SlideShare a Scribd company logo
Calculating the damping constant of a spring + hook
system
By Ariel Garcia, Andrew Huynh and N’Vida Yotcho
Math 238 –Differential equations
Introduction:
A spring of 0.094 kg with initial length of 0.052 m has a stretch of
0.118 m when a hook of 0.512 kg is attached to it (Figure 1).
The spring + hook system is stretched from equilibrium position to - 0.116
m and released at t= 0.6745 s (Figure 2). With a motion detector and the
Vernier software LoggerPro, a position-time graph of the system had been
plotted (Figure 3). Find the damping constant c of the damping force
applying by the air on the spring + hook system.
FIGURE 1.
The spring without the hook (left)
The spring + hook (right)
FIGURE 2.
The
experimental
dispositive
FIGURE 3. Position-time graph of the system after release.
FIGURE 4.
The amplitudes An at time tn
n An tn
0 0.1373 1.05
1 0.1131 1.9
2 0.1035 2.75
3 0.08678 3.6
4 0.07114 4.4
5 0.06867 5.3
6 0.06510 6.1
7 0.05138 6.95
FIGURE 5. Amplitude vs. time graph (exponential envelope)
Initial Value Problem:
m*y’’ + c*y’ + k*y = 0,
y(0.6745) = -0.116, y’(0.6745)=0
==> y’’ +
𝒄
"
*y’ +
#
"
*y = 0
m: effective mass of the system (kg)
c: damping coefficient (N*s/m)
k: spring constant (N/m)
____Effective mass of the system m:
m =
$%&&	
  ()	
  *+,	
  &-./01
2
+ 𝑚𝑎𝑠𝑠	
   𝑜 𝑓	
   𝑡ℎ𝑒	
  ℎ 𝑜𝑜𝑘
=
=.=?@
2
+ 0.512
m = 0.543 kg
____Spring constant k:
Tension of the spring = k *stretch of the spring
Tension of the spring = m * g
è k = A,0&/(0	
  ()	
  *+,	
  &-./01
&*.,*B+	
  ()	
  *+,	
  &*./01	
  
k =
$∗1
&*.,*B+	
  ()	
  *+,	
  &*./01
=
=.D@2∗?.E
=.FFE
k = 45.097 N/m
_____ The Damping coefficient c: is unknown.
But c, k and m are related. Indeed, the damping ratio Ỷ is equal to:
Ỷ =
B
G #∗$
è c = Ỷ * (2 𝑘 ∗ 𝑚)
è
H
$
= Ỷ *2* 𝑘 ∗
$
$
è
H	
  
$
	
  	
  = Ỷ *2*
#
$
	
   , and ω0 =
#
$
B
$
= Ỷ * 2 * ω0
Rewriting the IVP in function of ω0 (undamped natural frequency), and Ỷ:
y’’ +
𝒄
"
*y’ +
#
"
*y = 0
è y’’ + Ỷ * 2 * ω0*y’ + ω02 *y = 0
Solving the IVP:
y’’ + Ỷ * 2 * ω0*y’ + ω02 *y = 0, y(0.6745) = -0.116, y’(0.6745)=0
r2+ Ỷ 2 ω0 r+ ω02 = 0
r=
IG	
  J	
  K=	
  
G
± i
@	
  K=L	
  (FIJL)
G
è y(t) = A e -Ỷ ω0t *cos[µμ ∗ t − 	
  δ]
μ: quasi-frequency --- μ = ω0 1 − ζG
δ : The phase
_____Amplitude decay envelope (Figure 5):
A(t) = A0 e -Ỷ ω0t
For tn : An= A0 e -Ỷ ω0tn
For tn+1: An+1=A0 e -Ỷ ω0(tn+1)
An
An+1
=
A0	
  e	
  	
  	
  −ζ	
  ω0t
A0	
  e	
  	
  	
  −ζ	
  ω0(t+1) è
An
An+1
= e -Ỷ ω0tn +Ỷ ω0(tn+1)
An
An+1
= e Ỷ ω0(tn+1- tn)
T = tn+1-tn
T is the period between each peak
But we know that T =
G]
^0
è T =	
  
G]
ω0 1−ζ2
	
  
So that :
An
An+1
= 	
   𝑒
JK=(
L`
ω0 1−ζ2 )
è
An
An+1
= 𝑒
(
La`
1−ζ2 )
Logarithmic decrement or the logarithm of the amplitudes is for any two
successive peaks: ln	
  [
An
An+1
] =
GJ]
1−ζ2
In general : ln	
  [	
  
c=
cd
	
  ] =
GJd]
FIJL
FIGURE 6. Ln (A0/An) vs. n
0
0.2
0.4
0.6
0.8
1
1.2
0 1 2 3 4 5 6 7 8
ln(A0/An)
n
Our data follows a linear trend. So, it is valid that our model is a linear
damping model, so that, the damping ratio can be estimated by:
Ỷ =
e0
@]fe0L
with 𝛽𝑛 =
F
0
[ln
i=
i0
]
n
𝛽𝑛 4𝜋 + 𝛽𝑛G Ỷ Ỷ
average
is:
0.006
2 0.019965224 3.55 0.00563
3 0.023387802 3.55 0.00659
4 0.027020665 3.55 0.00761
5 0.019201971 3.55 0.00541
6 0.016754876 3.55 0.00472
7 0.019716947 3.55 0.00556
Conclusion:
Ỷ = 0.006 è Ỷ > 0.01 and that is what was
expected for a metal system.
c = Ỷ * (2 𝑘 ∗ 𝑚)
= 0.006 *(2 45.097	
   ∗ 0.543	
  )
c = 0.0593820227
𝒄 ≃ 0.059

More Related Content

PDF
MINI SLED CRASH PROJECT
PDF
OConnor_SimulationProject
DOCX
Mass spring answers
PDF
Capítulo 1 - Mecânica dos Fluidos
PDF
HSFC Physics formula sheet
PPT
Physics .. An introduction
DOCX
Simple pendulum
PDF
Review robot-collisions-survey
MINI SLED CRASH PROJECT
OConnor_SimulationProject
Mass spring answers
Capítulo 1 - Mecânica dos Fluidos
HSFC Physics formula sheet
Physics .. An introduction
Simple pendulum
Review robot-collisions-survey

What's hot (15)

PDF
[Review] contact model fusion
PDF
Theory of machines solution ch 11
PDF
Response spectra
PPT
Ch06 pt 2
PDF
Physics Formula list (3)
DOCX
PDF
Ch04 ssm
PDF
Home work 3
DOC
Home work
PPTX
Response spectrum
PPT
Equations (Physics)
PPT
Newton's second law
PDF
Hooke's law sample problems with solutions
[Review] contact model fusion
Theory of machines solution ch 11
Response spectra
Ch06 pt 2
Physics Formula list (3)
Ch04 ssm
Home work 3
Home work
Response spectrum
Equations (Physics)
Newton's second law
Hooke's law sample problems with solutions
Ad

Viewers also liked (17)

PDF
Lineamientos para la inserción del enfoque de paz en los planes de desarrollo...
PDF
Hrm 560 week 10 assignment 4 change management plan
PDF
كتاب-بكر-أبوبكر-صدر-السماء-الحافية-2012-نصوص-وظلال
PPTX
Borrowed capital
PDF
نورالوندی.ذرت شیرین
DOCX
CANDICE
DOC
Sentencia sobre Perspectiva de Genero - 25000 23-26-000-2000-01293-01(27522)
PPTX
Microbiology
PDF
Anemia de células falciforme
PDF
PDF
Philippians 1
PPT
Is sena liturġika
PPTX
Ppt 5.7 a
PDF
CANO BLANDÓN, L. F. (2010). El enfoque retórico del análisis de políticas púb...
PPTX
spring–mass system
PPT
Leptospirosis
PPT
Web Accessibility
Lineamientos para la inserción del enfoque de paz en los planes de desarrollo...
Hrm 560 week 10 assignment 4 change management plan
كتاب-بكر-أبوبكر-صدر-السماء-الحافية-2012-نصوص-وظلال
Borrowed capital
نورالوندی.ذرت شیرین
CANDICE
Sentencia sobre Perspectiva de Genero - 25000 23-26-000-2000-01293-01(27522)
Microbiology
Anemia de células falciforme
Philippians 1
Is sena liturġika
Ppt 5.7 a
CANO BLANDÓN, L. F. (2010). El enfoque retórico del análisis de políticas púb...
spring–mass system
Leptospirosis
Web Accessibility
Ad

Similar to damping_constant_spring (20)

PDF
free vibration with damping in Single degree of freedom
PDF
VIBRATIONS AND WAVES TUTORIAL#2
PDF
2nd order ode applications
PDF
1.b. Damped vibrations. pdf
PDF
1.b. Damped vibrations. .pdf
DOCX
REPORT SUMMARYVibration refers to a mechanical.docx
PPTX
Dynamics of Machines and Mechanism, Mechanical Engineering
PPT
Ch03 8
PDF
Theory of machines.pdf
PDF
Notes mech v
PDF
Damped Oscillations
PDF
4 damped harmonicoscillator
PPTX
Damped vibrations
PPTX
Lecture 3a (Damped free vibrations).pptx
PDF
1.a. Undamped free vibrations. .pdf
PDF
Mechanical Vibration, Free Vibration,Mechanical Vibration, Resonance, Natural...
PPSX
1. Oscillation engineering physics .ppsx
PDF
ClassExamplesPeriodicMotionWaves.pdf
PDF
ME421 The Single Degree of Freedom System (Undamped).pdf
PPT
Dynamic response to harmonic excitation
free vibration with damping in Single degree of freedom
VIBRATIONS AND WAVES TUTORIAL#2
2nd order ode applications
1.b. Damped vibrations. pdf
1.b. Damped vibrations. .pdf
REPORT SUMMARYVibration refers to a mechanical.docx
Dynamics of Machines and Mechanism, Mechanical Engineering
Ch03 8
Theory of machines.pdf
Notes mech v
Damped Oscillations
4 damped harmonicoscillator
Damped vibrations
Lecture 3a (Damped free vibrations).pptx
1.a. Undamped free vibrations. .pdf
Mechanical Vibration, Free Vibration,Mechanical Vibration, Resonance, Natural...
1. Oscillation engineering physics .ppsx
ClassExamplesPeriodicMotionWaves.pdf
ME421 The Single Degree of Freedom System (Undamped).pdf
Dynamic response to harmonic excitation

damping_constant_spring

  • 1. Calculating the damping constant of a spring + hook system By Ariel Garcia, Andrew Huynh and N’Vida Yotcho Math 238 –Differential equations
  • 2. Introduction: A spring of 0.094 kg with initial length of 0.052 m has a stretch of 0.118 m when a hook of 0.512 kg is attached to it (Figure 1). The spring + hook system is stretched from equilibrium position to - 0.116 m and released at t= 0.6745 s (Figure 2). With a motion detector and the Vernier software LoggerPro, a position-time graph of the system had been plotted (Figure 3). Find the damping constant c of the damping force applying by the air on the spring + hook system.
  • 3. FIGURE 1. The spring without the hook (left) The spring + hook (right)
  • 5. FIGURE 3. Position-time graph of the system after release.
  • 6. FIGURE 4. The amplitudes An at time tn n An tn 0 0.1373 1.05 1 0.1131 1.9 2 0.1035 2.75 3 0.08678 3.6 4 0.07114 4.4 5 0.06867 5.3 6 0.06510 6.1 7 0.05138 6.95
  • 7. FIGURE 5. Amplitude vs. time graph (exponential envelope)
  • 8. Initial Value Problem: m*y’’ + c*y’ + k*y = 0, y(0.6745) = -0.116, y’(0.6745)=0 ==> y’’ + 𝒄 " *y’ + # " *y = 0 m: effective mass of the system (kg) c: damping coefficient (N*s/m) k: spring constant (N/m)
  • 9. ____Effective mass of the system m: m = $%&&  ()  *+,  &-./01 2 + 𝑚𝑎𝑠𝑠   𝑜 𝑓   𝑡ℎ𝑒  ℎ 𝑜𝑜𝑘 = =.=?@ 2 + 0.512 m = 0.543 kg ____Spring constant k: Tension of the spring = k *stretch of the spring Tension of the spring = m * g è k = A,0&/(0  ()  *+,  &-./01 &*.,*B+  ()  *+,  &*./01   k = $∗1 &*.,*B+  ()  *+,  &*./01 = =.D@2∗?.E =.FFE k = 45.097 N/m
  • 10. _____ The Damping coefficient c: is unknown. But c, k and m are related. Indeed, the damping ratio Ỷ is equal to: Ỷ = B G #∗$ è c = Ỷ * (2 𝑘 ∗ 𝑚) è H $ = Ỷ *2* 𝑘 ∗ $ $ è H   $    = Ỷ *2* # $   , and ω0 = # $ B $ = Ỷ * 2 * ω0 Rewriting the IVP in function of ω0 (undamped natural frequency), and Ỷ: y’’ + 𝒄 " *y’ + # " *y = 0 è y’’ + Ỷ * 2 * ω0*y’ + ω02 *y = 0
  • 11. Solving the IVP: y’’ + Ỷ * 2 * ω0*y’ + ω02 *y = 0, y(0.6745) = -0.116, y’(0.6745)=0 r2+ Ỷ 2 ω0 r+ ω02 = 0 r= IG  J  K=   G ± i @  K=L  (FIJL) G è y(t) = A e -Ỷ ω0t *cos[µμ ∗ t −  δ] μ: quasi-frequency --- μ = ω0 1 − ζG δ : The phase
  • 12. _____Amplitude decay envelope (Figure 5): A(t) = A0 e -Ỷ ω0t For tn : An= A0 e -Ỷ ω0tn For tn+1: An+1=A0 e -Ỷ ω0(tn+1) An An+1 = A0  e      −ζ  ω0t A0  e      −ζ  ω0(t+1) è An An+1 = e -Ỷ ω0tn +Ỷ ω0(tn+1) An An+1 = e Ỷ ω0(tn+1- tn)
  • 13. T = tn+1-tn T is the period between each peak But we know that T = G] ^0 è T =   G] ω0 1−ζ2   So that : An An+1 =   𝑒 JK=( L` ω0 1−ζ2 ) è An An+1 = 𝑒 ( La` 1−ζ2 ) Logarithmic decrement or the logarithm of the amplitudes is for any two successive peaks: ln  [ An An+1 ] = GJ] 1−ζ2 In general : ln  [   c= cd  ] = GJd] FIJL
  • 14. FIGURE 6. Ln (A0/An) vs. n 0 0.2 0.4 0.6 0.8 1 1.2 0 1 2 3 4 5 6 7 8 ln(A0/An) n
  • 15. Our data follows a linear trend. So, it is valid that our model is a linear damping model, so that, the damping ratio can be estimated by: Ỷ = e0 @]fe0L with 𝛽𝑛 = F 0 [ln i= i0 ] n 𝛽𝑛 4𝜋 + 𝛽𝑛G Ỷ Ỷ average is: 0.006 2 0.019965224 3.55 0.00563 3 0.023387802 3.55 0.00659 4 0.027020665 3.55 0.00761 5 0.019201971 3.55 0.00541 6 0.016754876 3.55 0.00472 7 0.019716947 3.55 0.00556
  • 16. Conclusion: Ỷ = 0.006 è Ỷ > 0.01 and that is what was expected for a metal system. c = Ỷ * (2 𝑘 ∗ 𝑚) = 0.006 *(2 45.097   ∗ 0.543  ) c = 0.0593820227 𝒄 ≃ 0.059