SlideShare a Scribd company logo
20 MAR C H , 2018
# M D B l o c a l
THE PATH TO
TRULY UNDERSTANDING
YOUR MONGODB DATA
# M D B l o c a l
# M D B l o c a l
TOM HOLLANDER
PRODUCT MANAGER, MONGODB
@tomhollander
# M D B l o c a l
1. Background: Data Analytics
2. The importance of data visualisation
3. Methods for data visualisation in MongoDB
AGENDA
# M D B l o c a l
BACKGROUND
# M D B l o c a l
TERMINOLOGY
“Business
Intelligence” “Business
Analytics”
ANALYTICS
DATA VISUALISATION
# M D B l o c a l
• More data has been created
in the last 2 years than
entire previous history of the
human race
• By 2020:
• 1.7MB per person every
second
DATA GROWTH IS EXPLOSIVE
# M D B l o c a l
• Analytics is big $!
• $150B in 2017
• $210B+ in 2020
• Less than 0.5% of data is
analysed and used –
imagine the potential!
THE STATE OF ANALYTICS
Source: IDC. https://www.idc.com/getdoc.jsp?containerId=prUS42371417
# M D B l o c a l
EVOLUTION OF ANALYTICS
• Self service
• Mobile access
• Spark
• Real time analytics
• On-prem and cloud
• On demand reporting
2014 20162012
• Dedicated reporting team
• Desktop access
• Hadoop
• Batch analytics
• On prem only
• Monthly reports
2018
# M D B l o c a l
IMPORTANCE OF DATA
VISUALISATION
Data Analytics: Understanding Your MongoDB Data
# M D B l o c a l
# M D B l o c a l
• Charles Minard
(1869)
• Napoleon's march
and retreat on
Moscow in 1812.
EARLY DATA VISUALISATIONS
# M D B l o c a l
I
X Y
10 8.04
8 6.95
13 7.58
9 8.81
11 8.33
14 9.96
6 7.24
4 4.26
12 10.84
7 4.82
5 5.68
9.00 7.50
10.00 3.75
0.816
Mean
Variance
Correlation
# M D B l o c a l
I
X Y
10 8.04
8 6.95
13 7.58
9 8.81
11 8.33
14 9.96
6 7.24
4 4.26
12 10.84
7 4.82
5 5.68
9.00 7.50
10.00 3.75
0.816
Mean
Variance
Correlation
# M D B l o c a l
I
X Y
10 8.04
8 6.95
13 7.58
9 8.81
11 8.33
14 9.96
6 7.24
4 4.26
12 10.84
7 4.82
5 5.68
9.00 7.50
10.00 3.75
0.816
II III IV
X Y X Y X Y
10 9.14 10 7.46 8 6.58
8 8.14 8 6.77 8 5.76
13 8.74 13 12.74 8 7.71
9 8.77 9 7.11 8 8.84
11 9.26 11 7.81 8 8.47
14 8.1 14 8.84 8 7.04
6 6.13 6 6.08 8 5.25
4 3.1 4 5.39 19 12.5
12 9.13 12 8.15 8 5.56
7 7.26 7 6.42 8 7.91
5 4.74 5 5.73 8 6.89
9.00 7.50 9.00 7.50 9.00 7.50
10.00 3.75 10.00 3.75 10.00 3.75
0.816 0.816 0.817
Mean
Variance
Correlation
# M D B l o c a l
# M D B l o c a l
# M D B l o c a l
SO YOU WANT TO VISUALISE?
SO YOU WANT TO VISUALIZE?
# M D B l o c a l
EASY (ish) HARD (er?)
# M D B l o c a l
• Use the correct architecture
• Determine what your needs are
• Multiple data sources?
• Huge amounts of complex data?
• Quick self service?
• Choose the right solution for you
THINGS TO THINK ABOUT
# M D B l o c a l
• Run analytics against your main
deployment used by your Online
Transaction Processing (OLTP) apps
• May be OK in some cases, but watch
out for:
• Poor performing analytics queries
• Analytics impacting OLTP workloads
ARCHITECTURE:
SHARED DEPLOYMENT OLTP Client
DB
Analytics
# M D B l o c a l
• Hidden secondaries maintain a
copy of the primary’s data set
• Hidden secondaries are used for
workloads with different access
patterns
• Contain identical data, but can
have different indexes
• Hidden secondary cannot
become primary
ARCHITECTURE:
HIDDEN REPLICAS OLTP Client Analytics
Primary
Secondary
Secondary
Secondary
P=0
Hidden=true
# M D B l o c a l
• An Extract-Transform-Load tool
retrieves data from one or more
databases, transforms the data
and loads into a data warehouse
• Minimal impact on OLTP
systems; data can be highly
optimised for analysis
• Expensive to setup and maintain
• Data can be stale
ARCHITECTURE:
ETL TO DATA WAREHOUSE Analytics
DB1
DB2
DB3
Data
Warehouse
ETL
OLTP Clients
# M D B l o c a l
TOOLING OPTIONS
TOOLING
# M D B l o c a l
• Pros
• Custom tailored solution: fits
exactly as required!
• Cons
• High investment
• Maintenance
• Deep understanding of the
underlying tech and its
language(s)
BUILD YOUR OWN
# M D B l o c a l
BUILD YOUR OWN
DEMO
# M D B l o c a l
• Day-to-day development/operations
• Data management and manipulation
• Adding indexes
• Viewing server stats
• Schema analysis with visualisations
MONGODB COMPASS
# M D B l o c a l
MONGODB COMPASS
DEMO
# M D B l o c a l
• Understand the range of types and values in your documents
• When you want zero effort visualisations, and don’t need the
ability to customise
MONGODB COMPASS: WHEN TO USE
# M D B l o c a l
• Visualise and explore MongoDB
data in SQL-based BI tools:
• Automatically discovers the schema
• Translates complex SQL statements
issued by the BI tool into MongoDB
aggregation queries
• Converts the results into a tabular
format for rendering inside the BI
tool
MONGODB BI CONNECTOR
# M D B l o c a l
MONGODB BI CONNECTOR
MySQL protocol
MongoDB
mongosqld
etc.
DRDL
# M D B l o c a l
MONGODB BI CONNECTOR
DEMO
# M D B l o c a l
• Existing investment in BI tools (Tableau, Power BI, Qlik etc.)
• You are analysing data from multiple data sources (not just
MongoDB)
• Your MongoDB datasets are highly structured
• Consistent, minimal nesting, no polymorphism
• You have the time and patience for schema mapping
• Extremely powerful but high ramp
BI CONNECTOR: WHEN TO USE
# M D B l o c a l
• Lightweight and intuitive
• Build visualisations on
MongoDB data (nested,
polymorphic)
• Share content in a
dashboard
• Beta available soon!
MONGODB CHARTS
# M D B l o c a l
MONGODB CHARTS
DEMO
# M D B l o c a l
• Your data is in MongoDB collections
• You don’t want to flatten / ETL your MongoDB data
• When you want quick answers from simple but customisable
visualisations
• Self service for semi-technical audience
MONGODB CHARTS: WHEN TO USE
# M D B l o c a l
DATA VISUALISATION LIFE CYCLE
1. Acquire 2. Prep
- Calcs
- Groups
- Data types
3. Visualise
- Bar
- Pie
- Line
4. Explore
- Dashboards
5. Share
- Export
- Collaborate
- Embed
# M D B l o c a l
• Visualisations are incredibly powerful for understanding your data
• Use them to derive insight
• There are multiple options for visualising your MongoDB data
• Combine the tools for the most power!
SUMMARY
# M D B l o c a l
Q&A
tom.hollander@mongodb.com
@tomhollander
# M D B l o c a l
THANK YOU!
tom.hollander@mongodb.com
@tomhollander

More Related Content

PPTX
Jumpstart: Introduction to Schema Design
PPTX
Addressing Your Backup Needs Using Ops Manager and Atlas
PPTX
Tutorial: Building Your First App with MongoDB Stitch
PPTX
Jumpstart: Introduction to MongoDB
PPTX
[MongoDB.local Bengaluru 2018] Jumpstart: Introduction to Schema Design
PDF
MongoDB .local Chicago 2019: Using MongoDB Transactions to Implement Cryptogr...
PDF
MongoDB .local Munich 2019: MongoDB Atlas Data Lake Technical Deep Dive
PDF
MongoDB .local Paris 2020: Les bonnes pratiques pour travailler avec les donn...
Jumpstart: Introduction to Schema Design
Addressing Your Backup Needs Using Ops Manager and Atlas
Tutorial: Building Your First App with MongoDB Stitch
Jumpstart: Introduction to MongoDB
[MongoDB.local Bengaluru 2018] Jumpstart: Introduction to Schema Design
MongoDB .local Chicago 2019: Using MongoDB Transactions to Implement Cryptogr...
MongoDB .local Munich 2019: MongoDB Atlas Data Lake Technical Deep Dive
MongoDB .local Paris 2020: Les bonnes pratiques pour travailler avec les donn...

What's hot (20)

PDF
MongoDB .local Munich 2019: Managing a Heterogeneous Stack with MongoDB & SQL
PDF
MongoDB .local Munich 2019: A Complete Methodology to Data Modeling for MongoDB
PPTX
[MongoDB.local Bengaluru 2018] The Path to Truly Understanding Your MongoDB Data
PDF
MongoDB SoCal 2020: Go on a Data Safari with MongoDB Charts!
PDF
Webinar: Introducing the MongoDB Connector for BI 2.0 with Tableau
PDF
MongoDB .local Paris 2020: Devenez explorateur de données avec MongoDB Charts
PDF
MongoDB .local Chicago 2019: From SQL to NoSQL -- Changing Your Mindset
PPTX
Beyond the Basics 3: Introduction to the MongoDB BI Connector
PPTX
Accelerating a Path to Digital With a Cloud Data Strategy
PDF
MongoDB .local Munich 2019: MongoDB Atlas Auto-Scaling
PPTX
Webinar: Live Data Visualisation with Tableau and MongoDB
PDF
MongoDB .local Toronto 2019: MongoDB – Powering the new age data demands
PDF
MongoDB .local San Francisco 2020: From SQL to NoSQL -- Changing Your Mindset
PPTX
IOOF IT System Modernisation
PDF
MongoDB SoCal 2020: Best Practices for Working with IoT and Time-series Data
PDF
MongoDB .local Paris 2020: Tout savoir sur le moteur de recherche Full Text S...
PDF
MongoDB .local Toronto 2019: MongoDB Atlas Jumpstart
PPTX
MongoDB Evenings Minneapolis: MongoDB is Cool But When Should I Use It?
PPTX
MongoDB BI Connector & Tableau
PDF
MongoDB World 2019: MongoDB in Data Science: How to Build a Scalable Product ...
MongoDB .local Munich 2019: Managing a Heterogeneous Stack with MongoDB & SQL
MongoDB .local Munich 2019: A Complete Methodology to Data Modeling for MongoDB
[MongoDB.local Bengaluru 2018] The Path to Truly Understanding Your MongoDB Data
MongoDB SoCal 2020: Go on a Data Safari with MongoDB Charts!
Webinar: Introducing the MongoDB Connector for BI 2.0 with Tableau
MongoDB .local Paris 2020: Devenez explorateur de données avec MongoDB Charts
MongoDB .local Chicago 2019: From SQL to NoSQL -- Changing Your Mindset
Beyond the Basics 3: Introduction to the MongoDB BI Connector
Accelerating a Path to Digital With a Cloud Data Strategy
MongoDB .local Munich 2019: MongoDB Atlas Auto-Scaling
Webinar: Live Data Visualisation with Tableau and MongoDB
MongoDB .local Toronto 2019: MongoDB – Powering the new age data demands
MongoDB .local San Francisco 2020: From SQL to NoSQL -- Changing Your Mindset
IOOF IT System Modernisation
MongoDB SoCal 2020: Best Practices for Working with IoT and Time-series Data
MongoDB .local Paris 2020: Tout savoir sur le moteur de recherche Full Text S...
MongoDB .local Toronto 2019: MongoDB Atlas Jumpstart
MongoDB Evenings Minneapolis: MongoDB is Cool But When Should I Use It?
MongoDB BI Connector & Tableau
MongoDB World 2019: MongoDB in Data Science: How to Build a Scalable Product ...
Ad

Similar to Data Analytics: Understanding Your MongoDB Data (20)

PPTX
SH 1 - SES 5 - SamW-TelAviv.pptx
PPTX
The Path to Truly Understanding Your MongoDB Data
PDF
The Path to Truly Understanding your MongoDB Data
PDF
Advanced Schema Design Patterns
PPTX
Sizing MongoDB Clusters
PPTX
Open Source North - MongoDB Advanced Schema Design Patterns
PPTX
SH 1 - SES 1 - advanced_schema_design.pptx
PPTX
SH 1 - SES 1 - advanced_schema_design.pptx
PPTX
Advanced Schema Design Patterns
PDF
Big Data Analytics - Best of the Worst : Anti-patterns & Antidotes
PPTX
MongoDB + Spring
PPTX
MongoDB and Spring - Two leaves of a same tree
PDF
Continuum Analytics and Python
PDF
MongoDB World 2019: MongoDB Cluster Design: From Redundancy to GDPR
PDF
MongoDB SoCal 2020: A Complete Methodology of Data Modeling for MongoDB
PPTX
MySQL vs. MonetDB
PPTX
Advanced Schema Design Patterns
PDF
MongoDB World 2018: Data Analytics with MongoDB
PDF
MongoDB World 2019: Simplici-tea: Getting Started with MongoDB Charts on Atlas
PPTX
Advanced Schema Design Patterns
SH 1 - SES 5 - SamW-TelAviv.pptx
The Path to Truly Understanding Your MongoDB Data
The Path to Truly Understanding your MongoDB Data
Advanced Schema Design Patterns
Sizing MongoDB Clusters
Open Source North - MongoDB Advanced Schema Design Patterns
SH 1 - SES 1 - advanced_schema_design.pptx
SH 1 - SES 1 - advanced_schema_design.pptx
Advanced Schema Design Patterns
Big Data Analytics - Best of the Worst : Anti-patterns & Antidotes
MongoDB + Spring
MongoDB and Spring - Two leaves of a same tree
Continuum Analytics and Python
MongoDB World 2019: MongoDB Cluster Design: From Redundancy to GDPR
MongoDB SoCal 2020: A Complete Methodology of Data Modeling for MongoDB
MySQL vs. MonetDB
Advanced Schema Design Patterns
MongoDB World 2018: Data Analytics with MongoDB
MongoDB World 2019: Simplici-tea: Getting Started with MongoDB Charts on Atlas
Advanced Schema Design Patterns
Ad

More from MongoDB (20)

PDF
MongoDB SoCal 2020: Migrate Anything* to MongoDB Atlas
PDF
MongoDB SoCal 2020: Using MongoDB Services in Kubernetes: Any Platform, Devel...
PDF
MongoDB SoCal 2020: From Pharmacist to Analyst: Leveraging MongoDB for Real-T...
PDF
MongoDB SoCal 2020: MongoDB Atlas Jump Start
PDF
MongoDB .local San Francisco 2020: Powering the new age data demands [Infosys]
PDF
MongoDB .local San Francisco 2020: Using Client Side Encryption in MongoDB 4.2
PDF
MongoDB .local San Francisco 2020: Using MongoDB Services in Kubernetes: any ...
PDF
MongoDB .local San Francisco 2020: Go on a Data Safari with MongoDB Charts!
PDF
MongoDB .local San Francisco 2020: MongoDB Atlas Jumpstart
PDF
MongoDB .local San Francisco 2020: Tips and Tricks++ for Querying and Indexin...
PDF
MongoDB .local San Francisco 2020: Aggregation Pipeline Power++
PDF
MongoDB .local San Francisco 2020: A Complete Methodology of Data Modeling fo...
PDF
MongoDB .local San Francisco 2020: MongoDB Atlas Data Lake Technical Deep Dive
PDF
MongoDB .local San Francisco 2020: Developing Alexa Skills with MongoDB & Golang
PDF
MongoDB .local Paris 2020: Realm : l'ingrédient secret pour de meilleures app...
PDF
MongoDB .local Paris 2020: Upply @MongoDB : Upply : Quand le Machine Learning...
PDF
MongoDB .local Paris 2020: Les bonnes pratiques pour sécuriser MongoDB
PDF
MongoDB .local Paris 2020: Adéo @MongoDB : MongoDB Atlas & Leroy Merlin : et ...
PDF
MongoDB .local Paris 2020: La puissance du Pipeline d'Agrégation de MongoDB
PDF
MongoDB .local Toronto 2019: Keep your Business Safe and Scaling Holistically...
MongoDB SoCal 2020: Migrate Anything* to MongoDB Atlas
MongoDB SoCal 2020: Using MongoDB Services in Kubernetes: Any Platform, Devel...
MongoDB SoCal 2020: From Pharmacist to Analyst: Leveraging MongoDB for Real-T...
MongoDB SoCal 2020: MongoDB Atlas Jump Start
MongoDB .local San Francisco 2020: Powering the new age data demands [Infosys]
MongoDB .local San Francisco 2020: Using Client Side Encryption in MongoDB 4.2
MongoDB .local San Francisco 2020: Using MongoDB Services in Kubernetes: any ...
MongoDB .local San Francisco 2020: Go on a Data Safari with MongoDB Charts!
MongoDB .local San Francisco 2020: MongoDB Atlas Jumpstart
MongoDB .local San Francisco 2020: Tips and Tricks++ for Querying and Indexin...
MongoDB .local San Francisco 2020: Aggregation Pipeline Power++
MongoDB .local San Francisco 2020: A Complete Methodology of Data Modeling fo...
MongoDB .local San Francisco 2020: MongoDB Atlas Data Lake Technical Deep Dive
MongoDB .local San Francisco 2020: Developing Alexa Skills with MongoDB & Golang
MongoDB .local Paris 2020: Realm : l'ingrédient secret pour de meilleures app...
MongoDB .local Paris 2020: Upply @MongoDB : Upply : Quand le Machine Learning...
MongoDB .local Paris 2020: Les bonnes pratiques pour sécuriser MongoDB
MongoDB .local Paris 2020: Adéo @MongoDB : MongoDB Atlas & Leroy Merlin : et ...
MongoDB .local Paris 2020: La puissance du Pipeline d'Agrégation de MongoDB
MongoDB .local Toronto 2019: Keep your Business Safe and Scaling Holistically...

Recently uploaded (20)

PDF
Reach Out and Touch Someone: Haptics and Empathic Computing
PPTX
Programs and apps: productivity, graphics, security and other tools
PPTX
ACSFv1EN-58255 AWS Academy Cloud Security Foundations.pptx
PPTX
Big Data Technologies - Introduction.pptx
PPTX
20250228 LYD VKU AI Blended-Learning.pptx
PDF
Encapsulation theory and applications.pdf
PPTX
KOM of Painting work and Equipment Insulation REV00 update 25-dec.pptx
PDF
The Rise and Fall of 3GPP – Time for a Sabbatical?
PDF
Review of recent advances in non-invasive hemoglobin estimation
PDF
How UI/UX Design Impacts User Retention in Mobile Apps.pdf
PDF
cuic standard and advanced reporting.pdf
PDF
Unlocking AI with Model Context Protocol (MCP)
PPT
Teaching material agriculture food technology
PDF
TokAI - TikTok AI Agent : The First AI Application That Analyzes 10,000+ Vira...
PDF
Encapsulation_ Review paper, used for researhc scholars
PDF
Electronic commerce courselecture one. Pdf
PDF
Machine learning based COVID-19 study performance prediction
PDF
Spectral efficient network and resource selection model in 5G networks
PDF
Per capita expenditure prediction using model stacking based on satellite ima...
PDF
Build a system with the filesystem maintained by OSTree @ COSCUP 2025
Reach Out and Touch Someone: Haptics and Empathic Computing
Programs and apps: productivity, graphics, security and other tools
ACSFv1EN-58255 AWS Academy Cloud Security Foundations.pptx
Big Data Technologies - Introduction.pptx
20250228 LYD VKU AI Blended-Learning.pptx
Encapsulation theory and applications.pdf
KOM of Painting work and Equipment Insulation REV00 update 25-dec.pptx
The Rise and Fall of 3GPP – Time for a Sabbatical?
Review of recent advances in non-invasive hemoglobin estimation
How UI/UX Design Impacts User Retention in Mobile Apps.pdf
cuic standard and advanced reporting.pdf
Unlocking AI with Model Context Protocol (MCP)
Teaching material agriculture food technology
TokAI - TikTok AI Agent : The First AI Application That Analyzes 10,000+ Vira...
Encapsulation_ Review paper, used for researhc scholars
Electronic commerce courselecture one. Pdf
Machine learning based COVID-19 study performance prediction
Spectral efficient network and resource selection model in 5G networks
Per capita expenditure prediction using model stacking based on satellite ima...
Build a system with the filesystem maintained by OSTree @ COSCUP 2025

Data Analytics: Understanding Your MongoDB Data

  • 1. 20 MAR C H , 2018 # M D B l o c a l THE PATH TO TRULY UNDERSTANDING YOUR MONGODB DATA
  • 2. # M D B l o c a l
  • 3. # M D B l o c a l TOM HOLLANDER PRODUCT MANAGER, MONGODB @tomhollander
  • 4. # M D B l o c a l 1. Background: Data Analytics 2. The importance of data visualisation 3. Methods for data visualisation in MongoDB AGENDA
  • 5. # M D B l o c a l BACKGROUND
  • 6. # M D B l o c a l TERMINOLOGY “Business Intelligence” “Business Analytics” ANALYTICS DATA VISUALISATION
  • 7. # M D B l o c a l • More data has been created in the last 2 years than entire previous history of the human race • By 2020: • 1.7MB per person every second DATA GROWTH IS EXPLOSIVE
  • 8. # M D B l o c a l • Analytics is big $! • $150B in 2017 • $210B+ in 2020 • Less than 0.5% of data is analysed and used – imagine the potential! THE STATE OF ANALYTICS Source: IDC. https://www.idc.com/getdoc.jsp?containerId=prUS42371417
  • 9. # M D B l o c a l EVOLUTION OF ANALYTICS • Self service • Mobile access • Spark • Real time analytics • On-prem and cloud • On demand reporting 2014 20162012 • Dedicated reporting team • Desktop access • Hadoop • Batch analytics • On prem only • Monthly reports 2018
  • 10. # M D B l o c a l IMPORTANCE OF DATA VISUALISATION
  • 12. # M D B l o c a l
  • 13. # M D B l o c a l • Charles Minard (1869) • Napoleon's march and retreat on Moscow in 1812. EARLY DATA VISUALISATIONS
  • 14. # M D B l o c a l I X Y 10 8.04 8 6.95 13 7.58 9 8.81 11 8.33 14 9.96 6 7.24 4 4.26 12 10.84 7 4.82 5 5.68 9.00 7.50 10.00 3.75 0.816 Mean Variance Correlation
  • 15. # M D B l o c a l I X Y 10 8.04 8 6.95 13 7.58 9 8.81 11 8.33 14 9.96 6 7.24 4 4.26 12 10.84 7 4.82 5 5.68 9.00 7.50 10.00 3.75 0.816 Mean Variance Correlation
  • 16. # M D B l o c a l I X Y 10 8.04 8 6.95 13 7.58 9 8.81 11 8.33 14 9.96 6 7.24 4 4.26 12 10.84 7 4.82 5 5.68 9.00 7.50 10.00 3.75 0.816 II III IV X Y X Y X Y 10 9.14 10 7.46 8 6.58 8 8.14 8 6.77 8 5.76 13 8.74 13 12.74 8 7.71 9 8.77 9 7.11 8 8.84 11 9.26 11 7.81 8 8.47 14 8.1 14 8.84 8 7.04 6 6.13 6 6.08 8 5.25 4 3.1 4 5.39 19 12.5 12 9.13 12 8.15 8 5.56 7 7.26 7 6.42 8 7.91 5 4.74 5 5.73 8 6.89 9.00 7.50 9.00 7.50 9.00 7.50 10.00 3.75 10.00 3.75 10.00 3.75 0.816 0.816 0.817 Mean Variance Correlation
  • 17. # M D B l o c a l
  • 18. # M D B l o c a l
  • 19. # M D B l o c a l SO YOU WANT TO VISUALISE? SO YOU WANT TO VISUALIZE?
  • 20. # M D B l o c a l EASY (ish) HARD (er?)
  • 21. # M D B l o c a l • Use the correct architecture • Determine what your needs are • Multiple data sources? • Huge amounts of complex data? • Quick self service? • Choose the right solution for you THINGS TO THINK ABOUT
  • 22. # M D B l o c a l • Run analytics against your main deployment used by your Online Transaction Processing (OLTP) apps • May be OK in some cases, but watch out for: • Poor performing analytics queries • Analytics impacting OLTP workloads ARCHITECTURE: SHARED DEPLOYMENT OLTP Client DB Analytics
  • 23. # M D B l o c a l • Hidden secondaries maintain a copy of the primary’s data set • Hidden secondaries are used for workloads with different access patterns • Contain identical data, but can have different indexes • Hidden secondary cannot become primary ARCHITECTURE: HIDDEN REPLICAS OLTP Client Analytics Primary Secondary Secondary Secondary P=0 Hidden=true
  • 24. # M D B l o c a l • An Extract-Transform-Load tool retrieves data from one or more databases, transforms the data and loads into a data warehouse • Minimal impact on OLTP systems; data can be highly optimised for analysis • Expensive to setup and maintain • Data can be stale ARCHITECTURE: ETL TO DATA WAREHOUSE Analytics DB1 DB2 DB3 Data Warehouse ETL OLTP Clients
  • 25. # M D B l o c a l TOOLING OPTIONS TOOLING
  • 26. # M D B l o c a l • Pros • Custom tailored solution: fits exactly as required! • Cons • High investment • Maintenance • Deep understanding of the underlying tech and its language(s) BUILD YOUR OWN
  • 27. # M D B l o c a l BUILD YOUR OWN DEMO
  • 28. # M D B l o c a l • Day-to-day development/operations • Data management and manipulation • Adding indexes • Viewing server stats • Schema analysis with visualisations MONGODB COMPASS
  • 29. # M D B l o c a l MONGODB COMPASS DEMO
  • 30. # M D B l o c a l • Understand the range of types and values in your documents • When you want zero effort visualisations, and don’t need the ability to customise MONGODB COMPASS: WHEN TO USE
  • 31. # M D B l o c a l • Visualise and explore MongoDB data in SQL-based BI tools: • Automatically discovers the schema • Translates complex SQL statements issued by the BI tool into MongoDB aggregation queries • Converts the results into a tabular format for rendering inside the BI tool MONGODB BI CONNECTOR
  • 32. # M D B l o c a l MONGODB BI CONNECTOR MySQL protocol MongoDB mongosqld etc. DRDL
  • 33. # M D B l o c a l MONGODB BI CONNECTOR DEMO
  • 34. # M D B l o c a l • Existing investment in BI tools (Tableau, Power BI, Qlik etc.) • You are analysing data from multiple data sources (not just MongoDB) • Your MongoDB datasets are highly structured • Consistent, minimal nesting, no polymorphism • You have the time and patience for schema mapping • Extremely powerful but high ramp BI CONNECTOR: WHEN TO USE
  • 35. # M D B l o c a l • Lightweight and intuitive • Build visualisations on MongoDB data (nested, polymorphic) • Share content in a dashboard • Beta available soon! MONGODB CHARTS
  • 36. # M D B l o c a l MONGODB CHARTS DEMO
  • 37. # M D B l o c a l • Your data is in MongoDB collections • You don’t want to flatten / ETL your MongoDB data • When you want quick answers from simple but customisable visualisations • Self service for semi-technical audience MONGODB CHARTS: WHEN TO USE
  • 38. # M D B l o c a l DATA VISUALISATION LIFE CYCLE 1. Acquire 2. Prep - Calcs - Groups - Data types 3. Visualise - Bar - Pie - Line 4. Explore - Dashboards 5. Share - Export - Collaborate - Embed
  • 39. # M D B l o c a l • Visualisations are incredibly powerful for understanding your data • Use them to derive insight • There are multiple options for visualising your MongoDB data • Combine the tools for the most power! SUMMARY
  • 40. # M D B l o c a l Q&A tom.hollander@mongodb.com @tomhollander
  • 41. # M D B l o c a l THANK YOU! tom.hollander@mongodb.com @tomhollander

Editor's Notes

  • #9: 96 DVDs per person per day
  • #13: Eye can process 10million bits per second. Roughly the same as Ethernet.
  • #15: One of the best statistical drawings ever made. Tells of 400,000 army marching on moscow and returning with 10,000. Shows time and loss of life, routes and river crossings etc.