SlideShare a Scribd company logo
Motivation Formulation Adaptive integration Numerical examples Summary and Conclusions
CutFEM on hierarchical B-Spline Cartesian grids
with applications to fluid-structure interaction
Dr. C. Kadapa, Dr. W. G. Dettmer and Prof. D. Peri´c
Zienkiewicz center for Computational Engineering
Swansea University, Swansea, UK.
06-June-2016, ECCOMAS 2016, Crete Island, Greece.
Motivation Formulation Adaptive integration Numerical examples Summary and Conclusions
Outline
1 Motivation
2 Formulation
3 Adaptive integration
4 Numerical examples
5 Summary and Conclusions
Motivation Formulation Adaptive integration Numerical examples Summary and Conclusions
Motivation
Large deformations
Topological changes
Generic geometries
Added-mass instabilities
Motivation Formulation Adaptive integration Numerical examples Summary and Conclusions
Fictitious Domain/Distributed Lagrange multiplier method
Figure: Hierarchical B-Spline mesh.
200.00
250.00
300.00
148.39
326.94
pres
-60.00
-45.00
-30.00
-76.71
-20.91
pres
-320.00
-280.00
-240.00
-200.00
-355.18
-166.04
pres
30.00
45.00
60.00
75.00
21.46
80.45
pres
Figure: Pressure contour plots
Motivation Formulation Adaptive integration Numerical examples Summary and Conclusions
Fictitious Domain/Distributed Lagrange multiplier method
0.2
0.4
0.6
0.8
2.879e-04
9.365e-01
vel Magnitude
Motivation Formulation Adaptive integration Numerical examples Summary and Conclusions
Fictitious Domain/Distributed Lagrange multiplier method
Advantages
Equal-order interpolation for velocity and
pressure
Works very well for thin structures
Issues
Zeroes on the matrix diagonal
Zeroes on the matrix diagonal due to
Lagrange multipliers
Unnecessary DOF when bulky solids are
present
Motivation Formulation Adaptive integration Numerical examples Summary and Conclusions
What is CutFEM?
Motivation Formulation Adaptive integration Numerical examples Summary and Conclusions
What is CutFEM?
Advantages
Clean interfaces.
B-Splines of any order, along
with hierarchical refinement.
Stabilised formulation for fluids.
Fewer DOF.
Motivation Formulation Adaptive integration Numerical examples Summary and Conclusions
What is CutFEM?
Advantages
Clean interfaces.
B-Splines of any order, along
with hierarchical refinement.
Stabilised formulation for fluids.
Fewer DOF.
Issues
Integration of cut cells.
Ill-conditioned matrices due to
small cut cells.
Motivation Formulation Adaptive integration Numerical examples Summary and Conclusions
Formulation
Incompressible Navier-Stokes
Find velocity, v = (v1, v2, v3), and pressure, p, such that
ρf ∂vf
∂t
+ ρf
(vf
· ∇)vf
− µf
∆vf
+ ∇p = gf
in Ωf
(1a)
∇ · vf
= 0 in Ωf
(1b)
vf
= vs
on Γf
D (1c)
σf
· nf
= tf
on Γf
N (1d)
where,
σf
= µ∇vf
− p I (2)
Motivation Formulation Adaptive integration Numerical examples Summary and Conclusions
Formulation (contd..)
Variational formulation
Bf
Gal({wf
, q}, {vf
, p}) + Bf
Stab({wf
, q}, {vf
, p}) + Bf
Nitsche({wf
, q}, {vf
, p})
+ Bf
GP({wf
, q}, {vf
, p}) = F f
Gal({wf
, q}) (3)
Standard Galerkin terms
Bf
Gal({wf
, q}, {vf
, p}) =
Ωf
wf
· ρf ∂vf
∂t
+ vf
· ∇vf
dΩf
+
Ωf
µ ∇wf
: ∇vf
dΩf
−
Ωf
(∇ · wf
) p dΩf
+
Ωf
q (∇ · vf
) dΩf
(4)
F f
Gal({wf
, q}) =
Ωf
wf
· gf
dΩf
+
Γ
f
N
wf
· tf
dΓ (5)
Motivation Formulation Adaptive integration Numerical examples Summary and Conclusions
Formulation (contd..)
Stabilisation
Bf
Stab({wf
, q}, {vf
, p}) =
nel
e=1 Ωfe
1
ρf
[τSUPG ρf
vf
· ∇wf
+ τPSPG ∇q] · rM dΩf
+
nel
e=1 Ωfe
τLSIC ρf
(∇ · wf
) (∇ · vf
) dΩf
(6)
where, rM is the residual of the momentum equation,
rM = ρf ∂vf
∂t
+ ρf
(vf
· ∇vf
) − µf
∆vf
+ ∇p − gf
(7)
Nitsche’s method
Bf
N({wf
, q}, {vf
, p}) = γN1
ΓD
wf
· (vf
− vs
) dΓ −
ΓD
wf
· (σ({vf
, p}) · nf
) dΓ
− γN2
ΓD
(σ({wf
, q}) · nf
) · (vf
− vs
) dΓ (8)
Motivation Formulation Adaptive integration Numerical examples Summary and Conclusions
Formulation (contd..)
Ghost penalty (Burman et al. [1])
Jump operator for a scalar valued problem:
gs(w, v) :=
k
j=1 F ∈F
h2(j−1)+s
F
[Dj
w][Dj
v] ds
[Djz] normal derivative of z, of order j, on face F
and k is degree of B-Splines.
Jump operator for a vector valued problem:
Gs(w, v) :=
d
i=1
k
j=1 F ∈F
h2(j−1)+s
F
[Dj
wi][Dj
vi] ds
Figure: Ghost-penalty
operators are applied on blue
coloured edges.
The ghost-penalty operator is given as,
Bf
GP({wf
, q)}, {(v, p)}) = γu
GP µ G1(wf
, vf
) + γp
GP
1
µ
g3(q, p) (9)
In this work, only the non-zero derivative of highest-order is considered.
Motivation Formulation Adaptive integration Numerical examples Summary and Conclusions
Integration of cut-cells - Subtriangulation
Advantages
Exact integration for boundaries with straight
edges.
Easy when boundaries are discretised with
straight edges.
Fewer Gauss points.
Disadvantages
Difficult for generic geometries in 3D. Need to
use constrained tetrahedralisation.
Difficult when boundaries are discretised with
curved elements or NURBS.
Motivation Formulation Adaptive integration Numerical examples Summary and Conclusions
Integration of cut-cells - adaptive integration
Subtriangularion: nGP = 420; % error = 1.55e-6.
(a) Level-3 adaptive integration
102
103
104
105
106
Number of Gauss points in cut-cells
10-5
10-4
10-3
10-2
10-1
100
abs(%errorinarea)
(b) nGP for different levels
Motivation Formulation Adaptive integration Numerical examples Summary and Conclusions
Integration of cut-cells - adaptive integration - merging
Subtriangularion: nGP = 420; % error = 1.55e-6.
(a) Level-3 adaptive integration
102
103
104
105
106
Number of Gauss points in cut-cells
10-5
10-4
10-3
10-2
10-1
100
abs(%errorinarea)
without merging
with merging
(b) nGP for different levels
Motivation Formulation Adaptive integration Numerical examples Summary and Conclusions
Integration of cut-cells - binary tree
(a) quad-tree (b) binary-tree
Figure: Adaptive integration - quad-tree Vs binary-tree.
Motivation Formulation Adaptive integration Numerical examples Summary and Conclusions
Integration of cut-cells - adaptive integration
(a) Level-3 adaptive integration
102
103
104
105
106
Number of Gauss points in cut-cells
10-5
10-4
10-3
10-2
10-1
100
abs(%errorinarea)
quad-tree without merging
binary-tree without merging
quad-tree with merging
binary-tree with merging
(b) nGP for different levels
Binary subdivision helps to reduce number of Gauss points in cut-cells by
20%. (In 3D, for sphere, the reduction is about 30%.)
Motivation Formulation Adaptive integration Numerical examples Summary and Conclusions
Numerical examples
Motivation Formulation Adaptive integration Numerical examples Summary and Conclusions
CutFEM - Basic scheme
W. G. Dettmer, C. Kadapa, and D. Peri´c. Ingredients for an
immersed interface methods for FSI. COUPLED Problems, Venice,
Italy, May-2015.
W. G. Dettmer, C. Kadapa, and D. Peri´c. A stabilised immersed
boundary method on hierarchical b-spline grids. Submitted for
publication.
Motivation Formulation Adaptive integration Numerical examples Summary and Conclusions
Flow past a cylinder
10 20
15
15
1
vx = 1.0
vy = 0
vy = 0, tx = 0
vy = 0, tx = 0
tx=ty=0
Motivation Formulation Adaptive integration Numerical examples Summary and Conclusions
Flow past a cylinder - Re = 20
1 2 3 4 5 6 7 8 9
Number of Gauss points
1.0
1.5
2.0
2.5
3.0
Dragcoefficient(CD)
Level-0
Level-1
Level-2
Level-3
Level-4
(a) Q1
1 2 3 4 5 6 7 8 9
Number of Gauss points
1.0
1.5
2.0
2.5
3.0
Dragcoefficient(CD)
Level-0
Level-1
Level-2
Level-3
Level-4
(b) Q2
1 2 3 4 5 6 7 8 9
Number of Gauss points
1.0
1.5
2.0
2.5
3.0
Dragcoefficient(CD)
Level-0
Level-1
Level-2
Level-3
Level-4
(c) Q3
0 50 100 150 200 250 300 350
Number of edges
1.0
1.5
2.0
2.5
3.0
Dragcoefficient(CD)
Q1
Q2
Q3
(d) nIE
0 2 4 6 8 10 12 14
Number of Gauss points
1.0
1.5
2.0
2.5
3.0
Dragcoefficient(CD)
Q1
Q2
Q3
(e) nGPtria
10-6
10-5
10-4
10-3
10-2
10-1
100
101
Ghost penalty parameter (γGP)
1.0
1.5
2.0
2.5
3.0
Dragcoefficient(CD)
Q1
Q2
Q3
(f) γGP
Motivation Formulation Adaptive integration Numerical examples Summary and Conclusions
Flow past a cylinder - Re = 20
(a) Q2, Level-1 (b) Q2, Level-2
-0.300
0.000
0.300
-0.500
0.700
pres
(c) Q2, Level-3
(d) Q1, γGP = 100 (e) Q1, γGP = 10−2
-0.300
0.000
0.300
-0.500
0.700
pres
(f) Q1, γGP = 10−4
(g) Q2, nIE = 20 (h) Q2, nIE = 80
-0.300
0.000
0.300
-0.500
0.700
pres
(i) Q2, nIE = 320
Motivation Formulation Adaptive integration Numerical examples Summary and Conclusions
Flow past a cylinder - Re = 100
0 50 100 150 200
Time
1.0
1.1
1.2
1.3
1.4
1.5
1.6
Dragcoefficient(CD)
0 50 100 150 200
Time
−0.4
−0.3
−0.2
−0.1
0.0
0.1
0.2
0.3
0.4
Liftcoefficient(CL)
Figure: CD and CL for Re = 100 with Q2 B-Splines with ∆t = 0.1.
Data CD CL St
Liu et al. [4] 1.35 ±0.339 0.165
Le et al. [3] 1.37 ±0.323 0.160
Kadapa et al. [2] 1.39 ±0.339 0.166
Present 1.37 ±0.331 0.167
Table: Comparison of CD, CL and St.
Motivation Formulation Adaptive integration Numerical examples Summary and Conclusions
Pressure relief valve
19111
5
3.2
pin
pout
noslip
noslip
1.0 0.50.5
2.1
0.4
g
r
Table: DOF comparison
Level FDM CutFEM % of FDM
2 99720 72030 72.23
3 149352 95289 63.80
4 327648 168360 51.38
Motivation Formulation Adaptive integration Numerical examples Summary and Conclusions
Pressure relief valve
Simulation time ≈ 2 hours.
Figure: Level-3
refinement.
0 1 2 3 4 5 6 7 8
Time (ms)
−0.05
0.00
0.05
0.10
0.15
0.20
0.25
Valvelift(mm)
FDM-SC
CFM-subtrias
Figure: Valve lift with Q1 B-Splines. fP2
and β = 0.5.
Motivation Formulation Adaptive integration Numerical examples Summary and Conclusions
Pressure relief valve
0.6043
1.2086
1.8129
-0.235
2.182
pres
(a) 22 bar
0
0.6773
1.3546
2.0319
-0.319
2.391
pres
(b) 24 bar
0
0.7477
1.4953
2.243
-0.393
2.598
pres
(c) 26 bar
0
0.8154
1.6309
2.4463
-0.455
2.806
pres
(d) 28 bar
0
0.8808
1.7615
-0.508
3.015
pres
(e) 30 bar
0
0.9428
1.8857
-0.552
3.219
pres
(f) 32 bar
Figure: Pressure contour plots.
Motivation Formulation Adaptive integration Numerical examples Summary and Conclusions
Pressure relief valve
20 22 24 26 28 30
Inlet pressure (bar)
1.0
1.5
2.0
2.5
3.0
3.5
4.0Flowrate(l/min)
exp1
exp2
exp3
FDM
CFM
Figure: Flowrates - comparison with experiments
Motivation Formulation Adaptive integration Numerical examples Summary and Conclusions
Ball check valve
401248
7.5
3 17
7.4
15.2
4.6
pin
pout
no-slip
no-slip
Motivation Formulation Adaptive integration Numerical examples Summary and Conclusions
Ball check valve
ρf
= 800 kg/m3
. µf
= 800 cP. ms = 14.4 g. k = 0. Stop at 2mm.
pin = 0.5 sin(2πt/10)
−0.5
0.0
0.5
pin
0
1
2
disp
−2.5
0.0
2.0
velo
−50
100
250
Fbottom
0 5 10 15 20 25 30
Time (ms)
−50
100
250
Ftop
Motivation Formulation Adaptive integration Numerical examples Summary and Conclusions
Ball check valve
4.00
8.00
12.00
0.00
16.00
vel Magn
Figure: Velocity magnitude.
Motivation Formulation Adaptive integration Numerical examples Summary and Conclusions
Bearing rotor
(a) Domains (b) Discretisation
Figure: Animation - velocity magnitude.
Motivation Formulation Adaptive integration Numerical examples Summary and Conclusions
Flow past a sphere in 3D
Figure: Triangles = 776. DOF = 178084 for Q1.
Motivation Formulation Adaptive integration Numerical examples Summary and Conclusions
Flow past a sphere in 3D
0 20 40 60 80 100 120 140 160
Reynolds number (Re)
0
1
2
3
4
5
Dragcoefficient(CD)
Shirayama
Schlichting
Analytical
CutFEM-Q1
CutFEM-Q2
Figure: Drag coefficient (CD) versus Reynolds number (Re).
Motivation Formulation Adaptive integration Numerical examples Summary and Conclusions
Pressure relief valve - 3D
(a) Geometry
(b) Discretisation
(c) Streamlines
Motivation Formulation Adaptive integration Numerical examples Summary and Conclusions
Summary and Conclusions and Future work
Summary and Conclusions
Implemented and tested CutFEM on hierarchical B-Spline grids.
Higher-order spatial discretisations for the background grid.
Demonstrated the performance with several examples.
The scheme is stable, accurate and robust.
Can capture large deformations and topological changes effectively.
Future work
Fine tuning ghost-penalty parameters
Covering/uncovering
Completely closed scenarios
Parallelisation
Fluid-flexible solid interactions.
Motivation Formulation Adaptive integration Numerical examples Summary and Conclusions
Acknowledgements
We thank Schaeffler Technologies AG & Co. KG, Germany, for funding
this project.
Thank you
Motivation Formulation Adaptive integration Numerical examples Summary and Conclusions
References
E. Burman, S. Claus, P. Hansbo, M. G. Larson, and A. Massing.
CutFEM: Discretizing geometry and partial differential equations.
International Journal for Numerical Methods in Engineering,
104:472–501, 2014.
C. Kadapa, W. G. Dettmer, and D. Peri´c.
A fictitious domain/distributed Lagrange multiplier based
fluidstructure interaction scheme with hierarchical B-Spline grids.
Computer Methods in Applied Mechanics and Engineering,
301:1–27, 2016.
D. V. Le, B. C. Khoo, and J. Peraire.
An immersed interface method for viscous incompressible flows
involving rigid and flexible boundaries.
Journal of Computational Physics, 220:109–138, 2006.
C. Liu, X. Sheng, and C. H. Sung.
Preconditioned multigrid methods for unsteady incompressible flows.
Journal of Computational Physics, 139:35–57, 1998.
Motivation Formulation Adaptive integration Numerical examples Summary and Conclusions
References (contd..)
H. Schlichting.
Boundary-Layer Theory
McGraw-Hill, USA, 1979.
S. Shirayama.
Flow past a shpere: Topological transitions of the vorticity field
AIAA Journal, 30:349–358,1992.

More Related Content

PDF
R package 'bayesImageS': a case study in Bayesian computation using Rcpp and ...
PPT
Ai4 heuristic2
PDF
PDF
Bayesian Inference and Uncertainty Quantification for Inverse Problems
PDF
5 gusev
PDF
Slides: Simplifying Gaussian Mixture Models Via Entropic Quantization (EUSIPC...
PPT
ECCV2008: MAP Estimation Algorithms in Computer Vision - Part 1
PDF
Goldberg-Coxeter construction for 3- or 4-valent plane maps
R package 'bayesImageS': a case study in Bayesian computation using Rcpp and ...
Ai4 heuristic2
Bayesian Inference and Uncertainty Quantification for Inverse Problems
5 gusev
Slides: Simplifying Gaussian Mixture Models Via Entropic Quantization (EUSIPC...
ECCV2008: MAP Estimation Algorithms in Computer Vision - Part 1
Goldberg-Coxeter construction for 3- or 4-valent plane maps

What's hot (17)

PPTX
Temporal graph
PDF
Transceiver design for single-cell and multi-cell downlink multiuser MIMO sys...
PDF
A new practical algorithm for volume estimation using annealing of convex bodies
PDF
20320140501020
PPTX
kmaps
PDF
Graph theory discrete mathmatics
PDF
Lossy Kernelization
PDF
Efficient Random-Walk Methods forApproximating Polytope Volume
PPT
On Resolution Proofs for Combinational Equivalence
PDF
Hydrologic analysis and design 4th edition mc cuen solutions manual
PDF
The power and Arnoldi methods in an algebra of circulants
PPT
Reducing Structural Bias in Technology Mapping
PDF
Paired-end alignments in sequence graphs
PDF
OPTIMAL BEAM STEERING ANGLES OF A SENSOR ARRAY FOR A MULTIPLE SOURCE SCENARIO
PDF
Biconnectivity
PDF
Extracts from paper SPE 162911: Exploration Assets Evaluation: A Practical Wa...
PPTX
Network flows
Temporal graph
Transceiver design for single-cell and multi-cell downlink multiuser MIMO sys...
A new practical algorithm for volume estimation using annealing of convex bodies
20320140501020
kmaps
Graph theory discrete mathmatics
Lossy Kernelization
Efficient Random-Walk Methods forApproximating Polytope Volume
On Resolution Proofs for Combinational Equivalence
Hydrologic analysis and design 4th edition mc cuen solutions manual
The power and Arnoldi methods in an algebra of circulants
Reducing Structural Bias in Technology Mapping
Paired-end alignments in sequence graphs
OPTIMAL BEAM STEERING ANGLES OF A SENSOR ARRAY FOR A MULTIPLE SOURCE SCENARIO
Biconnectivity
Extracts from paper SPE 162911: Exploration Assets Evaluation: A Practical Wa...
Network flows
Ad

Similar to CutFEM on hierarchical B-Spline Cartesian grids with applications to fluid-structure interaction (20)

PDF
Dr.Shoeb_ME212_Lec-1_numerical methods_G
PDF
Diederik Fokkema - Thesis
DOCX
This is a great start, however, I think the addition of statistica.docx
PPT
mws_gen_aae_spe_pptintroduction.ppt
PPT
Matrices and row operations 12123 and applications of matrices
PDF
A robust stabilised immersed finite element framework for complex fluid-struc...
PPT
introduction to scientific computing
DOCX
CAE REPORT
PDF
Numerical modelling for Fluid-structure interaction
PDF
25 johnarry tonye ngoji 250-263
PDF
Steven C. Chapra, Raymond P. Canale - Numerical Methods for Engineers-McGraw-...
PDF
numerical methods for civil engineering for every one
PDF
Engineering mathematics.pdf
PDF
Applied mathematics for complex engineering
PPT
Fluent and Gambit Workshop
PPTX
Application of abc algorithm
PDF
cheb_conf_aksenov.pdf
PDF
Numerical simulation on laminar convection flow and heat transfer over an iso...
PPTX
sfdsrrer.pptx
PDF
A contribution towards the development of a Virtual Wind Tunnel (VWT)
Dr.Shoeb_ME212_Lec-1_numerical methods_G
Diederik Fokkema - Thesis
This is a great start, however, I think the addition of statistica.docx
mws_gen_aae_spe_pptintroduction.ppt
Matrices and row operations 12123 and applications of matrices
A robust stabilised immersed finite element framework for complex fluid-struc...
introduction to scientific computing
CAE REPORT
Numerical modelling for Fluid-structure interaction
25 johnarry tonye ngoji 250-263
Steven C. Chapra, Raymond P. Canale - Numerical Methods for Engineers-McGraw-...
numerical methods for civil engineering for every one
Engineering mathematics.pdf
Applied mathematics for complex engineering
Fluent and Gambit Workshop
Application of abc algorithm
cheb_conf_aksenov.pdf
Numerical simulation on laminar convection flow and heat transfer over an iso...
sfdsrrer.pptx
A contribution towards the development of a Virtual Wind Tunnel (VWT)
Ad

Recently uploaded (20)

PPTX
FINAL REVIEW FOR COPD DIANOSIS FOR PULMONARY DISEASE.pptx
PPTX
Sustainable Sites - Green Building Construction
PDF
TFEC-4-2020-Design-Guide-for-Timber-Roof-Trusses.pdf
PPTX
IOT PPTs Week 10 Lecture Material.pptx of NPTEL Smart Cities contd
PPTX
MET 305 2019 SCHEME MODULE 2 COMPLETE.pptx
PPTX
Lecture Notes Electrical Wiring System Components
PDF
Mitigating Risks through Effective Management for Enhancing Organizational Pe...
PDF
Enhancing Cyber Defense Against Zero-Day Attacks using Ensemble Neural Networks
PPTX
M Tech Sem 1 Civil Engineering Environmental Sciences.pptx
PPTX
KTU 2019 -S7-MCN 401 MODULE 2-VINAY.pptx
PPTX
CH1 Production IntroductoryConcepts.pptx
PPTX
additive manufacturing of ss316l using mig welding
PDF
SM_6th-Sem__Cse_Internet-of-Things.pdf IOT
DOCX
ASol_English-Language-Literature-Set-1-27-02-2023-converted.docx
PPTX
Geodesy 1.pptx...............................................
PDF
Digital Logic Computer Design lecture notes
PDF
Operating System & Kernel Study Guide-1 - converted.pdf
PDF
BMEC211 - INTRODUCTION TO MECHATRONICS-1.pdf
PDF
Well-logging-methods_new................
PDF
Automation-in-Manufacturing-Chapter-Introduction.pdf
FINAL REVIEW FOR COPD DIANOSIS FOR PULMONARY DISEASE.pptx
Sustainable Sites - Green Building Construction
TFEC-4-2020-Design-Guide-for-Timber-Roof-Trusses.pdf
IOT PPTs Week 10 Lecture Material.pptx of NPTEL Smart Cities contd
MET 305 2019 SCHEME MODULE 2 COMPLETE.pptx
Lecture Notes Electrical Wiring System Components
Mitigating Risks through Effective Management for Enhancing Organizational Pe...
Enhancing Cyber Defense Against Zero-Day Attacks using Ensemble Neural Networks
M Tech Sem 1 Civil Engineering Environmental Sciences.pptx
KTU 2019 -S7-MCN 401 MODULE 2-VINAY.pptx
CH1 Production IntroductoryConcepts.pptx
additive manufacturing of ss316l using mig welding
SM_6th-Sem__Cse_Internet-of-Things.pdf IOT
ASol_English-Language-Literature-Set-1-27-02-2023-converted.docx
Geodesy 1.pptx...............................................
Digital Logic Computer Design lecture notes
Operating System & Kernel Study Guide-1 - converted.pdf
BMEC211 - INTRODUCTION TO MECHATRONICS-1.pdf
Well-logging-methods_new................
Automation-in-Manufacturing-Chapter-Introduction.pdf

CutFEM on hierarchical B-Spline Cartesian grids with applications to fluid-structure interaction

  • 1. Motivation Formulation Adaptive integration Numerical examples Summary and Conclusions CutFEM on hierarchical B-Spline Cartesian grids with applications to fluid-structure interaction Dr. C. Kadapa, Dr. W. G. Dettmer and Prof. D. Peri´c Zienkiewicz center for Computational Engineering Swansea University, Swansea, UK. 06-June-2016, ECCOMAS 2016, Crete Island, Greece.
  • 2. Motivation Formulation Adaptive integration Numerical examples Summary and Conclusions Outline 1 Motivation 2 Formulation 3 Adaptive integration 4 Numerical examples 5 Summary and Conclusions
  • 3. Motivation Formulation Adaptive integration Numerical examples Summary and Conclusions Motivation Large deformations Topological changes Generic geometries Added-mass instabilities
  • 4. Motivation Formulation Adaptive integration Numerical examples Summary and Conclusions Fictitious Domain/Distributed Lagrange multiplier method Figure: Hierarchical B-Spline mesh. 200.00 250.00 300.00 148.39 326.94 pres -60.00 -45.00 -30.00 -76.71 -20.91 pres -320.00 -280.00 -240.00 -200.00 -355.18 -166.04 pres 30.00 45.00 60.00 75.00 21.46 80.45 pres Figure: Pressure contour plots
  • 5. Motivation Formulation Adaptive integration Numerical examples Summary and Conclusions Fictitious Domain/Distributed Lagrange multiplier method 0.2 0.4 0.6 0.8 2.879e-04 9.365e-01 vel Magnitude
  • 6. Motivation Formulation Adaptive integration Numerical examples Summary and Conclusions Fictitious Domain/Distributed Lagrange multiplier method Advantages Equal-order interpolation for velocity and pressure Works very well for thin structures Issues Zeroes on the matrix diagonal Zeroes on the matrix diagonal due to Lagrange multipliers Unnecessary DOF when bulky solids are present
  • 7. Motivation Formulation Adaptive integration Numerical examples Summary and Conclusions What is CutFEM?
  • 8. Motivation Formulation Adaptive integration Numerical examples Summary and Conclusions What is CutFEM? Advantages Clean interfaces. B-Splines of any order, along with hierarchical refinement. Stabilised formulation for fluids. Fewer DOF.
  • 9. Motivation Formulation Adaptive integration Numerical examples Summary and Conclusions What is CutFEM? Advantages Clean interfaces. B-Splines of any order, along with hierarchical refinement. Stabilised formulation for fluids. Fewer DOF. Issues Integration of cut cells. Ill-conditioned matrices due to small cut cells.
  • 10. Motivation Formulation Adaptive integration Numerical examples Summary and Conclusions Formulation Incompressible Navier-Stokes Find velocity, v = (v1, v2, v3), and pressure, p, such that ρf ∂vf ∂t + ρf (vf · ∇)vf − µf ∆vf + ∇p = gf in Ωf (1a) ∇ · vf = 0 in Ωf (1b) vf = vs on Γf D (1c) σf · nf = tf on Γf N (1d) where, σf = µ∇vf − p I (2)
  • 11. Motivation Formulation Adaptive integration Numerical examples Summary and Conclusions Formulation (contd..) Variational formulation Bf Gal({wf , q}, {vf , p}) + Bf Stab({wf , q}, {vf , p}) + Bf Nitsche({wf , q}, {vf , p}) + Bf GP({wf , q}, {vf , p}) = F f Gal({wf , q}) (3) Standard Galerkin terms Bf Gal({wf , q}, {vf , p}) = Ωf wf · ρf ∂vf ∂t + vf · ∇vf dΩf + Ωf µ ∇wf : ∇vf dΩf − Ωf (∇ · wf ) p dΩf + Ωf q (∇ · vf ) dΩf (4) F f Gal({wf , q}) = Ωf wf · gf dΩf + Γ f N wf · tf dΓ (5)
  • 12. Motivation Formulation Adaptive integration Numerical examples Summary and Conclusions Formulation (contd..) Stabilisation Bf Stab({wf , q}, {vf , p}) = nel e=1 Ωfe 1 ρf [τSUPG ρf vf · ∇wf + τPSPG ∇q] · rM dΩf + nel e=1 Ωfe τLSIC ρf (∇ · wf ) (∇ · vf ) dΩf (6) where, rM is the residual of the momentum equation, rM = ρf ∂vf ∂t + ρf (vf · ∇vf ) − µf ∆vf + ∇p − gf (7) Nitsche’s method Bf N({wf , q}, {vf , p}) = γN1 ΓD wf · (vf − vs ) dΓ − ΓD wf · (σ({vf , p}) · nf ) dΓ − γN2 ΓD (σ({wf , q}) · nf ) · (vf − vs ) dΓ (8)
  • 13. Motivation Formulation Adaptive integration Numerical examples Summary and Conclusions Formulation (contd..) Ghost penalty (Burman et al. [1]) Jump operator for a scalar valued problem: gs(w, v) := k j=1 F ∈F h2(j−1)+s F [Dj w][Dj v] ds [Djz] normal derivative of z, of order j, on face F and k is degree of B-Splines. Jump operator for a vector valued problem: Gs(w, v) := d i=1 k j=1 F ∈F h2(j−1)+s F [Dj wi][Dj vi] ds Figure: Ghost-penalty operators are applied on blue coloured edges. The ghost-penalty operator is given as, Bf GP({wf , q)}, {(v, p)}) = γu GP µ G1(wf , vf ) + γp GP 1 µ g3(q, p) (9) In this work, only the non-zero derivative of highest-order is considered.
  • 14. Motivation Formulation Adaptive integration Numerical examples Summary and Conclusions Integration of cut-cells - Subtriangulation Advantages Exact integration for boundaries with straight edges. Easy when boundaries are discretised with straight edges. Fewer Gauss points. Disadvantages Difficult for generic geometries in 3D. Need to use constrained tetrahedralisation. Difficult when boundaries are discretised with curved elements or NURBS.
  • 15. Motivation Formulation Adaptive integration Numerical examples Summary and Conclusions Integration of cut-cells - adaptive integration Subtriangularion: nGP = 420; % error = 1.55e-6. (a) Level-3 adaptive integration 102 103 104 105 106 Number of Gauss points in cut-cells 10-5 10-4 10-3 10-2 10-1 100 abs(%errorinarea) (b) nGP for different levels
  • 16. Motivation Formulation Adaptive integration Numerical examples Summary and Conclusions Integration of cut-cells - adaptive integration - merging Subtriangularion: nGP = 420; % error = 1.55e-6. (a) Level-3 adaptive integration 102 103 104 105 106 Number of Gauss points in cut-cells 10-5 10-4 10-3 10-2 10-1 100 abs(%errorinarea) without merging with merging (b) nGP for different levels
  • 17. Motivation Formulation Adaptive integration Numerical examples Summary and Conclusions Integration of cut-cells - binary tree (a) quad-tree (b) binary-tree Figure: Adaptive integration - quad-tree Vs binary-tree.
  • 18. Motivation Formulation Adaptive integration Numerical examples Summary and Conclusions Integration of cut-cells - adaptive integration (a) Level-3 adaptive integration 102 103 104 105 106 Number of Gauss points in cut-cells 10-5 10-4 10-3 10-2 10-1 100 abs(%errorinarea) quad-tree without merging binary-tree without merging quad-tree with merging binary-tree with merging (b) nGP for different levels Binary subdivision helps to reduce number of Gauss points in cut-cells by 20%. (In 3D, for sphere, the reduction is about 30%.)
  • 19. Motivation Formulation Adaptive integration Numerical examples Summary and Conclusions Numerical examples
  • 20. Motivation Formulation Adaptive integration Numerical examples Summary and Conclusions CutFEM - Basic scheme W. G. Dettmer, C. Kadapa, and D. Peri´c. Ingredients for an immersed interface methods for FSI. COUPLED Problems, Venice, Italy, May-2015. W. G. Dettmer, C. Kadapa, and D. Peri´c. A stabilised immersed boundary method on hierarchical b-spline grids. Submitted for publication.
  • 21. Motivation Formulation Adaptive integration Numerical examples Summary and Conclusions Flow past a cylinder 10 20 15 15 1 vx = 1.0 vy = 0 vy = 0, tx = 0 vy = 0, tx = 0 tx=ty=0
  • 22. Motivation Formulation Adaptive integration Numerical examples Summary and Conclusions Flow past a cylinder - Re = 20 1 2 3 4 5 6 7 8 9 Number of Gauss points 1.0 1.5 2.0 2.5 3.0 Dragcoefficient(CD) Level-0 Level-1 Level-2 Level-3 Level-4 (a) Q1 1 2 3 4 5 6 7 8 9 Number of Gauss points 1.0 1.5 2.0 2.5 3.0 Dragcoefficient(CD) Level-0 Level-1 Level-2 Level-3 Level-4 (b) Q2 1 2 3 4 5 6 7 8 9 Number of Gauss points 1.0 1.5 2.0 2.5 3.0 Dragcoefficient(CD) Level-0 Level-1 Level-2 Level-3 Level-4 (c) Q3 0 50 100 150 200 250 300 350 Number of edges 1.0 1.5 2.0 2.5 3.0 Dragcoefficient(CD) Q1 Q2 Q3 (d) nIE 0 2 4 6 8 10 12 14 Number of Gauss points 1.0 1.5 2.0 2.5 3.0 Dragcoefficient(CD) Q1 Q2 Q3 (e) nGPtria 10-6 10-5 10-4 10-3 10-2 10-1 100 101 Ghost penalty parameter (γGP) 1.0 1.5 2.0 2.5 3.0 Dragcoefficient(CD) Q1 Q2 Q3 (f) γGP
  • 23. Motivation Formulation Adaptive integration Numerical examples Summary and Conclusions Flow past a cylinder - Re = 20 (a) Q2, Level-1 (b) Q2, Level-2 -0.300 0.000 0.300 -0.500 0.700 pres (c) Q2, Level-3 (d) Q1, γGP = 100 (e) Q1, γGP = 10−2 -0.300 0.000 0.300 -0.500 0.700 pres (f) Q1, γGP = 10−4 (g) Q2, nIE = 20 (h) Q2, nIE = 80 -0.300 0.000 0.300 -0.500 0.700 pres (i) Q2, nIE = 320
  • 24. Motivation Formulation Adaptive integration Numerical examples Summary and Conclusions Flow past a cylinder - Re = 100 0 50 100 150 200 Time 1.0 1.1 1.2 1.3 1.4 1.5 1.6 Dragcoefficient(CD) 0 50 100 150 200 Time −0.4 −0.3 −0.2 −0.1 0.0 0.1 0.2 0.3 0.4 Liftcoefficient(CL) Figure: CD and CL for Re = 100 with Q2 B-Splines with ∆t = 0.1. Data CD CL St Liu et al. [4] 1.35 ±0.339 0.165 Le et al. [3] 1.37 ±0.323 0.160 Kadapa et al. [2] 1.39 ±0.339 0.166 Present 1.37 ±0.331 0.167 Table: Comparison of CD, CL and St.
  • 25. Motivation Formulation Adaptive integration Numerical examples Summary and Conclusions Pressure relief valve 19111 5 3.2 pin pout noslip noslip 1.0 0.50.5 2.1 0.4 g r Table: DOF comparison Level FDM CutFEM % of FDM 2 99720 72030 72.23 3 149352 95289 63.80 4 327648 168360 51.38
  • 26. Motivation Formulation Adaptive integration Numerical examples Summary and Conclusions Pressure relief valve Simulation time ≈ 2 hours. Figure: Level-3 refinement. 0 1 2 3 4 5 6 7 8 Time (ms) −0.05 0.00 0.05 0.10 0.15 0.20 0.25 Valvelift(mm) FDM-SC CFM-subtrias Figure: Valve lift with Q1 B-Splines. fP2 and β = 0.5.
  • 27. Motivation Formulation Adaptive integration Numerical examples Summary and Conclusions Pressure relief valve 0.6043 1.2086 1.8129 -0.235 2.182 pres (a) 22 bar 0 0.6773 1.3546 2.0319 -0.319 2.391 pres (b) 24 bar 0 0.7477 1.4953 2.243 -0.393 2.598 pres (c) 26 bar 0 0.8154 1.6309 2.4463 -0.455 2.806 pres (d) 28 bar 0 0.8808 1.7615 -0.508 3.015 pres (e) 30 bar 0 0.9428 1.8857 -0.552 3.219 pres (f) 32 bar Figure: Pressure contour plots.
  • 28. Motivation Formulation Adaptive integration Numerical examples Summary and Conclusions Pressure relief valve 20 22 24 26 28 30 Inlet pressure (bar) 1.0 1.5 2.0 2.5 3.0 3.5 4.0Flowrate(l/min) exp1 exp2 exp3 FDM CFM Figure: Flowrates - comparison with experiments
  • 29. Motivation Formulation Adaptive integration Numerical examples Summary and Conclusions Ball check valve 401248 7.5 3 17 7.4 15.2 4.6 pin pout no-slip no-slip
  • 30. Motivation Formulation Adaptive integration Numerical examples Summary and Conclusions Ball check valve ρf = 800 kg/m3 . µf = 800 cP. ms = 14.4 g. k = 0. Stop at 2mm. pin = 0.5 sin(2πt/10) −0.5 0.0 0.5 pin 0 1 2 disp −2.5 0.0 2.0 velo −50 100 250 Fbottom 0 5 10 15 20 25 30 Time (ms) −50 100 250 Ftop
  • 31. Motivation Formulation Adaptive integration Numerical examples Summary and Conclusions Ball check valve 4.00 8.00 12.00 0.00 16.00 vel Magn Figure: Velocity magnitude.
  • 32. Motivation Formulation Adaptive integration Numerical examples Summary and Conclusions Bearing rotor (a) Domains (b) Discretisation Figure: Animation - velocity magnitude.
  • 33. Motivation Formulation Adaptive integration Numerical examples Summary and Conclusions Flow past a sphere in 3D Figure: Triangles = 776. DOF = 178084 for Q1.
  • 34. Motivation Formulation Adaptive integration Numerical examples Summary and Conclusions Flow past a sphere in 3D 0 20 40 60 80 100 120 140 160 Reynolds number (Re) 0 1 2 3 4 5 Dragcoefficient(CD) Shirayama Schlichting Analytical CutFEM-Q1 CutFEM-Q2 Figure: Drag coefficient (CD) versus Reynolds number (Re).
  • 35. Motivation Formulation Adaptive integration Numerical examples Summary and Conclusions Pressure relief valve - 3D (a) Geometry (b) Discretisation (c) Streamlines
  • 36. Motivation Formulation Adaptive integration Numerical examples Summary and Conclusions Summary and Conclusions and Future work Summary and Conclusions Implemented and tested CutFEM on hierarchical B-Spline grids. Higher-order spatial discretisations for the background grid. Demonstrated the performance with several examples. The scheme is stable, accurate and robust. Can capture large deformations and topological changes effectively. Future work Fine tuning ghost-penalty parameters Covering/uncovering Completely closed scenarios Parallelisation Fluid-flexible solid interactions.
  • 37. Motivation Formulation Adaptive integration Numerical examples Summary and Conclusions Acknowledgements We thank Schaeffler Technologies AG & Co. KG, Germany, for funding this project. Thank you
  • 38. Motivation Formulation Adaptive integration Numerical examples Summary and Conclusions References E. Burman, S. Claus, P. Hansbo, M. G. Larson, and A. Massing. CutFEM: Discretizing geometry and partial differential equations. International Journal for Numerical Methods in Engineering, 104:472–501, 2014. C. Kadapa, W. G. Dettmer, and D. Peri´c. A fictitious domain/distributed Lagrange multiplier based fluidstructure interaction scheme with hierarchical B-Spline grids. Computer Methods in Applied Mechanics and Engineering, 301:1–27, 2016. D. V. Le, B. C. Khoo, and J. Peraire. An immersed interface method for viscous incompressible flows involving rigid and flexible boundaries. Journal of Computational Physics, 220:109–138, 2006. C. Liu, X. Sheng, and C. H. Sung. Preconditioned multigrid methods for unsteady incompressible flows. Journal of Computational Physics, 139:35–57, 1998.
  • 39. Motivation Formulation Adaptive integration Numerical examples Summary and Conclusions References (contd..) H. Schlichting. Boundary-Layer Theory McGraw-Hill, USA, 1979. S. Shirayama. Flow past a shpere: Topological transitions of the vorticity field AIAA Journal, 30:349–358,1992.