SlideShare a Scribd company logo
Grupo de Procesado de Datos y Simulación
                                        ETSI de Telecomunicación
                                Universidad Politécnica de Madrid



       A Bayesian strategy to enhance the
performance of indoor localization systems
                                     CONTEXTS 2011

                Josué Iglesias, Ana M. Bernardos, José R. Casar
                                  abernardos@grpss.ssr.upm.es
contents


                introduction
                application scenario
                         (sensor models)
                Bayesian enhancement strategy
                simulation results
                discussion and future works



User-Centric Technologies and Applications – CONTEXTS   abernardos@grpss.ssr.upm.es   2 / 14
introduction

 • smart environments (AmI, context-awared, etc.)
      different heterogeneous technologies:
       – WSN
       – RFID
                                        data fusion techniques
       – bi-dimensional codes
       – etc.

                                                        location estimation       enhancement
 • smart environments
   indoor location services
      (based on infrared, ultrasounds, video, radio frequency, etc.)


User-Centric Technologies and Applications – CONTEXTS     abernardos@grpss.ssr.upm.es       3 / 14
contents


               ✓
                introduction
                application scenario
                         (sensor models)
                Bayesian enhancement strategy
                simulation results
                discussion and future works



User-Centric Technologies and Applications – CONTEXTS   abernardos@grpss.ssr.upm.es   4 / 14
application scenario
                     x    area id                                                    4                          6

                          WSN anchor node                         1 RFID tag                     3 RFID tag
                                                                  1 proximity mote               1 proximity mote
                          transition sensors                2
                                                                  1 RFID tray                    1 RFID tray
                                                                                           t46
                                                                               t34

                                                                                     t43
                 0                               1                3                                             5
                                       user                                                t35
                                       + mobile mote
                                                                       1 RFID tag                1 proximity mote
                                       + PDA + RFIDreader
                                                                                                 1 RFID tray




existing location system                                                     objective: Bayesian fusion strategy
•symbolic location (zone-based)•        output:                              2)adding new proximity detection
•NZ = 6 zones (~ rooms)                 o(t)=0,1,…, NZ-1                     sensors
•WSN network (ZigBee)          •        average error = 28.79%               3)adding new transition sensors
                               •        accuracy model:                      between zones
•12 anchor nodes (2 x zone)
                                        P(o(t)|Hk(t))                        4)information about the particular
                                        [Hk(t)  real user location]         deployment (possible transitions)

 User-Centric Technologies and Applications – CONTEXTS           abernardos@grpss.ssr.upm.es                        5 / 14
sensor models
                  •    passive RFID
proximity
                                                          P(dn(t)|cn(t))
                  •    pressure mats
  sensors         •    power-tuned ZigBee motes           [dn(t)  proximity sensor state]
                  •    etc.                               [cn(t)  1 if user in sensor proximity]




transition
                  •    pair of pressure mats              P(in(t)|rpq(t))
                  •    power-tuned ZigBee motes           [in(t)  transition sensor state]
  sensors
                  •    etc.
                                                          [rpq(t)  1 if user transition exists]


User-Centric Technologies and Applications – CONTEXTS   abernardos@grpss.ssr.upm.es           6 / 14
contents


               ✓
                introduction
               ✓
                application scenario
                         (sensor models)
                Bayesian enhancement strategy
                simulation results
                discussion and future works



User-Centric Technologies and Applications – CONTEXTS   abernardos@grpss.ssr.upm.es   7 / 14
Bayesian strategy
Dinamic Bayesian Network
                               real user location
                                                                                               hidden
                                                                                               states

                                                                                               sensor
                                                                                               observations


                         transition       location     proximity
                       sensors state    system state sensors state




recursive Bayesian filter




 •   temporal hidden states transitions  Markovian evolution
 •   sensor observation independent (according the DBN graph)

User-Centric Technologies and Applications – CONTEXTS            abernardos@grpss.ssr.upm.es        8 / 14
" 7(" ' -" ' / . # ' # " ' (&#&# M " *-A' # (" , -. , 78) "/ &, 6 +. 2 . =
   #             " +)         % " $,      &'           #        &#        #
                                                                                           Bayesian strategy
          ! ! ! !! ! ! ! ! ! !                  ! ! ! ! !!!!! !                           ! ! ! ! ! ! !! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! !! ! ! !
                                        !!                                          !!


 " ' -" ' / . # &% " ' (" # " =
              1-' 2       8) #
                                                                                         transition model
                                                                                                                                   !"!#$ %! ! ! ! !
                                                                                                                                          &
              #                       modelado de la calidad de los sensores                      modelo de transición            obtenido al calcular
                                                *(excepto para los de transición)        [between zones]
                                                                                                   subyacente
              #
              #

              ! ! ! ! ! ! ! "#!! " # ! ! ! !               !    ! !!                ! !    !   ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! !! ! ! ! ! #
                                  !
                                                                           !!
              #
              #
                                                                                                                                 !
                                                                                                                               !" #$ %! ! ! ! !
                                                                                                                                      &
                              modelado de la calidad de los sensores                       modelo de transición               obtenido al calcular
              #                            sensors model                                                                 recursive component
                                          (slightly different for transition sensors; see paper)subyacente
                                      *(excepto para los de transición)
                                                                                                               [obtained when calculating Hk(t-1)]



1" +(. *# " # "*) % . # &% " %/ " ' . 2 -' &/ . , # " # *(&# +) &+-A' # B, &7 $) " *# *# 2 Z' # &# &% -" , # .
         / ,      (&/ 1-' 7 ##                     / "      "          *.    #       " +.      $&, +) 8)    E&%
       "# ' -' ) " % *" "
 / -+" # C# . # 1% C" # ' #&# %++-A' # " # >M . 4
                                       / 2 -2 #

# 2 B&,0. 7$) " / " # , # # &' (" ' " , % # &# -/ &, # " #&# (-/ &/ # " # # *(># &M -3&' / . # ' # &#
 "         #         *" Z(-%2              . $&, E&% 8) % +&'             8) *" "    2 -2     " +&/ 2
                                                                                            9 / 14
&# . B&B-% &/ # Technologies and Applications$%# " # *(># ' (, " #. *# . , " *# C# 4
  $, User-Centric 8) " # 1" +(-E&2 " ' (" # 2 – " 8) "
          -/ C# "                         +)    CONTEXTS
                                                         " abernardos@grpss.ssr.upm.es
                                                                 % E&%        a# L #
contents


               ✓
                introduction
               ✓
                application scenario
                         (sensor models)
               ✓
                Bayesian enhancement strategy
                simulation results
                discussion and future works



User-Centric Technologies and Applications – CONTEXTS   abernardos@grpss.ssr.upm.es   10 / 14
simulation results
                  5.2 Evaluation of the Bayesian location improvement algorithm in a real scenario


simulating a future Figure 5 the results of a simulation employing togethermodel proximity and
         Finally, in
                     real deployment:                    •  proximity sensor
                                                                             both
              transition sensors are presented. This test has been set tocalculated for mote-based sensors):
                                                                    (empirically be run using our real
•6 zone deployment: 
       –
              deployment configuration (Figure 1). The number of–proximity(t)=0) = 1 has been set to
           11 proximity sensors                                           P(d (t)=0|c sensors
                                                                                         n       n

       –   4 transition sensors simulation (matching the number of sensors (t)=1|c (t)=1) = 0.978926
              11 for this                                             –   P(d nowadays available for our
                                                                                         n       n


•transition model: deployment). Only 4 transition sensors • have been sensor model placed in the
              real                                                  transition employed,
            –   equidistributed if zones communicate                              –   ranging from 85% to 100% of hit rate

•location system quality decided to place there several transitionsimulation scenario: reduce location
             so it was                                          •    sensors, trying to
(empirically calculated) = 71.21% hit rate still working in the configuration of the transition sensors,
             system errors. As we are                                –  1.000 trajectories
                                                                                  –   1.000 zone transition per trajectory
                  the obtained improvement is shown over several transition sensors qualities.
                                                                                      hit rate (%):
                                                                                              location system + transition model
                                                                                              + 11 proximity sensors
                                                                                              + 4 transition sensors

                                                                                              location system + transition model
 ~ + 16 %




                                                                                              + 11 proximity sensors

                                                                                              location system + transition model
                                                                                              + 4 transition sensors

                                                                                              location system + transition model

                                                                                              location system




                                             Fig. 5. Real deployment influence over location estimation
 User-Centric Technologies and Applications – CONTEXTS                    abernardos@grpss.ssr.upm.es                        11 / 14
contents


               ✓
                introduction
               ✓
                application scenario
                         (sensor models)
               ✓
                Bayesian enhancement strategy
               ✓
                simulation results
                discussion and future works



User-Centric Technologies and Applications – CONTEXTS   abernardos@grpss.ssr.upm.es   12 / 14
discussion & future works
 • AmI environments make use of several heterogeneous
   technologies (e.g., RFID, bi-dimensional codes, etc.) that can
   be seamless processed to enhance already deployed location
   systems
       – cheap and feasible approach
       – hit rate 71.21%  ~ 88%

 •    consider more types of sensors (e.g., RFID, pressure mats, etc.),
      empirically obtaining its probabilistic models
 •    perform      more     tests    with      different sensor’s placements
      (analysing the enhancement introduced by each kind of sensor)
 •    real implementation
       – design supporting infrastructure
       – mobile deployment?

User-Centric Technologies and Applications – CONTEXTS   abernardos@grpss.ssr.upm.es   13 / 14
any question?




User-Centric Technologies and Applications – CONTEXTS   abernardos@grpss.ssr.upm.es   14 / 14

More Related Content

PPTX
Rfid based localization
PDF
A NOVEL ADAPTIVE - WAVELET BASED DETECTION ALGORITHM FOR CHIPLESS RFID SYSTEM
PDF
20080502 software verification_sharygina_lecture03
PDF
[Pec4] Poster Plastic Electronics Europe 2009
PDF
SmartCard Forum 2011 - RFID Wormholes
PDF
Presentation on DSP-Research Areas- National Conference in VLSI & Communi...
PDF
Label based dv-hop localization against wormhole attacks in wireless sensor n...
PDF
Rfid based localization
A NOVEL ADAPTIVE - WAVELET BASED DETECTION ALGORITHM FOR CHIPLESS RFID SYSTEM
20080502 software verification_sharygina_lecture03
[Pec4] Poster Plastic Electronics Europe 2009
SmartCard Forum 2011 - RFID Wormholes
Presentation on DSP-Research Areas- National Conference in VLSI & Communi...
Label based dv-hop localization against wormhole attacks in wireless sensor n...

Similar to [CONTEXTS'11] A bayesian strategy to enhance the performance of indoor localization systems (20)

PDF
Smart Santander project Jose M. Hernandez Munoz
PDF
Positioning seminar 2012
ZIP
Automagically: A Primer to The Connection System of Things
PPTX
Linked Sensor Data 101 (FIS2011)
PPT
Overview
PPT
Overview
PDF
Indoor Localization Using Local Node Density In Ad Hoc WSNs
PDF
Starnberger internet of things droidcon berlin 2013i
PDF
2008, IBM: WSN by John Dorn
PPTX
Relate: Architecture, Systems and Tools for Relative Positioning
PDF
Shaspa
PPTX
Wireless applications in various areas
PPTX
Towards application development for the internet of things updated
DOC
Literature Review
DOC
Literature Review
PDF
On Multi-Sensor Task Allocation
PDF
Smart buildings - architectures and technologies
PDF
Next Generation Positioning T181063, ETE, IIUC
PPTX
Radhika Thesis
Smart Santander project Jose M. Hernandez Munoz
Positioning seminar 2012
Automagically: A Primer to The Connection System of Things
Linked Sensor Data 101 (FIS2011)
Overview
Overview
Indoor Localization Using Local Node Density In Ad Hoc WSNs
Starnberger internet of things droidcon berlin 2013i
2008, IBM: WSN by John Dorn
Relate: Architecture, Systems and Tools for Relative Positioning
Shaspa
Wireless applications in various areas
Towards application development for the internet of things updated
Literature Review
Literature Review
On Multi-Sensor Task Allocation
Smart buildings - architectures and technologies
Next Generation Positioning T181063, ETE, IIUC
Radhika Thesis
Ad

More from Josué Freelance (20)

PDF
Infographic resume
PDF
Infographic resume
PDF
geoplanoSOCIAL
PPTX
[HAIS'13] An evidential and context-aware recommendation strategy to enhance ...
PPTX
[SENAmI'13] PERSEO - a system to personalize the environment response through...
PPTX
[esIoT'12] an attitude based reasoning strategy to enhance interaction with a...
PPT
[THOFU] Objetos y razonamiento
PPT
Sistemas de gestión contextual
PPTX
[TrabajoFinMaster] Sistema de reconocimiento automático de eventos asociados ...
PPT
[THOFU] User context space
PPT
[THOFU] Arquitectura activo experimental
PPT
[PIRAmIDE] Representación de la información para el diseño de un sistema lige...
PPTX
[PIRAmIDE] getHealthier! Monitor de actividad
PPT
[HAIS'10] An embeddable fusion framework to manage context information in mob...
PPTX
[SeNAmI'10] A light reasoning infrastructure to enable context-aware mobile a...
PPT
[PerCom'11] A ubiquitous activity monitor to prevent sedentariness
PPT
[PerCom'11] A ubiquitous activity monitor to prevent sedentariness (poster)
PPT
[MADRINET'09] Designing a framework to handle context information
PPT
[MADRINET'08] Design and deployment of context aware services - a prototyping...
PPTX
[ISDA'11] Towards integrating fuzzy logic capabilities into an ontology based...
Infographic resume
Infographic resume
geoplanoSOCIAL
[HAIS'13] An evidential and context-aware recommendation strategy to enhance ...
[SENAmI'13] PERSEO - a system to personalize the environment response through...
[esIoT'12] an attitude based reasoning strategy to enhance interaction with a...
[THOFU] Objetos y razonamiento
Sistemas de gestión contextual
[TrabajoFinMaster] Sistema de reconocimiento automático de eventos asociados ...
[THOFU] User context space
[THOFU] Arquitectura activo experimental
[PIRAmIDE] Representación de la información para el diseño de un sistema lige...
[PIRAmIDE] getHealthier! Monitor de actividad
[HAIS'10] An embeddable fusion framework to manage context information in mob...
[SeNAmI'10] A light reasoning infrastructure to enable context-aware mobile a...
[PerCom'11] A ubiquitous activity monitor to prevent sedentariness
[PerCom'11] A ubiquitous activity monitor to prevent sedentariness (poster)
[MADRINET'09] Designing a framework to handle context information
[MADRINET'08] Design and deployment of context aware services - a prototyping...
[ISDA'11] Towards integrating fuzzy logic capabilities into an ontology based...
Ad

Recently uploaded (20)

PDF
Chapter 3 Spatial Domain Image Processing.pdf
PPTX
Digital-Transformation-Roadmap-for-Companies.pptx
PPTX
Cloud computing and distributed systems.
PDF
Optimiser vos workloads AI/ML sur Amazon EC2 et AWS Graviton
PPTX
Big Data Technologies - Introduction.pptx
DOCX
The AUB Centre for AI in Media Proposal.docx
PDF
Blue Purple Modern Animated Computer Science Presentation.pdf.pdf
PDF
Dropbox Q2 2025 Financial Results & Investor Presentation
PDF
Reach Out and Touch Someone: Haptics and Empathic Computing
PDF
Electronic commerce courselecture one. Pdf
PDF
A comparative analysis of optical character recognition models for extracting...
PDF
7 ChatGPT Prompts to Help You Define Your Ideal Customer Profile.pdf
PDF
Agricultural_Statistics_at_a_Glance_2022_0.pdf
PDF
Advanced methodologies resolving dimensionality complications for autism neur...
PDF
Empathic Computing: Creating Shared Understanding
PDF
Mobile App Security Testing_ A Comprehensive Guide.pdf
PDF
Review of recent advances in non-invasive hemoglobin estimation
PPTX
Spectroscopy.pptx food analysis technology
PDF
Peak of Data & AI Encore- AI for Metadata and Smarter Workflows
PDF
Profit Center Accounting in SAP S/4HANA, S4F28 Col11
Chapter 3 Spatial Domain Image Processing.pdf
Digital-Transformation-Roadmap-for-Companies.pptx
Cloud computing and distributed systems.
Optimiser vos workloads AI/ML sur Amazon EC2 et AWS Graviton
Big Data Technologies - Introduction.pptx
The AUB Centre for AI in Media Proposal.docx
Blue Purple Modern Animated Computer Science Presentation.pdf.pdf
Dropbox Q2 2025 Financial Results & Investor Presentation
Reach Out and Touch Someone: Haptics and Empathic Computing
Electronic commerce courselecture one. Pdf
A comparative analysis of optical character recognition models for extracting...
7 ChatGPT Prompts to Help You Define Your Ideal Customer Profile.pdf
Agricultural_Statistics_at_a_Glance_2022_0.pdf
Advanced methodologies resolving dimensionality complications for autism neur...
Empathic Computing: Creating Shared Understanding
Mobile App Security Testing_ A Comprehensive Guide.pdf
Review of recent advances in non-invasive hemoglobin estimation
Spectroscopy.pptx food analysis technology
Peak of Data & AI Encore- AI for Metadata and Smarter Workflows
Profit Center Accounting in SAP S/4HANA, S4F28 Col11

[CONTEXTS'11] A bayesian strategy to enhance the performance of indoor localization systems

  • 1. Grupo de Procesado de Datos y Simulación ETSI de Telecomunicación Universidad Politécnica de Madrid A Bayesian strategy to enhance the performance of indoor localization systems CONTEXTS 2011 Josué Iglesias, Ana M. Bernardos, José R. Casar abernardos@grpss.ssr.upm.es
  • 2. contents  introduction  application scenario (sensor models)  Bayesian enhancement strategy  simulation results  discussion and future works User-Centric Technologies and Applications – CONTEXTS abernardos@grpss.ssr.upm.es 2 / 14
  • 3. introduction • smart environments (AmI, context-awared, etc.) different heterogeneous technologies: – WSN – RFID data fusion techniques – bi-dimensional codes – etc. location estimation enhancement • smart environments indoor location services (based on infrared, ultrasounds, video, radio frequency, etc.) User-Centric Technologies and Applications – CONTEXTS abernardos@grpss.ssr.upm.es 3 / 14
  • 4. contents ✓  introduction  application scenario (sensor models)  Bayesian enhancement strategy  simulation results  discussion and future works User-Centric Technologies and Applications – CONTEXTS abernardos@grpss.ssr.upm.es 4 / 14
  • 5. application scenario x area id 4 6 WSN anchor node 1 RFID tag 3 RFID tag 1 proximity mote 1 proximity mote transition sensors 2 1 RFID tray 1 RFID tray t46 t34 t43 0 1 3 5 user t35 + mobile mote 1 RFID tag 1 proximity mote + PDA + RFIDreader 1 RFID tray existing location system objective: Bayesian fusion strategy •symbolic location (zone-based)• output: 2)adding new proximity detection •NZ = 6 zones (~ rooms) o(t)=0,1,…, NZ-1 sensors •WSN network (ZigBee) • average error = 28.79% 3)adding new transition sensors • accuracy model: between zones •12 anchor nodes (2 x zone) P(o(t)|Hk(t)) 4)information about the particular [Hk(t)  real user location] deployment (possible transitions) User-Centric Technologies and Applications – CONTEXTS abernardos@grpss.ssr.upm.es 5 / 14
  • 6. sensor models • passive RFID proximity P(dn(t)|cn(t)) • pressure mats sensors • power-tuned ZigBee motes [dn(t)  proximity sensor state] • etc. [cn(t)  1 if user in sensor proximity] transition • pair of pressure mats P(in(t)|rpq(t)) • power-tuned ZigBee motes [in(t)  transition sensor state] sensors • etc. [rpq(t)  1 if user transition exists] User-Centric Technologies and Applications – CONTEXTS abernardos@grpss.ssr.upm.es 6 / 14
  • 7. contents ✓  introduction ✓  application scenario (sensor models)  Bayesian enhancement strategy  simulation results  discussion and future works User-Centric Technologies and Applications – CONTEXTS abernardos@grpss.ssr.upm.es 7 / 14
  • 8. Bayesian strategy Dinamic Bayesian Network real user location hidden states sensor observations transition location proximity sensors state system state sensors state recursive Bayesian filter • temporal hidden states transitions  Markovian evolution • sensor observation independent (according the DBN graph) User-Centric Technologies and Applications – CONTEXTS abernardos@grpss.ssr.upm.es 8 / 14
  • 9. " 7(" ' -" ' / . # ' # " ' (&#&# M " *-A' # (" , -. , 78) "/ &, 6 +. 2 . = # " +) % " $, &' # &# # Bayesian strategy ! ! ! !! ! ! ! ! ! ! ! ! ! ! !!!!! ! ! ! ! ! ! ! !! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! !! ! ! ! !! !! " ' -" ' / . # &% " ' (" # " = 1-' 2 8) # transition model !"!#$ %! ! ! ! ! & # modelado de la calidad de los sensores modelo de transición obtenido al calcular *(excepto para los de transición) [between zones] subyacente # # ! ! ! ! ! ! ! "#!! " # ! ! ! ! ! ! !! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! !! ! ! ! ! # ! !! # # ! !" #$ %! ! ! ! ! & modelado de la calidad de los sensores modelo de transición obtenido al calcular # sensors model recursive component (slightly different for transition sensors; see paper)subyacente *(excepto para los de transición) [obtained when calculating Hk(t-1)] 1" +(. *# " # "*) % . # &% " %/ " ' . 2 -' &/ . , # " # *(&# +) &+-A' # B, &7 $) " *# *# 2 Z' # &# &% -" , # . / , (&/ 1-' 7 ## / " " *. # " +. $&, +) 8) E&% "# ' -' ) " % *" " / -+" # C# . # 1% C" # ' #&# %++-A' # " # >M . 4 / 2 -2 # # 2 B&,0. 7$) " / " # , # # &' (" ' " , % # &# -/ &, # " #&# (-/ &/ # " # # *(># &M -3&' / . # ' # &# " # *" Z(-%2 . $&, E&% 8) % +&' 8) *" " 2 -2 " +&/ 2 9 / 14 &# . B&B-% &/ # Technologies and Applications$%# " # *(># ' (, " #. *# . , " *# C# 4 $, User-Centric 8) " # 1" +(-E&2 " ' (" # 2 – " 8) " -/ C# " +) CONTEXTS " abernardos@grpss.ssr.upm.es % E&% a# L #
  • 10. contents ✓  introduction ✓  application scenario (sensor models) ✓  Bayesian enhancement strategy  simulation results  discussion and future works User-Centric Technologies and Applications – CONTEXTS abernardos@grpss.ssr.upm.es 10 / 14
  • 11. simulation results 5.2 Evaluation of the Bayesian location improvement algorithm in a real scenario simulating a future Figure 5 the results of a simulation employing togethermodel proximity and Finally, in real deployment: • proximity sensor both transition sensors are presented. This test has been set tocalculated for mote-based sensors): (empirically be run using our real •6 zone deployment:  – deployment configuration (Figure 1). The number of–proximity(t)=0) = 1 has been set to 11 proximity sensors P(d (t)=0|c sensors n n – 4 transition sensors simulation (matching the number of sensors (t)=1|c (t)=1) = 0.978926 11 for this – P(d nowadays available for our n n •transition model: deployment). Only 4 transition sensors • have been sensor model placed in the real transition employed, – equidistributed if zones communicate – ranging from 85% to 100% of hit rate •location system quality decided to place there several transitionsimulation scenario: reduce location so it was • sensors, trying to (empirically calculated) = 71.21% hit rate still working in the configuration of the transition sensors, system errors. As we are – 1.000 trajectories – 1.000 zone transition per trajectory the obtained improvement is shown over several transition sensors qualities. hit rate (%): location system + transition model + 11 proximity sensors + 4 transition sensors location system + transition model ~ + 16 % + 11 proximity sensors location system + transition model + 4 transition sensors location system + transition model location system Fig. 5. Real deployment influence over location estimation User-Centric Technologies and Applications – CONTEXTS abernardos@grpss.ssr.upm.es 11 / 14
  • 12. contents ✓  introduction ✓  application scenario (sensor models) ✓  Bayesian enhancement strategy ✓  simulation results  discussion and future works User-Centric Technologies and Applications – CONTEXTS abernardos@grpss.ssr.upm.es 12 / 14
  • 13. discussion & future works • AmI environments make use of several heterogeneous technologies (e.g., RFID, bi-dimensional codes, etc.) that can be seamless processed to enhance already deployed location systems – cheap and feasible approach – hit rate 71.21%  ~ 88% • consider more types of sensors (e.g., RFID, pressure mats, etc.), empirically obtaining its probabilistic models • perform more tests with different sensor’s placements (analysing the enhancement introduced by each kind of sensor) • real implementation – design supporting infrastructure – mobile deployment? User-Centric Technologies and Applications – CONTEXTS abernardos@grpss.ssr.upm.es 13 / 14
  • 14. any question? User-Centric Technologies and Applications – CONTEXTS abernardos@grpss.ssr.upm.es 14 / 14