SlideShare a Scribd company logo
Cruel (SQL) Intentions - An analysis of
malicious intentions behind real world SQL
injection attacks
Ezra Caltum – Sr. Security Researcher Akamai
Mysql> SELECT title FROM talk;
Mysql> SELECT author FROM talk;
• The Platform
• 167,000+ Servers
• 2,300+ Locations
• 750+ Cities
• 92 Countries
• 1,227+ Networks
• The Data
• 2 trillion hits per day
• 780 million unique IPv4
addresses seen
quarterly
• 13+ trillion log lines per
day
• 260+ terabytes of
compressed daily logs
15 - 30% of all web traffic
Mysql> SELECT COUNT(DISTINCT
days) FROM research_data;
+-------+
| days |
+-------+
| 7 |
+-------+
Mysql> SELECT COUNT(DISTINCT
apps) FROM research_data;
+-------+
| apps |
+-------+
| 2000 |
+-------+
Mysql> SELECT COUNT(DISTINCT
injections) FROM
research_data;
+--------------+
| injections |
+--------------+
| 8,425,489 |
+--------------+
Mysql> SELECT COUNT(DISTINCT injections) as
injections, COUNT(DISTINCT injections)/8425489 as
percentage FROM research_data WHERE category =
'SQL INJECTION PROBING AND INJECTION
TESTING';
+------------+-----------------------+
|injections | percentage |
+------------+-----------------------+
| 5,021,240 | 59.59% |
+------------+-----------------------+
Mysql> SELECT COUNT(DISTINCT injections) as
injections, COUNT(DISTINCT injections)/8425489 as
percentage, COUNT(DISTINCT injections)/3406249 as
norm_perc FROM research_data WHERE category =
'ENVIROMENT PROBING AND TESTING';
+------------+-----------------------+
| injections | percentage | norm_perc|
+------------+-----------------------+
| 1,308,681 | 15.5% | 38.42% |
+------------+------------+----------+
Mysql> SELECT COUNT(DISTINCT injections) as
injections, COUNT(DISTINCT injections)/8425489 as
percentage, COUNT(DISTINCT injections)/3406249 as
norm_perc FROM research_data WHERE category =
'DATABASE CONTENT RETRIEVAL';
+------------+-----------------------+
| injections | percentage | norm_perc|
+------------+-----------------------+
| 129,814 | 1.5403% | 3.811054%|
+------------+-----------------------+
Mysql> SELECT COUNT(DISTINCT injections) as
injections, COUNT(DISTINCT injections)/8425489 as
percentage, COUNT(DISTINCT injections)/3406249 as
norm_perc FROM research_data WHERE category =
'CREDENTIAL THEFT';
+------------+-----------------------+
| injections | percentage | norm_perc|
+------------+-----------------------+
| 1,950,749 | 23.14745% |57.269712%|
+------------+-----------------------+
Mysql> SELECT COUNT(DISTINCT injections) as
injections, COUNT(DISTINCT injections)/8425489 as
percentage, COUNT(DISTINCT injections)/3406249 as
norm_perc FROM research_data WHERE category =
'LOGIN BYPASS';
+------------+-----------------------+
| injections | percentage | norm_perc|
+------------+-----------------------+
| 5,467 | 00.064871%|00.160499%|
+------------+-----------------------+
Mysql> SELECT COUNT(DISTINCT injections) as
injections, COUNT(DISTINCT injections)/8425489 as
percentage, COUNT(DISTINCT injections)/3406249 as
norm_perc FROM research_data WHERE category =
'DATA FILE EXTRACTION';
+------------+-----------------------+
| injections | percentage | norm_perc|
+------------+-----------------------+
| 24 | 0.00028% |0.0007% |
+------------+-----------------------+
Mysql> SELECT COUNT(DISTINCT injections) as
injections, COUNT(DISTINCT injections)/8425489 as
percentage, COUNT(DISTINCT injections)/3406249 as
norm_perc FROM research_data WHERE category =
'DENIAL OF SERVICE';
+------------+-----------------------+
| injections | percentage | norm_perc|
+------------+-----------------------+
| 326 | 0.00387% | 0.009571%|
+------------+-----------------------+
Mysql> SELECT COUNT(DISTINCT injections) as injections,
COUNT(DISTINCT injections)/8425489 as percentage,
COUNT(DISTINCT injections)/3406249 as norm_perc FROM
research_data WHERE category =
'DATA CORRUPTION';
+------------+-----------------------+
| injections | percentage | norm_perc|
+------------+-----------------------+
| 2,238 | 0.026556% | 0.065702%|
+------------+-----------------------+
Mysql> SELECT COUNT(DISTINCT injections) as
injections, COUNT(DISTINCT injections)/8425489 as
percentage, COUNT(DISTINCT injections)/3406249 as
norm_perc FROM research_data WHERE category =
'DEFACEMENT AND CONTENT INJECTION';
+------------+-----------------------+
| injections | percentage | norm_perc|
+------------+-----------------------+
|8,156 | 0.096778% |0.239442% |
+------------+-----------------------+
Mysql> SELECT COUNT(DISTINCT injections) as
injections, COUNT(DISTINCT injections)/8425489 as
percentage, COUNT(DISTINCT injections)/3406249 as
norm_perc FROM research_data WHERE category =
'RCE';
+------------+-----------------------+
| injections | percentage | norm_perc|
+------------+-----------------------+
| 794 | 0.00942% | 0.023310%|
+------------+-----------------------+
Mysql> SELECT summary FROM talk
+------------+-----------------------+
| summary
+------------+-----------------------+
|Malicious actors use a variety of |
|of techniques. |
|Not only data exfiltration, but: |
|Elevate privileges, execute commands,|
|infect or corrupt data, deny service |
+------------+-----------------------+
DROP /**/ TABLE talk;
Twitter: @aCaltum
http://ezra.c.com.mx
http://www.stateoftheinternet.com
SELECT questions FROM
attendees WHERE (used_time
+ question_time) <= 15;

More Related Content

PPTX
Time Series Analysis for Network Secruity
PPTX
Everything you always wanted to know about datetime types but didn’t have tim...
PPTX
Oracle 122 partitioning_in_action_slide_share
PDF
E34 : [JPOUG Presents] Oracle Database の隠されている様々な謎を解くセッション「なーんでだ?」再び @ db tec...
PDF
SQLチューニング総合診療Oracle CloudWorld出張所
PDF
db tech showcase Tokyo 2014 - L36 - JPOUG : SQLチューニング総合診療所 ケースファイルX
PPT
15 protips for mysql users pfz
PPTX
Perth APAC Groundbreakers tour - SQL Techniques
Time Series Analysis for Network Secruity
Everything you always wanted to know about datetime types but didn’t have tim...
Oracle 122 partitioning_in_action_slide_share
E34 : [JPOUG Presents] Oracle Database の隠されている様々な謎を解くセッション「なーんでだ?」再び @ db tec...
SQLチューニング総合診療Oracle CloudWorld出張所
db tech showcase Tokyo 2014 - L36 - JPOUG : SQLチューニング総合診療所 ケースファイルX
15 protips for mysql users pfz
Perth APAC Groundbreakers tour - SQL Techniques

Viewers also liked (13)

PPTX
Basic learning theories
PDF
ViSeQR: Etichette come impronte digitali
PPTX
Examples of Required Documents
PDF
PDF
ใบงานที่ 1 แบบสำรวจตนเอง
PDF
Wordsmith essay editors
DOC
Mithun Khatei
PDF
100 preguntas-sobre-sexualidad-adolescente
PDF
Lean Innovation: l’opportunità concreta di dare nuovo valore all’impresa
PPTX
Transformative learning
PPTX
Trespass to the person
PPTX
Nuisance
PDF
Minuta leyes secretas - Consejo Transparencia
Basic learning theories
ViSeQR: Etichette come impronte digitali
Examples of Required Documents
ใบงานที่ 1 แบบสำรวจตนเอง
Wordsmith essay editors
Mithun Khatei
100 preguntas-sobre-sexualidad-adolescente
Lean Innovation: l’opportunità concreta di dare nuovo valore all’impresa
Transformative learning
Trespass to the person
Nuisance
Minuta leyes secretas - Consejo Transparencia
Ad

Similar to Cruel (SQL) Intentions (20)

PDF
SQL Injection Tutorial
PDF
Appreciative Advanced Blind SQLI Attack
PPTX
SQL Injection Stegnography in Pen Testing
PPTX
SQL INJECTION
KEY
10x improvement-mysql-100419105218-phpapp02
KEY
10x Performance Improvements
PPTX
Understanding and preventing sql injection attacks
PDF
Understanding advanced blind sqli attack
PPTX
Advanced structure query language, Data science
PPT
Web application attacks using Sql injection and countermasures
PDF
Sql injection
PDF
Sql injection manish file
PPTX
Sql injection - security testing
PPTX
seminar report on Sql injection
PPT
Sql security
PDF
Practical Sql A Beginners Guide To Storytelling With Data 2nd Edition 2 Conve...
PPT
ShmooCon 2009 - (Re)Playing(Blind)Sql
PDF
IRJET - SQL Injection: Attack & Mitigation
ODP
Optimizing mysql stored routines uc2010
PDF
SQL Performance Solutions: Refactor Mercilessly, Index Wisely
SQL Injection Tutorial
Appreciative Advanced Blind SQLI Attack
SQL Injection Stegnography in Pen Testing
SQL INJECTION
10x improvement-mysql-100419105218-phpapp02
10x Performance Improvements
Understanding and preventing sql injection attacks
Understanding advanced blind sqli attack
Advanced structure query language, Data science
Web application attacks using Sql injection and countermasures
Sql injection
Sql injection manish file
Sql injection - security testing
seminar report on Sql injection
Sql security
Practical Sql A Beginners Guide To Storytelling With Data 2nd Edition 2 Conve...
ShmooCon 2009 - (Re)Playing(Blind)Sql
IRJET - SQL Injection: Attack & Mitigation
Optimizing mysql stored routines uc2010
SQL Performance Solutions: Refactor Mercilessly, Index Wisely
Ad

Recently uploaded (20)

PPTX
Effective Security Operations Center (SOC) A Modern, Strategic, and Threat-In...
PDF
Per capita expenditure prediction using model stacking based on satellite ima...
PDF
Network Security Unit 5.pdf for BCA BBA.
PPTX
Digital-Transformation-Roadmap-for-Companies.pptx
PDF
Peak of Data & AI Encore- AI for Metadata and Smarter Workflows
PPTX
Cloud computing and distributed systems.
PDF
Diabetes mellitus diagnosis method based random forest with bat algorithm
PPTX
Big Data Technologies - Introduction.pptx
PPTX
20250228 LYD VKU AI Blended-Learning.pptx
PDF
NewMind AI Weekly Chronicles - August'25 Week I
PDF
Build a system with the filesystem maintained by OSTree @ COSCUP 2025
PDF
How UI/UX Design Impacts User Retention in Mobile Apps.pdf
PDF
Electronic commerce courselecture one. Pdf
PDF
Spectral efficient network and resource selection model in 5G networks
PDF
cuic standard and advanced reporting.pdf
PPTX
Spectroscopy.pptx food analysis technology
PPT
“AI and Expert System Decision Support & Business Intelligence Systems”
PPTX
MYSQL Presentation for SQL database connectivity
PDF
Encapsulation theory and applications.pdf
PDF
Optimiser vos workloads AI/ML sur Amazon EC2 et AWS Graviton
Effective Security Operations Center (SOC) A Modern, Strategic, and Threat-In...
Per capita expenditure prediction using model stacking based on satellite ima...
Network Security Unit 5.pdf for BCA BBA.
Digital-Transformation-Roadmap-for-Companies.pptx
Peak of Data & AI Encore- AI for Metadata and Smarter Workflows
Cloud computing and distributed systems.
Diabetes mellitus diagnosis method based random forest with bat algorithm
Big Data Technologies - Introduction.pptx
20250228 LYD VKU AI Blended-Learning.pptx
NewMind AI Weekly Chronicles - August'25 Week I
Build a system with the filesystem maintained by OSTree @ COSCUP 2025
How UI/UX Design Impacts User Retention in Mobile Apps.pdf
Electronic commerce courselecture one. Pdf
Spectral efficient network and resource selection model in 5G networks
cuic standard and advanced reporting.pdf
Spectroscopy.pptx food analysis technology
“AI and Expert System Decision Support & Business Intelligence Systems”
MYSQL Presentation for SQL database connectivity
Encapsulation theory and applications.pdf
Optimiser vos workloads AI/ML sur Amazon EC2 et AWS Graviton

Cruel (SQL) Intentions

  • 1. Cruel (SQL) Intentions - An analysis of malicious intentions behind real world SQL injection attacks Ezra Caltum – Sr. Security Researcher Akamai Mysql> SELECT title FROM talk; Mysql> SELECT author FROM talk;
  • 2. • The Platform • 167,000+ Servers • 2,300+ Locations • 750+ Cities • 92 Countries • 1,227+ Networks • The Data • 2 trillion hits per day • 780 million unique IPv4 addresses seen quarterly • 13+ trillion log lines per day • 260+ terabytes of compressed daily logs 15 - 30% of all web traffic
  • 3. Mysql> SELECT COUNT(DISTINCT days) FROM research_data; +-------+ | days | +-------+ | 7 | +-------+
  • 4. Mysql> SELECT COUNT(DISTINCT apps) FROM research_data; +-------+ | apps | +-------+ | 2000 | +-------+
  • 5. Mysql> SELECT COUNT(DISTINCT injections) FROM research_data; +--------------+ | injections | +--------------+ | 8,425,489 | +--------------+
  • 6. Mysql> SELECT COUNT(DISTINCT injections) as injections, COUNT(DISTINCT injections)/8425489 as percentage FROM research_data WHERE category = 'SQL INJECTION PROBING AND INJECTION TESTING'; +------------+-----------------------+ |injections | percentage | +------------+-----------------------+ | 5,021,240 | 59.59% | +------------+-----------------------+
  • 7. Mysql> SELECT COUNT(DISTINCT injections) as injections, COUNT(DISTINCT injections)/8425489 as percentage, COUNT(DISTINCT injections)/3406249 as norm_perc FROM research_data WHERE category = 'ENVIROMENT PROBING AND TESTING'; +------------+-----------------------+ | injections | percentage | norm_perc| +------------+-----------------------+ | 1,308,681 | 15.5% | 38.42% | +------------+------------+----------+
  • 8. Mysql> SELECT COUNT(DISTINCT injections) as injections, COUNT(DISTINCT injections)/8425489 as percentage, COUNT(DISTINCT injections)/3406249 as norm_perc FROM research_data WHERE category = 'DATABASE CONTENT RETRIEVAL'; +------------+-----------------------+ | injections | percentage | norm_perc| +------------+-----------------------+ | 129,814 | 1.5403% | 3.811054%| +------------+-----------------------+
  • 9. Mysql> SELECT COUNT(DISTINCT injections) as injections, COUNT(DISTINCT injections)/8425489 as percentage, COUNT(DISTINCT injections)/3406249 as norm_perc FROM research_data WHERE category = 'CREDENTIAL THEFT'; +------------+-----------------------+ | injections | percentage | norm_perc| +------------+-----------------------+ | 1,950,749 | 23.14745% |57.269712%| +------------+-----------------------+
  • 10. Mysql> SELECT COUNT(DISTINCT injections) as injections, COUNT(DISTINCT injections)/8425489 as percentage, COUNT(DISTINCT injections)/3406249 as norm_perc FROM research_data WHERE category = 'LOGIN BYPASS'; +------------+-----------------------+ | injections | percentage | norm_perc| +------------+-----------------------+ | 5,467 | 00.064871%|00.160499%| +------------+-----------------------+
  • 11. Mysql> SELECT COUNT(DISTINCT injections) as injections, COUNT(DISTINCT injections)/8425489 as percentage, COUNT(DISTINCT injections)/3406249 as norm_perc FROM research_data WHERE category = 'DATA FILE EXTRACTION'; +------------+-----------------------+ | injections | percentage | norm_perc| +------------+-----------------------+ | 24 | 0.00028% |0.0007% | +------------+-----------------------+
  • 12. Mysql> SELECT COUNT(DISTINCT injections) as injections, COUNT(DISTINCT injections)/8425489 as percentage, COUNT(DISTINCT injections)/3406249 as norm_perc FROM research_data WHERE category = 'DENIAL OF SERVICE'; +------------+-----------------------+ | injections | percentage | norm_perc| +------------+-----------------------+ | 326 | 0.00387% | 0.009571%| +------------+-----------------------+
  • 13. Mysql> SELECT COUNT(DISTINCT injections) as injections, COUNT(DISTINCT injections)/8425489 as percentage, COUNT(DISTINCT injections)/3406249 as norm_perc FROM research_data WHERE category = 'DATA CORRUPTION'; +------------+-----------------------+ | injections | percentage | norm_perc| +------------+-----------------------+ | 2,238 | 0.026556% | 0.065702%| +------------+-----------------------+
  • 14. Mysql> SELECT COUNT(DISTINCT injections) as injections, COUNT(DISTINCT injections)/8425489 as percentage, COUNT(DISTINCT injections)/3406249 as norm_perc FROM research_data WHERE category = 'DEFACEMENT AND CONTENT INJECTION'; +------------+-----------------------+ | injections | percentage | norm_perc| +------------+-----------------------+ |8,156 | 0.096778% |0.239442% | +------------+-----------------------+
  • 15. Mysql> SELECT COUNT(DISTINCT injections) as injections, COUNT(DISTINCT injections)/8425489 as percentage, COUNT(DISTINCT injections)/3406249 as norm_perc FROM research_data WHERE category = 'RCE'; +------------+-----------------------+ | injections | percentage | norm_perc| +------------+-----------------------+ | 794 | 0.00942% | 0.023310%| +------------+-----------------------+
  • 16. Mysql> SELECT summary FROM talk +------------+-----------------------+ | summary +------------+-----------------------+ |Malicious actors use a variety of | |of techniques. | |Not only data exfiltration, but: | |Elevate privileges, execute commands,| |infect or corrupt data, deny service | +------------+-----------------------+
  • 17. DROP /**/ TABLE talk; Twitter: @aCaltum http://ezra.c.com.mx http://www.stateoftheinternet.com
  • 18. SELECT questions FROM attendees WHERE (used_time + question_time) <= 15;