               y f y f y f dx y x f dx y Y x f Y Y Y XY Y X (11-10) (11-11) , ) ( ) , ( ) | ( | y f y x f y x f Y XY Y X  (11-12) PILLAI ). | ( ) | ( | | y x f y Y x f Y X Y X  
  • 5. 5 and similarly If the r.vs X and Y are independent, then and (11-12) - (11-13) reduces to implying that the conditional p.d.fs coincide with their unconditional p.d.fs. This makes sense, since if X and Y are independent r.vs, information about Y shouldn’t be of any help in updating our knowledge about X. In the case of discrete-type r.vs, (11-12) reduces to ) ( ) ( ) , ( y f x f y x f Y X XY  (11-13) (11-14) (11-15) . ) ( ) , ( ) | ( | x f y x f x y f X XY X Y  ), ( ) | ( ), ( ) | ( | | y f x y f x f y x f Y X Y X Y X     . ) ( ) , ( | j j i j i y Y P y Y x X P y Y x X P       PILLAI
  • 6. 6 Next we shall illustrate the method of obtaining conditional p.d.fs through an example. Example 11.1: Given determine and Solution: The joint p.d.f is given to be a constant in the shaded region. This gives Similarly and (11-16)        , otherwise , 0 , 1 0 , ) , ( y x k y x fXY . 2 1 2 ) , ( 1 0 1 0 0           k k dy y k dy dx k dxdy y x f y XY ) | ( | y x f Y X ). | ( | x y f X Y x y 1 1 Fig. 11.1 , 1 0 ), 1 ( ) , ( ) ( 1         x x k dy k dy y x f x f x XY X (11-17) . 1 0 , ) , ( ) ( 0        y y k dx k dx y x f y f y XY Y (11-18) PILLAI
  • 7. 7 From (11-16) - (11-18), we get and We can use (11-12) - (11-13) to derive an important result. From there, we also have or But and using (11-23) in (11-22), we get (11-19) (11-20) (11-21) , 1 0 , 1 ) ( ) , ( ) | ( |      y x y y f y x f y x f Y XY Y X . 1 0 , 1 1 ) ( ) , ( ) | ( |       y x x x f y x f x y f X XY X Y ) ( ) | ( ) ( ) | ( ) , ( | | x f x y f y f y x f y x f X X Y Y Y X XY   . ) ( ) ( ) | ( ) | ( | | x f y f y x f x y f X Y Y X X Y  (11-22)             | ) ( ) | ( ) , ( ) ( dy y f y x f dy y x f x f Y Y X XY X (11-23) PILLAI
  • 8. 8 Equation (11-24) represents the p.d.f version of Bayes’ theorem. To appreciate the full significance of (11-24), one need to look at communication problems where observations can be used to update our knowledge about unknown parameters. We shall illustrate this using a simple example. Example 11.2: An unknown random phase  is uniformly distributed in the interval and where n  Determine Solution: Initially almost nothing about the r.v  is known, so that we assume its a-priori p.d.f to be uniform in the interval . ) ( ) | ( ) ( ) | ( ) | ( | |       dy y f y x f y f y x f x y f Y Y X Y Y X YX (24) ), 2 , 0 (  , n r   ). , 0 ( 2  N ). | ( r f  ). 2 , 0 (  PILLAI
  • 9. 9 In the equation we can think of n as the noise contribution and r as the observation. It is reasonable to assume that  and n are independent. In that case  since it is given that is a constant, behaves like n. Using (11-24), this gives the a-posteriori p.d.f of  given r to be (see Fig. 11.2 (b)) where , n r   ) , ( ) | ( 2    N r f  θ (11-25)   θ , 2 0 , ) ( 2 1 ) ( ) | ( ) ( ) | ( ) | ( 2 2 2 2 2 2 2 / ) ( 2 0 2 / ) ( 2 / ) ( 2 0                                   r r r e r d e e d f r f f r f r f . 2 ) ( 2 0 2 / ) ( 2 2           d e r r (11-26) n r   PILLAI
  • 10. 10 Notice that the knowledge about the observation r is reflected in the a-posteriori p.d.f of  in Fig. 11.2 (b). It is no longer flat as the a-priori p.d.f in Fig. 11.2 (a), and it shows higher probabilities in the neighborhood of . r   ) | ( | r f r    (b) a-posteriori p.d.f of  r   Fig. 11.2 Conditional Mean: We can use the conditional p.d.fs to define the conditional mean. More generally, applying (6-13) to conditional p.d.fs we get ) (  f  (a) a-priori p.d.f of   2 1  2 PILLAI
  • 11. 11   ( ) | ( ) ( | ) . X E g X B g x f x B dx     (11-27) and using a limiting argument as in (11-2) - (11-8), we get to be the conditional mean of X given Y = y. Notice that will be a function of y. Also In a similar manner, the conditional variance of X given Y = y is given by we shall illustrate these calculations through an example.           | | ) | ( | dx y x f x y Y X E Y X Y X  (11-28) ) | ( y Y X E    . ) | ( | | |         dy x y f y x X Y E X Y X Y  (11-29)      . | ) ( ) | ( | ) | ( 2 | 2 2 2 | y Y X E y Y X E y Y X E Y X Var Y X Y X           (11-30) PILLAI
  • 12. 12 Example 11.3: Let Determine and Solution: As Fig. 11.3 shows, in the shaded area, and zero elsewhere. From there and This gives and        . otherwise , 0 , 1 | | 0 , 1 ) , ( x y y x fXY (11-31) ) | ( Y X E ). | ( X Y E , 1 0 , 2 ) , ( ) (      x x dy y x f x f x x XY X 1 | | ( ) 1 1 | |, | | 1, Y y f y dx y y      , 1 | | 0 , | | 1 1 ) ( ) , ( ) | ( |       x y y y f y x f y x f Y XY Y X . 1 | | 0 , 2 1 ) ( ) , ( ) | ( |      x y x x f y x f x y f X XY X Y (11-32) (11-33) x y 1 Fig. 11.3 1 ) , (  y x fXY PILLAI
  • 13. 13 Hence It is possible to obtain an interesting generalization of the conditional mean formulas in (11-28) - (11-29). More generally, (11-28) gives But . 1 | | , 2 | | 1 |) | 1 ( 2 | | 1 2 |) | 1 ( 1 |) | 1 ( ) | ( ) | ( 2 1 | | 2 1 | | |              y y y y x y dx y x dx y x f x Y X E y y Y X . 1 0 , 0 2 2 1 2 ) | ( ) | ( 2 |           x y x dy x y dy x y yf X Y E x x x x X Y (11-34) (11-35)       | ( )| ( ) ( ) ( ) ( ) ( , ) ( ) ( , ) ( ) ( | ) ( ) ( ) | ( ) X XY XY X Y Y E g X Y y Y E g X g x f x dx g x f x y dydx g x f x y dxdy g x f x y dx f y dy E g X Y y f y dy E E                                     ( ) | . g X Y y    | ( ) | ( ) ( | ) . X Y E g X Y y g x f x y dx      (11-36) (11-37)PILLAI
  • 14. 14 Obviously, in the right side of (11-37), the inner expectation is with respect to X and the outer expectation is with respect to Y. Letting g( X ) = X in (11-37) we get the interesting identity where the inner expectation on the right side is with respect to X and the outer one is with respect to Y. Similarly, we have Using (11-37) and (11-30), we also obtain  , ) | ( ) ( y Y X E E X E    . ) | ( ) ( x X Y E E Y E   (11-38) (11-39)  . ) | ( ) ( y Y X Var E X Var   (11-40) PILLAI
  • 15. 15 Conditional mean turns out to be an important concept in estimation and prediction theory. For example given an observation about a r.v X, what can we say about a related r.v Y ? In other words what is the best predicted value of Y given that X = x ? It turns out that if “best” is meant in the sense of minimizing the mean square error between Y and its estimate , then the conditional mean of Y given X = x, i.e., is the best estimate for Y (see Lecture 16 for more on Mean Square Estimation). We conclude this lecture with yet another application of the conditional density formulation. Example 11.4 : Poisson sum of Bernoulli random variables Let represent independent, identically distributed Bernoulli random variables with Yˆ ) | ( x X Y E   3, 2, 1, ,  i Xi q p X P p X P i i       1 ) 0 ( , ) 1 (
  • 16. 16 and N a Poisson random variable with parameter that is independent of all . Consider the random variables Show that Y and Z are independent Poisson random variables. Solution : To determine the joint probability mass function of Y and Z, consider . , 1 Y N Z X Y N i i      (11-41) i X  PILLAI                                n m i i N i i n m N P m X P n m N P n m N m X P n m N P n m N m Y P n m N m Y P n Y N m Y P n Z m Y P 1 1 ) ( ) ( ) ( ) ( ) ( ) ( ) , ( ) , ( ) , ( (11-42)
  • 17. 17 ) ) , ( ~ ( of t independen are and that Note 1 N s X p n m B X i n m i i     (11-43) ( )! ! ! ( )! m n m n m n p q e m n m n                                   ! ) ( ! ) ( n q e m p e n q m p     ). ( ) ( n Z P m Y P    PILLAI Thus and Y and Z are independent random variables. Thus if a bird lays eggs that follow a Poisson random variable with parameter , and if each egg survives ) ( ~ ) ( ~ and   q P Z p P Y (11-44) 
  • 18. 18 with probability p, then the number of chicks that survive also forms a Poisson random variable with parameter .  p PILLAI