SlideShare a Scribd company logo
CVPR 2016 TUTORIAL
FITTING SURFACE MODELS TO DATA
のご紹介
2016/10/02
@sumisumith
2
• オリジナルのチュートリアルスライドから、
スライドを抜粋
• 適宜、説明のため、自前で作成した
スライドを追加
して作成したプレゼン資料です。
!ご注意!
http://awf.fitzgibbon.ie/cvpr16_tutorial
オリジナルの資料はココ
Fitting Surface Models to Data
3
CVPR 2016Tutorial
Andrew Fitzgibbon, Microsoft
JonathanTaylor, PerceptiveIO
PEOPLE
Finding Nemo: Deformable Object Class Modelling using Curve Matching CVPR ’10
Mukta Prasad,Andrew Fitzgibbon,AndrewZisserman, LucVan Gool
KinÊtre: Animating theWorld with the Human Body UIST ’12
Jiawen (Kevin) Chen, Shahram Izadi, Fitzgibbon
TheVitruvian Manifold: Inferring dense correspondences for one-shot human pose estimation CVPR ’12
JonathanTaylor, Jamie Shotton,TobySharp, Fitzgibbon
What shape are dolphins? Building 3D morphable models from 2D images PAMI ’13
Tom Cashman, Fitzgibbon
User-Specific Hand Modeling from Monocular Depth Sequences CVPR ’14
Taylor, Richard Stebbing,Varun Ramakrishna, Cem Keskin, Shotton, Izadi, Fitzgibbon,Aaron Hertzmann
Real-Time Non-Rigid Reconstruction Using an RGB-D Camera SIGGRAPH ’14
Michael Zollhöfer, Matthias Nießner, Izadi, Christoph Rhemann, Christopher Zach,
Matthew Fisher, ChengleiWu, Fitzgibbon,Charles Loop, ChristianTheobalt, Marc Stamminger
Learning an Efficient Model of Hand ShapeVariation from Depth Images CVPR ’15
Sameh Khamis,Taylor,Shotton, Keskin, Izadi, Fitzgibbon
Efficient and Precise Interactive Hand Tracking through Joint, Continuous Optimization of Pose SIGGRAPH ‘16
and Correspondences
Taylor, Lucas Bordeaux,Cashman, Bob Corish, Keskin, Sharp, Eduardo Soto, David Sweeney, JulienValentin,
Ben Luff, ArranTopalian, ErrollWood, Khamis, Kohli, Izadi, Richard Banks, Fitzgibbon, Shotton.
Fits Like a Glove: Rapid and Reliable Hand Shape Personalization. CVPR ’16
David JosephTan,Cashman,Taylor, Fitzgibbon, DanielTarlow, Khamis, Izadi, Shotton.
LEARN HOWTO SOLVE HARDVISION PROBLEMS,
USINGTOOLSTHAT MAY APPEAR INELEGANT,
BUT ARE MUCH SMARTERTHANTHEY LOOK.
Goal
5
APPLICATIONS
Curve/surface fitting Parameter estimation “Bundle adjustment”
(Video from our friends at Google)
KINÊTRE 7
KINÊTRE 8
KINÊTRE 9
VITRUVIANMANIFOLD,CVPR’12
CVPR2016 Fitting Surface Models to Data 抜粋
CVPR2016 Fitting Surface Models to Data 抜粋
FITTINGSUBDIVISIONSURFACESTO2DDATA
FITTINGSUBDIVISIONSURFACESTO2DDATA
15
FITTINGPOLYGONMESHESTOVIDEO
17
[3D Scanning Deformable Objects with a Single RGBD Sensor, Dou et al, CVPR15]
Input Kinect Stream KinectFusion Deformable Fusion
HANDTRACKING
• Hand Shape Personalization:
• CVPR 2014,CVPR 2015,CVPR 2016
• Discriminative Hand Pose Reinitialization
• ICCV 2015,CHI 2015
• Hand Pose Estimation via Model Fitting (read “HandTracking”)
• CHI 2015, SIGGRAPH 2016
IMAGEDENOISING 19[STRANDMARK & AGARWAL, 2014, arXiv:1403.5590]
MATRIXFACTORIZATION[HONG&F.,ICCV15]
MATRIXFACTORIZATION[HONG&F.,ICCV15]
MYTH:YOUDON’TNEEDTOOPTIMIZEFAR 22
Write energy describing the image collection
𝑓=1
𝐹
𝐸data 𝐼𝑓, 𝜽 𝑓 + 𝐸reg 𝜽 𝑓, 𝜽core
Where:
𝜽 𝑓 are (unknown) parameters of surface model in frame 𝑓
𝜽core are (unknown) parameters of some shape model (e.g. linear
combination) and 𝐸reg measures distance, e.g. ARAP
And optimize it using Levenberg-Marquardt
 (i.e. any Newton-like algorithm, making maximum use of problem
structure)
FOREACHTASK,THEMETHODISTHESAME 23
 So, you can do lots of things by “fitting models to
data”.
 How do you do it right?
 Let’s look at some examples.
24
CONTINUOUS
OPTIMIZATION
Andrew Fitzgibbon
Microsoft Research Cambridge
GOAL
Given function
𝑓 𝑥 : ℝ 𝑑
↦ ℝ,
Devise strategies for finding 𝑥 which minimizes 𝑓
• Gradient descent++: Stochastic, Block, Minibatch
• Coordinate descent++: Block
• Newton++:Gauss, Quasi, Damped, Levenberg Marquardt, dogleg,Trust
region, Doublestep LM, [L-]BFGS, NonlinCG
• Not covered
• Proximal methods: Nesterov, ADMM…
CLASSESOFFUNCTIONS
quadratic convex quasiconvex multi-
extremum
noisy horrible
Given function
𝑓 𝑥 : ℝ 𝑑 ↦ ℝ
Devise strategies for finding 𝑥 which minimizes 𝑓
CLASSESOFFUNCTIONS
quadratic convex quasiconvex multi-
extremum
noisy horrible
Given function
𝑓 𝑥 : ℝ 𝑑 ↦ ℝ
Devise strategies for finding 𝑥 which minimizes 𝑓
29
quadratic
convex
quasiconvex
multi-
extremum
30
quadratic
convex
quasiconvex
multi-
extremum
Easy Hard
DERIVATIVES
Fast minimization depends on derivatives
 Gradient 𝑓: ℝ 𝑛 ↦ ℝ
 When 𝑓 𝒙 = 𝑭 𝒙 2
𝑭: ℝ 𝑛
↦ ℝ 𝑚
use Jacobian
𝜕𝑭
𝜕𝒙
31
ALTERNATION
Easy Hard
33
Rosenbrock関数
最急降下法
滑降シンプレックス法
レベンバーグ・マルカート法
GRADIENTDESCENT
 Alternation is slow
because valleys may not
be axis aligned
 So try gradient descent?
-5 0 5 10 15
-5
0
5
10
15
GRADIENTDESCENT
 Alternation is slow
because valleys may not
be axis aligned
 So try gradient descent?
GRADIENTDESCENT
 Alternation is slow
because valleys may not
be axis aligned
 So try gradient descent?
 Note that convergence
proofs are available for
both of the above
 But so what?
ANDONAHARDPROBLEM
USEABETTERALGORITHM
 (Nonlinear) conjugate
gradients
 Uses 1st derivatives only
 Avoids “undoing”
previous work
USEABETTERALGORITHM
 (Nonlinear) conjugate
gradients
 Uses 1st derivatives only
 And avoids “undoing”
previous work
 101 iterations on
this problem
BUTWE CAN DO BETTER…
USESECONDDERIVATIVES…
 Starting with 𝒙 how can I choose 𝜹
so that 𝑓 𝒙 + 𝜹 is better than 𝑓(𝒙)?
 So compute
min
𝜹∈ℝ 𝑑
𝑓 𝒙 + 𝜹
 But hang on, that’s the same problem we were trying to
solve?
USESECONDDERIVATIVES…
 Starting with 𝑥 how can I choose 𝛿
so that 𝑓 𝑥 + 𝛿 is better than 𝑓(𝑥)?
 So compute
min
𝛿
𝑓 𝑥 + 𝛿
≈ min
𝛿
𝑓 𝑥 + 𝛿⊤ 𝑔(𝑥) + 1
2 𝛿⊤ 𝐻 𝑥 𝛿
𝑔 𝑥 = 𝛻𝑓 𝑥
𝐻 𝑥 = 𝛻𝛻⊤ 𝑓(𝑥)
USESECONDDERIVATIVES…
 How does it look?
𝑓 𝑥 + 𝛿⊤
𝑔(𝑥) + 1
2
𝛿⊤
𝐻 𝑥 𝛿
𝑔 𝑥 = 𝛻𝑓 𝑥
𝐻 𝑥 = 𝛻𝛻⊤
𝑓(𝑥)
USESECONDDERIVATIVES…
 Choose 𝛿 so that 𝑓 𝑥 + 𝛿 is better than 𝑓(𝑥)?
 Compute
min
𝜹
𝑓 + 𝜹⊤ 𝑔 + 1
2 𝜹⊤ 𝐻 𝜹
[derive]
USESECONDDERIVATIVES…
 Choose 𝛿 so that 𝑓 𝑥 + 𝛿 is better than 𝑓(𝑥)?
 Compute
min
𝜹
𝑓 + 𝜹⊤ 𝑔 + 1
2 𝜹⊤ 𝐻 𝜹
𝜹 = −𝐻−1 𝑔
USESECONDDERIVATIVES…
 Choose 𝛿 so that 𝑓 𝑥 + 𝛿 is better than 𝑓(𝑥)?
 Updates:
𝜹Newton = −𝐻−1
𝑔
𝜹GradientDescent = −𝜆𝑔
USESECONDDERIVATIVES…
 Updates:
𝜹Newton = −𝐻−1
𝑔
𝜹GradientDescent = −𝜆𝑔
 So combine them:
𝜹DampedNewton = − 𝐻 + 𝜆−1
𝐼 𝑑
−1
𝑔
= −𝜆 𝜆𝐻 + 𝐼 𝑑
−1
𝑔
 𝜆 small ⇒conservative gradient step
 𝜆 large ⇒Newton step
UPDATING 𝜆
𝜆 = 10−3; 𝜆′ = 3;
while 𝜆 < 109
𝑓, 𝒈, 𝑯 = error_function(𝒙 𝑘) % Perhaps Gauss-Newton for H
𝜹 = − 𝑯 + 𝜆𝑰 𝒈 % Many ways to do this efficiently
𝒙 𝑛𝑒𝑤 = 𝒙 𝑘 + 𝜹
if error_function(𝒙 𝑛𝑒𝑤) < 𝑓:
𝒙 𝑘 = 𝒙 𝑛𝑒𝑤 % Decreased error, accept the new 𝑥
𝜆 = 𝜆/𝜆′; 𝜆′ = 3 % Doing well—decrease 𝜆
else
𝜆 = 𝜆𝜆′; 𝜆′ = 3𝜆′ % Doing badly—increase 𝜆 quick
1ST DERIVATIVESAGAIN
Levenberg-Marquardt
 Just damped Newton with approximate 𝐻
 For a special form of 𝑓
𝑓 𝑥 =
𝑖
𝑓𝑖 𝑥 2
 where 𝑓𝑖(𝑥) are
 zero-mean
 small at the optimum
BACKTOFIRSTDERIVATIVES
Levenberg Marquardt
 Just damped Newton with approximate 𝐻
 For a special form of 𝑓
𝑓 𝑥 =
𝑖
𝑓𝑖 𝑥 2
𝛻𝑓 𝑥 =
𝛻𝛻⊤
𝑓 𝑥 =
BACKTOFIRSTDERIVATIVES
Levenberg Marquardt
 Just damped Newton with approximate 𝐻
 For a special form of 𝑓
𝑓 𝑥 =
𝑖
𝑓𝑖 𝑥 2
𝛻𝑓 𝑥 =
𝑖
2𝑓𝑖 𝑥 𝛻𝑓𝑖(𝑥)
𝛻𝛻⊤ 𝑓 𝑥 = 2
𝑖
𝑓𝑖 𝑥 𝛻𝛻⊤ 𝑓𝑖 𝑥 + 𝛻𝑓𝑖(𝑥)𝛻⊤ 𝑓𝑖 𝑥
ORDERNCUBED?
 Not 𝑂 𝑛3
if you exploit sparsity of Hessian or
Jacobian
J =
𝛻𝑓1(𝑥)
⋮
𝛻𝑓𝑛(𝑥)
TYPICALHESSIANSTRUCTURE
54
参照:バンドルアジャストメント 岡谷 貴之
http://bit.ly/2dcaFr7
きっと言いたいことはコレ
CONCLUSION:YMMV
CONCLUSION:YMMV
GIRAFFE
500 runs
for k=1:500
𝑥0 = 𝑟𝑎𝑛𝑑𝑛 𝑛, 1 ;
𝑥∗
= 𝑚𝑖𝑛𝑖𝑚𝑖𝑧𝑒 𝑓, 𝑥0 ;
𝐸 𝑘 = 𝑓 𝑥∗
end
plot(sort(E));
CONCLUSION:YMMV
FACE
1000 runs
DINOSAUR
1000 runs
GIRAFFE
500 runs
 On many problems,
alternation is just fine
 Indeed always start with a
couple of alternation steps
 Computing 2nd derivatives is
a pain
 But you don’t need to for LM
 But just alternation is not
 Unless you’re willing to
problem-select
 Convergence guarantees
are fine, but practice is
what matters
 Inverting the Hessian is
rarely 𝑂(𝑛3
)
There is no universal optimizer
WHAT IS A SURFACE?
59
0 0.2 0.4 0.6 0.8 1
1.9
2
2.1
2.2
2.3
2.4
CURVES
function y(x::Interval)::Real = .3*x + 2
function C(t::Interval)::Point2D =
Point2D(t^2 + 2, t^2 – t + 1)
function S(u::Interval, v::Real)::Point3D =
Point3D(cos(u), sin(u), v)
60
2 2.2 2.4 2.6 2.8 30.75
0.8
0.85
0.9
0.95
1
 Surface: mapping 𝑆 𝒖 from ℝ2
↦ ℝ3
 E.g. cylinder 𝑆 𝑢, 𝑣 = cos 𝑢 , sin 𝑢 , 𝑣
SURFACE 61
*the surface is actually the set {𝑀 𝑢; Θ |𝑢 ∈ Ω}
𝑢
𝑣
 Surface: mapping 𝑆 𝒖 from ℝ2
↦ ℝ3
 E.g. cylinder 𝑆 𝑢, 𝑣 = cos 𝑢 , sin 𝑢 , 𝑣
 Probably not all of ℝ2
, but a subset Ω
 E.g. square Ω = 0,2𝜋 × [0, 𝐻]
 But also any union of patch domains Ω = 𝑝
Ω 𝑝
SURFACE 62
*the surface is actually the set {𝑀 𝑢; Θ |𝑢 ∈ Ω}
𝑢
𝑣
 Surface: mapping 𝑆 𝒖 from ℝ2
↦ ℝ3
 E.g. cylinder 𝑆 𝑢, 𝑣 = cos 𝑢 , sin 𝑢 , 𝑣
 Probably not all of ℝ2
, but a subset Ω
 E.g. square Ω = 0,2𝜋 × [0, 𝐻]
 But also any union of patch domains Ω = 𝑝
Ω 𝑝
 And we’ll look at parameterised surfaces 𝑆 𝒖; Θ
 E.g. Cylinder 𝑆 𝑢, 𝑣; 𝑅, 𝐻 = 𝑅 cos 𝑢 , 𝑅 sin 𝑢 , 𝐻𝑣
with Ω = 0,2𝜋 × 0,1
 E.g. subdivision surface 𝑆 𝒖; 𝑋
where Θ = 𝑋 ∈ ℝ3×𝑛
is matrix of control vertices
SURFACE 63
*the surface is actually the set {𝑀 𝑢; Θ |𝑢 ∈ Ω}
𝑢
𝑣
TOOL: SUBDIVISION SURFACES
64
CONTROLMESH 65
Control mesh vertices 𝑋 ∈ ℝ3×𝑚
Here 𝑚 = 16
LIMITSURFACE 66
Control mesh vertices 𝑋 ∈ ℝ3×𝑚
Here 𝑚 = 16
SUBDIVRULE:STEP1.ADDNEWVERTICES 67
SUBDIVRULE:STEP2.AVERAGENEIGHBOURS 68
2 SUBDIVISIONS 69
3 SUBDIVISIONS 70
LIMITSURFACE 71
Control mesh vertices 𝑉 ∈ ℝ3×𝑚
Here 𝑚 = 16
Blue surface is 𝑀 𝒖; 𝑉 | 𝒖 ∈ Ω
Ω is the grey surface
CONTROLVERTICESDEFINETHESHAPE 72
Control mesh vertices 𝑉 ∈ ℝ3×𝑛
Here 𝑛 = 16
Blue surface is 𝑀 𝒖; 𝑉 | 𝒖 ∈ Ω
Ω is the grey surface
 Mostly, 𝑀 is quite simple:
𝑀 𝒖; 𝑋 = 𝑀 𝑡, 𝑢, 𝑣; 𝒙1, … , 𝒙 𝑛 =
𝑖+𝑗≤4
𝑘=1..𝑛
𝐴𝑖𝑗𝑘
𝑡
𝑢 𝑖
𝑣 𝑗
𝒙 𝑘
 Integer triangle id 𝑡
 Quartic in 𝑢, 𝑣
 Linear in 𝑋
 Easy derivatives
 But…
 2nd Derivatives unbounded although normals well defined
 Piecewise parameter domain
SUBDIVISIONSURFACE:PARAMETRICFORM 73
EXAMPLES 74
BACKTO DOLPHINS
75
WHAT SHAPE ARE DOLPHINS?
BUILDING 3D MORPHABLE MODELS
FROM 2D IMAGES
勝手な通称:イルカの論文
76
77
• 概要
• Loop Subdivision Surface で表現された、基本3Dモデル:Bを用意
• シルエット制約などの各種制約を設計し、バランスを取れた
モデルができるように、エネルギー関数を設計
• Bを変形させるルール/パラメタに従い、変形させ、
エネルギーが最小/最適な3Dモデルを推定
• 入力:
• ヒューリスティックに与えた、キーポイント数個
• 一般 Non-rigid 物体の基本3Dモデル B
• シルエット既知の画像
• 各種変形に用いる、パラメタ値
• 出力:
• 入力されたシルエット画像に合う、変形された3Dモデル
イルカ ( 一般 Non-rigid 物体 ) の姿勢推定
MODELREPRESENTATION
𝑋 𝑛 =
𝑘=0
𝐾
𝛼𝑖𝑘ℬ 𝑘
𝛼𝑖1 ℬ1 𝛼𝑖2 ℬ2+ +𝑋𝑖 =
Linear blend shapes:
Image 𝑖 represented by coefficient
vector 𝜶𝑖 = 𝛼𝑖1, … , 𝛼𝑖𝐾
ℬ0
78
79
80
81
𝒔𝑖𝑗 2D point
𝒏𝑖𝑗 2D normal
DATATERMS
Image 𝑖
𝒖𝑖𝑗 Contour generator
preimage in 𝛀
(unknown)
c.g. point in 3D is 𝑀 𝒖𝑖𝑗; 𝑿𝑖
82
DATATERMS
Image 𝑖
𝒔𝑖𝑗, 𝒏𝑖𝑗
83
Camera
position
Silhouette:
𝐸𝑖
𝑠𝑖𝑙
=
𝑗=1
𝑆𝑖
𝒔𝑖𝑗 − 𝜋 𝜃𝑖, 𝑀 𝑢𝑖𝑗, 𝑿𝑖
2
Normal:
𝐸𝑖
𝑠𝑖𝑙
=
𝑗=1
𝑆𝑖
𝒏𝑖𝑗
0
− 𝑅 𝜃𝑖 𝑁 𝑢𝑖𝑗, 𝑿𝑖
2
Projection
e.g. Perspective
DATATERMS
Image 𝑖
𝒔𝑖𝑗, 𝒏𝑖𝑗
Linear Blend Shapes (PCA) Model:
𝑿𝑖 =
𝑘
𝛼𝑖𝑘 𝑩 𝑘
84
Silhouette:
𝐸𝑖
𝑠𝑖𝑙
=
𝑗=1
𝑆𝑖
𝒔𝑖𝑗 − 𝜋 𝜃𝑖, 𝑀 𝑢𝑖𝑗, 𝑿𝑖
2
Normal:
𝐸𝑖
𝑠𝑖𝑙
=
𝑗=1
𝑆𝑖
𝒏𝑖𝑗
0
− 𝑅 𝜃𝑖 𝑁 𝑢𝑖𝑗, 𝑿𝑖
2
Data fidelity
terms
𝑝 𝐼 𝑋𝑖; 𝑈
Gaussian shape
weights
Smooth
contour
Smooth Basis
𝑝 𝚯
85
86
CONTINOUSOPTIMIZATION
 Can focus on this term to understand entire
optimization.
 Total number of residuals 𝑛 = number of silhouette points.
Say 300𝑁 (𝑁 = number of images) ≈ 10,000
 Total number of unknowns 2𝑛 + 𝐾𝑁 + 𝑚 where
𝑚 ≈ 3𝐾 × number of vertices ≈ 3,000
87
INITIALESTIMATEFORMEANSHAPE
This is true, but misleading
88
INITIALESTIMATEFORMEANSHAPE
True initial estimate: only the topology is really important.
But the easiest way to get the topology is to build a rough template.
89
INITIALESTIMATEFORMEANSHAPE
True initial estimate: only the topology is really important.
But the easiest way to get the topology is to build a rough template.
90
91
EXAMPLERESULTS 92
EXAMPLERESULTS 93
OPTIMIZATION 94
NUMBEROFIMAGES 95
8 16 32
PARAMETERSENSITIVITY
“Pixel” terms: noise level params “Dimensionless” terms “Smoothness” terms
𝐸 = 𝑖=1
𝑛
𝐸𝑖
sil
+ 𝐸𝑖
norm
+ 𝐸𝑖
con
+ 𝑖=1
𝑛
𝐸𝑖
cg
+ 𝐸𝑖
reg
+ 𝝃 𝟎
𝟐
𝐸0
tp
+ 𝝃 𝐝𝐞𝐟
𝟐
𝑖=1
𝑛
𝐸 𝑚
tp
96
97
サンプルコードを動かしてみた
98
サンプルコードを動かしてみた
99
100
101
102
 Fitting Surface Models to Data について、抜粋して、ご紹介
 最適化には多種の手法があるが、研究段階や対象のモデルに
合わせて、適宜、利用するものを変えることが望ましい
 対象課題についての、なるべく単純なモデルを作れると、
最適化の戦略も練りやすい
 実行速度をリアルタイムにするため、モデル制約や行列の
スパース性を利用してやり、実現することも可能
まとめ
ありがとうございました
(^ω^) @sumisumith

More Related Content

DOCX
ParallelABX
PPT
Function transformations
PPT
Newton's Laws of Motion L2.1
PPTX
Tensor analysis
PPT
Transformations
PDF
Geometric objects and transformations
PDF
Centre of mass, impulse momentum (obj. assignments)
PPT
6002 notes 07_l7
ParallelABX
Function transformations
Newton's Laws of Motion L2.1
Tensor analysis
Transformations
Geometric objects and transformations
Centre of mass, impulse momentum (obj. assignments)
6002 notes 07_l7

What's hot (20)

PPT
2 d transformations by amit kumar (maimt)
PDF
Center of mass hcv
PPT
Modeling Transformations
PPT
3 D Graphics
PPTX
3 d transformation reflection
PPTX
3 d transformation Rotation
PPTX
Maqueta en componentes normal y tangencial
PPTX
3D Transformation
PPTX
Ap calc warmup 9.4.14
PDF
3D Math Primer: CocoaConf Chicago
PPTX
Differentiation
PPTX
3d transformation computer graphics
PPTX
Basics of Robotics
PPTX
Transformations of functions
PPTX
Cinematica de coordenadas tangenciales y normales pulloquinga luis
PPTX
Transformations computer graphics
DOCX
MAT365AffineTransformations
PPT
2d/3D transformations in computer graphics(Computer graphics Tutorials)
PDF
348 project report
PPTX
3D Geometric Transformations
2 d transformations by amit kumar (maimt)
Center of mass hcv
Modeling Transformations
3 D Graphics
3 d transformation reflection
3 d transformation Rotation
Maqueta en componentes normal y tangencial
3D Transformation
Ap calc warmup 9.4.14
3D Math Primer: CocoaConf Chicago
Differentiation
3d transformation computer graphics
Basics of Robotics
Transformations of functions
Cinematica de coordenadas tangenciales y normales pulloquinga luis
Transformations computer graphics
MAT365AffineTransformations
2d/3D transformations in computer graphics(Computer graphics Tutorials)
348 project report
3D Geometric Transformations
Ad

Viewers also liked (16)

PPTX
Fusion of Skeletal and Silhouette-based Features for Human Action Recognition...
PPTX
ISMAR2016まとめ
PPTX
Silhouette Rimko
PDF
Graphic design pdf
PPTX
Motion capture in the media
PPTX
Commissioning AlignRT with Minimal Disruption
PPTX
PhD Qualifying Exam Slides
PPTX
Motion picture - for art app class sy 2011-2012
PDF
Liu Ren at AI Frontiers: Sensor-aware Augmented Reality
PPTX
Jetson TK1でSemi-Global Matching
PPTX
20150328 cv関東勉強会 sumisumithパート_v1.3
PDF
"High-resolution 3D Reconstruction on a Mobile Processor," a Presentation fro...
PDF
Handout: Motion Media
PPTX
Animation
PPTX
Animation
PDF
先端技術とメディア表現1 #FTMA15
Fusion of Skeletal and Silhouette-based Features for Human Action Recognition...
ISMAR2016まとめ
Silhouette Rimko
Graphic design pdf
Motion capture in the media
Commissioning AlignRT with Minimal Disruption
PhD Qualifying Exam Slides
Motion picture - for art app class sy 2011-2012
Liu Ren at AI Frontiers: Sensor-aware Augmented Reality
Jetson TK1でSemi-Global Matching
20150328 cv関東勉強会 sumisumithパート_v1.3
"High-resolution 3D Reconstruction on a Mobile Processor," a Presentation fro...
Handout: Motion Media
Animation
Animation
先端技術とメディア表現1 #FTMA15
Ad

Similar to CVPR2016 Fitting Surface Models to Data 抜粋 (20)

PDF
Lecture 12 andrew fitzgibbon - 3 d vision in a changing world
PPTX
Optimization tutorial
PDF
Differential geometry vision systems
PPT
Optimization
PDF
Image segmentation
PDF
Building 3D Morphable Models from 2D Images
PDF
Not Enough Measurements, Too Many Measurements
PDF
Stochastic Alternating Direction Method of Multipliers
PDF
MSc Thesis_Francisco Franco_A New Interpolation Approach for Linearly Constra...
PPTX
Manifold learning
PDF
PCA on graph/network
PDF
A Regularized Simplex Method
PDF
Over-squashing and over-smoothing th.pdf
PDF
Multivariate Approximation and Applications 1st Edition N. Dyn
PDF
Lecture5.pdf
PDF
Nonlinear Manifolds in Computer Vision
PPT
PDF
Overview on Optimization algorithms in Deep Learning
PPT
cos323_s06_lecture03_optimization.ppt
PDF
Discrete Models in Computer Vision
Lecture 12 andrew fitzgibbon - 3 d vision in a changing world
Optimization tutorial
Differential geometry vision systems
Optimization
Image segmentation
Building 3D Morphable Models from 2D Images
Not Enough Measurements, Too Many Measurements
Stochastic Alternating Direction Method of Multipliers
MSc Thesis_Francisco Franco_A New Interpolation Approach for Linearly Constra...
Manifold learning
PCA on graph/network
A Regularized Simplex Method
Over-squashing and over-smoothing th.pdf
Multivariate Approximation and Applications 1st Edition N. Dyn
Lecture5.pdf
Nonlinear Manifolds in Computer Vision
Overview on Optimization algorithms in Deep Learning
cos323_s06_lecture03_optimization.ppt
Discrete Models in Computer Vision

Recently uploaded (20)

PDF
Building Integrated photovoltaic BIPV_UPV.pdf
PDF
7 ChatGPT Prompts to Help You Define Your Ideal Customer Profile.pdf
PDF
Electronic commerce courselecture one. Pdf
PDF
Agricultural_Statistics_at_a_Glance_2022_0.pdf
PDF
Reach Out and Touch Someone: Haptics and Empathic Computing
PDF
Build a system with the filesystem maintained by OSTree @ COSCUP 2025
PDF
The Rise and Fall of 3GPP – Time for a Sabbatical?
PDF
Unlocking AI with Model Context Protocol (MCP)
PDF
How UI/UX Design Impacts User Retention in Mobile Apps.pdf
PDF
Mobile App Security Testing_ A Comprehensive Guide.pdf
PPTX
Understanding_Digital_Forensics_Presentation.pptx
PPTX
Effective Security Operations Center (SOC) A Modern, Strategic, and Threat-In...
PDF
MIND Revenue Release Quarter 2 2025 Press Release
PDF
Chapter 3 Spatial Domain Image Processing.pdf
PPTX
Programs and apps: productivity, graphics, security and other tools
PPTX
ACSFv1EN-58255 AWS Academy Cloud Security Foundations.pptx
PDF
Encapsulation theory and applications.pdf
PDF
cuic standard and advanced reporting.pdf
PPTX
VMware vSphere Foundation How to Sell Presentation-Ver1.4-2-14-2024.pptx
PDF
Advanced methodologies resolving dimensionality complications for autism neur...
Building Integrated photovoltaic BIPV_UPV.pdf
7 ChatGPT Prompts to Help You Define Your Ideal Customer Profile.pdf
Electronic commerce courselecture one. Pdf
Agricultural_Statistics_at_a_Glance_2022_0.pdf
Reach Out and Touch Someone: Haptics and Empathic Computing
Build a system with the filesystem maintained by OSTree @ COSCUP 2025
The Rise and Fall of 3GPP – Time for a Sabbatical?
Unlocking AI with Model Context Protocol (MCP)
How UI/UX Design Impacts User Retention in Mobile Apps.pdf
Mobile App Security Testing_ A Comprehensive Guide.pdf
Understanding_Digital_Forensics_Presentation.pptx
Effective Security Operations Center (SOC) A Modern, Strategic, and Threat-In...
MIND Revenue Release Quarter 2 2025 Press Release
Chapter 3 Spatial Domain Image Processing.pdf
Programs and apps: productivity, graphics, security and other tools
ACSFv1EN-58255 AWS Academy Cloud Security Foundations.pptx
Encapsulation theory and applications.pdf
cuic standard and advanced reporting.pdf
VMware vSphere Foundation How to Sell Presentation-Ver1.4-2-14-2024.pptx
Advanced methodologies resolving dimensionality complications for autism neur...

CVPR2016 Fitting Surface Models to Data 抜粋