SlideShare a Scribd company logo
3/22/2012
1
K-means Algorithmg
Cluster Analysis in Data Mining
Presented by Zijun Zhang
Algorithm Description
 What is Cluster Analysis?
Cluster analysis groups data objects based only on
information found in data that describes the objects and their
relationships.
Goal of Cluster Analysis
The objects within a group be similar to one another andj g p
different from the objects in other groups
3/22/2012
2
Algorithm Description
 Types of Clustering
Partitioning and Hierarchical Clustering
 Hierarchical Clustering
- A set of nested clusters organized as a hierarchical tree
 Partitioning Clusteringg g
- A division data objects into non-overlapping subsets
(clusters) such that each data object is in exactly one subset
Algorithm Description
p4
p1
p3
p2
A Partitional Clustering Hierarchical Clustering
3/22/2012
3
Algorithm Description
 What is K-means?
1. Partitional clustering approach
2. Each cluster is associated with a centroid (center point)
3. Each point is assigned to the cluster with the closest centroid
4 Number of clusters K must be specified4. Number of clusters, K, must be specified
Algorithm Statement
 Basic Algorithm of K-means
3/22/2012
4
Algorithm Statement
 Details of K-means
1 Initial centroids are often chosen randomly1. Initial centroids are often chosen randomly.
- Clusters produced vary from one run to another
2. The centroid is (typically) the mean of the points in the cluster.
3.‘Closeness’ is measured by Euclidean distance, cosine similarity, correlation,
etc.
4. K-means will converge for common similarity measures mentioned above.
5. Most of the convergence happens in the first few iterations.5. Most of the convergence happens in the first few iterations.
- Often the stopping condition is changed to ‘Until relatively few points
change clusters’
Algorithm Statement
 Euclidean Distance
A simple example: Find the distance between two points, the original
and the point (3,4)
3/22/2012
5
Algorithm Statement
 Update Centroid
We use the following equation to calculate the n dimensionalWe use the following equation to calculate the n dimensional
centroid point amid k n-dimensional points
Example: Find the centroid of 3 2D points, (2,4), (5,2)
and (8,9)and (8,9)
Example of K-means
 Select three initial centroids
1
1.5
2
2.5
3
y
Iteration 1
-2 -1.5 -1 -0.5 0 0.5 1 1.5 2
0
0.5
x
3/22/2012
6
Example of K-means
 Assigning the points to nearest K clusters and re-compute the
centroids
1
1.5
2
2.5
3
y
Iteration 3
-2 -1.5 -1 -0.5 0 0.5 1 1.5 2
0
0.5
x
Example of K-means
 K-means terminates since the centroids converge to certain points
and do not change.
1
1.5
2
2.5
3
y
Iteration 6
-2 -1.5 -1 -0.5 0 0.5 1 1.5 2
0
0.5
x
3/22/2012
7
Example of K-means
2
2.5
3
Iteration 1
2
2.5
3
Iteration 2
2
2.5
3
Iteration 3
-2 -1.5 -1 -0.5 0 0.5 1 1.5 2
0
0.5
1
1.5
x
y
-2 -1.5 -1 -0.5 0 0.5 1 1.5 2
0
0.5
1
1.5
x
y
-2 -1.5 -1 -0.5 0 0.5 1 1.5 2
0
0.5
1
1.5
x
y
3
Iteration 4
3
Iteration 5
3
Iteration 6
-2 -1.5 -1 -0.5 0 0.5 1 1.5 2
0
0.5
1
1.5
2
2.5
x
y
-2 -1.5 -1 -0.5 0 0.5 1 1.5 2
0
0.5
1
1.5
2
2.5
x
y
-2 -1.5 -1 -0.5 0 0.5 1 1.5 2
0
0.5
1
1.5
2
2.5
x
y
Example of K-means
 Demo of K-means
3/22/2012
8
Evaluating K-means Clusters
 Most common measure is Sum of Squared Error (SSE)
 For each point, the error is the distance to the nearest cluster
 To get SSE we square these errors and sum them To get SSE, we square these errors and sum them.
 x is a data point in cluster Ci and mi is the representative point for cluster
Ci
 can show that mi corresponds to the center (mean) of the cluster
 Given two clusters we can choose the one with the smallest error
 

K
i Cx
i
i
xmdistSSE
1
2
),(
 Given two clusters, we can choose the one with the smallest error
 One easy way to reduce SSE is to increase K, the number of clusters
 A good clustering with smaller K can have a lower SSE than a poor
clustering with higher K
Problem about K
 How to choose K?
1. Use another clustering method, like EM.
2. Run algorithm on data with several different values of K.
3. Use the prior knowledge about the characteristics of the problem.
3/22/2012
9
Problem about initialize centers
 How to initialize centers?
- Random Points in Feature Space
- Random Points From Data Set
- Look For Dense Regions of Space
- Space them uniformly around the feature space
Cluster Quality
3/22/2012
10
Cluster Quality
Limitation of K-means
 K-means has problems when clusters are of
differingg
 Sizes
 Densities
 Non-globular shapes
K h bl h h d i K-means has problems when the data contains
outliers.
3/22/2012
11
Limitation of K-means
Original Points K-means (3 Clusters)
Application of K-means
 Image Segmentation
The k-means clustering algorithm is commonly used in
computer vision as a form of image segmentation. The
results of the segmentation are used to aid border detection
and object recognition.
3/22/2012
12
K-means in Wind Energy
 Clustering can be applied to detect
b lit i i d d t ( b labnormality in wind data (abnormal
vibration)
 Monitor Wind Turbine Conditions
 Beneficial to preventative maintenance
 K means can be more powerful and K-means can be more powerful and
applicable after appropriate modifications
K-means in Wind Energy
Modified K-means
3/22/2012
13
K-means in Wind Energy
 Clustering cost function
2
1
1
( , , )
j i
k
j i
i C
d k
n  
 
  
 
 
 x
x c x c
1
k
i
i
n m

 
21 k  
  1
1
1
( , , )
j i
j ik
i C
i
i
d k
m  

  
 
 
 
 x
x c x c
K-means in Wind Energy
 Determination of k value
0 02
0.03
0.04
0.05
0.06
0.07
0.08
0.09
Costofclustering
0
0.01
0.02
2 3 4 5 6 7 8 9 10 11 12 13
Numberof clusters
3/22/2012
14
K-means in Wind Energy
 Summary of clustering result
No. of Cluster c1 (Drive train acc.) c2 (Wind speed) Number of points Percentage (%)
1 71.9612 9.97514 313 8.75524
2 65.8387 9.42031 295 8.25175
3 233.9184 9.57990 96 2.68531
4 17.4187 7.13375 240 6.71329
5 3.3706 8.99211 437 12.22378
6 0.3741 0.40378 217 6.06993
7 18.1361 8.09900 410 11.46853
8 0.7684 10.56663 419 11.72028
9 62.0493 8.81445 283 7.91608
10 81.7522 10.67867 181 5.06294
11 83.8067 8.10663 101 2.82517
12 0.9283 9.78571 583 16.30769
K-means in Wind Energy
 Visualization of monitoring result
3/22/2012
15
K-means in Wind Energy
 Visualization of vibration under normal condition
14
4
6
8
10
12
14
Windspeed(m/s)
0
2
0 20 40 60 80 100 120 140
Drive train acceleration
Reference
1. Introduction to Data Mining, P.N. Tan, M. Steinbach, V. Kumar, Addison Wesley
2. An efficient k-means clustering algorithm: Analysis and implementation, T. Kanungo, D. M.
Mount, N. Netanyahu, C. Piatko, R. Silverman, and A. Y. Wu, IEEE Trans. PatternAnalysis
and Machine Intelligence, 24 (2002), 881-892
3. http://www.cs.cmu.edu/~cga/ai-course/kmeans.pdf
4. http://www.cse.msstate.edu/~url/teaching/CSE6633Fall08/lec16%20k-means.pdf
3/22/2012
16
Appendix One
Original Points K-means (2 Clusters)
Appendix Two
Original Points K-means Clusters
One solution is to use many clusters.
Find parts of clusters, but need to put together.

More Related Content

PPTX
K means clustering | K Means ++
PDF
Rough K Means - Numerical Example
PDF
The International Journal of Engineering and Science (The IJES)
PDF
K means clustering
PPT
Enhance The K Means Algorithm On Spatial Dataset
PDF
New Approach for K-mean and K-medoids Algorithm
PPTX
Clustering part 1
PDF
Graph Based Clustering
K means clustering | K Means ++
Rough K Means - Numerical Example
The International Journal of Engineering and Science (The IJES)
K means clustering
Enhance The K Means Algorithm On Spatial Dataset
New Approach for K-mean and K-medoids Algorithm
Clustering part 1
Graph Based Clustering

Similar to Data scientist training in bangalore (18)

DOCX
Neural nw k means
PDF
Training machine learning k means 2017
PPTX
Clustering.pptx
PPTX
machine learning - Clustering in R
PPTX
Unsupervised Learning.pptx
PPTX
"k-means-clustering" presentation @ Papers We Love Bucharest
PPTX
Clustering techniques
PPTX
big data analytics unit 2 notes for study
PPTX
partitioning methods in data mining .pptx
PPT
Lecture_3_k-mean-clustering.ppt
PPTX
K means Clustering - algorithm to cluster n objects
PPTX
Unsupervised learning Algorithms and Assumptions
PPT
15857 cse422 unsupervised-learning
PPT
Lecture11_ Intro to clustering and K-means algorithm.ppt
PPT
Lecture11_ Intro to clustering and K-means algorithm.ppt
PDF
k-mean-clustering.pdf
Neural nw k means
Training machine learning k means 2017
Clustering.pptx
machine learning - Clustering in R
Unsupervised Learning.pptx
"k-means-clustering" presentation @ Papers We Love Bucharest
Clustering techniques
big data analytics unit 2 notes for study
partitioning methods in data mining .pptx
Lecture_3_k-mean-clustering.ppt
K means Clustering - algorithm to cluster n objects
Unsupervised learning Algorithms and Assumptions
15857 cse422 unsupervised-learning
Lecture11_ Intro to clustering and K-means algorithm.ppt
Lecture11_ Intro to clustering and K-means algorithm.ppt
k-mean-clustering.pdf
Ad

More from prathyusha1234 (20)

PDF
Business analytics course in delhi
PDF
Business analytics courses in india
PDF
Business analytics courses in india
PDF
Business analytics course in chennai
PDF
Business analytics online course
PDF
Business analytics training in bangalore
PDF
Pmi acp training in hyderabad
PPTX
Pmi acp training in hyderabad
PDF
Data science training
PDF
Business analytics course in mumbai
PDF
Business analytics course in chennai
PDF
Business analytics course in delhi
PDF
Pmi acp training
PPTX
Pmi acp training
PDF
Pmi acp training
PPTX
Pmi acp training
PDF
Business analytics training in hyderabad
PDF
Pmi acp training
PPTX
Pmi acp training
PDF
Pmi acp training
Business analytics course in delhi
Business analytics courses in india
Business analytics courses in india
Business analytics course in chennai
Business analytics online course
Business analytics training in bangalore
Pmi acp training in hyderabad
Pmi acp training in hyderabad
Data science training
Business analytics course in mumbai
Business analytics course in chennai
Business analytics course in delhi
Pmi acp training
Pmi acp training
Pmi acp training
Pmi acp training
Business analytics training in hyderabad
Pmi acp training
Pmi acp training
Pmi acp training
Ad

Recently uploaded (20)

PDF
احياء السادس العلمي - الفصل الثالث (التكاثر) منهج متميزين/كلية بغداد/موهوبين
PDF
Hazard Identification & Risk Assessment .pdf
PPTX
UV-Visible spectroscopy..pptx UV-Visible Spectroscopy – Electronic Transition...
PDF
A systematic review of self-coping strategies used by university students to ...
PPTX
Radiologic_Anatomy_of_the_Brachial_plexus [final].pptx
PPTX
Introduction-to-Literarature-and-Literary-Studies-week-Prelim-coverage.pptx
PPTX
202450812 BayCHI UCSC-SV 20250812 v17.pptx
PDF
A GUIDE TO GENETICS FOR UNDERGRADUATE MEDICAL STUDENTS
PDF
Practical Manual AGRO-233 Principles and Practices of Natural Farming
PPTX
Lesson notes of climatology university.
PPTX
Tissue processing ( HISTOPATHOLOGICAL TECHNIQUE
PPTX
CHAPTER IV. MAN AND BIOSPHERE AND ITS TOTALITY.pptx
PDF
OBE - B.A.(HON'S) IN INTERIOR ARCHITECTURE -Ar.MOHIUDDIN.pdf
PDF
Black Hat USA 2025 - Micro ICS Summit - ICS/OT Threat Landscape
PDF
Complications of Minimal Access Surgery at WLH
PDF
Supply Chain Operations Speaking Notes -ICLT Program
PDF
LNK 2025 (2).pdf MWEHEHEHEHEHEHEHEHEHEHE
PPTX
Unit 4 Skeletal System.ppt.pptxopresentatiom
DOC
Soft-furnishing-By-Architect-A.F.M.Mohiuddin-Akhand.doc
PDF
medical_surgical_nursing_10th_edition_ignatavicius_TEST_BANK_pdf.pdf
احياء السادس العلمي - الفصل الثالث (التكاثر) منهج متميزين/كلية بغداد/موهوبين
Hazard Identification & Risk Assessment .pdf
UV-Visible spectroscopy..pptx UV-Visible Spectroscopy – Electronic Transition...
A systematic review of self-coping strategies used by university students to ...
Radiologic_Anatomy_of_the_Brachial_plexus [final].pptx
Introduction-to-Literarature-and-Literary-Studies-week-Prelim-coverage.pptx
202450812 BayCHI UCSC-SV 20250812 v17.pptx
A GUIDE TO GENETICS FOR UNDERGRADUATE MEDICAL STUDENTS
Practical Manual AGRO-233 Principles and Practices of Natural Farming
Lesson notes of climatology university.
Tissue processing ( HISTOPATHOLOGICAL TECHNIQUE
CHAPTER IV. MAN AND BIOSPHERE AND ITS TOTALITY.pptx
OBE - B.A.(HON'S) IN INTERIOR ARCHITECTURE -Ar.MOHIUDDIN.pdf
Black Hat USA 2025 - Micro ICS Summit - ICS/OT Threat Landscape
Complications of Minimal Access Surgery at WLH
Supply Chain Operations Speaking Notes -ICLT Program
LNK 2025 (2).pdf MWEHEHEHEHEHEHEHEHEHEHE
Unit 4 Skeletal System.ppt.pptxopresentatiom
Soft-furnishing-By-Architect-A.F.M.Mohiuddin-Akhand.doc
medical_surgical_nursing_10th_edition_ignatavicius_TEST_BANK_pdf.pdf

Data scientist training in bangalore

  • 1. 3/22/2012 1 K-means Algorithmg Cluster Analysis in Data Mining Presented by Zijun Zhang Algorithm Description  What is Cluster Analysis? Cluster analysis groups data objects based only on information found in data that describes the objects and their relationships. Goal of Cluster Analysis The objects within a group be similar to one another andj g p different from the objects in other groups
  • 2. 3/22/2012 2 Algorithm Description  Types of Clustering Partitioning and Hierarchical Clustering  Hierarchical Clustering - A set of nested clusters organized as a hierarchical tree  Partitioning Clusteringg g - A division data objects into non-overlapping subsets (clusters) such that each data object is in exactly one subset Algorithm Description p4 p1 p3 p2 A Partitional Clustering Hierarchical Clustering
  • 3. 3/22/2012 3 Algorithm Description  What is K-means? 1. Partitional clustering approach 2. Each cluster is associated with a centroid (center point) 3. Each point is assigned to the cluster with the closest centroid 4 Number of clusters K must be specified4. Number of clusters, K, must be specified Algorithm Statement  Basic Algorithm of K-means
  • 4. 3/22/2012 4 Algorithm Statement  Details of K-means 1 Initial centroids are often chosen randomly1. Initial centroids are often chosen randomly. - Clusters produced vary from one run to another 2. The centroid is (typically) the mean of the points in the cluster. 3.‘Closeness’ is measured by Euclidean distance, cosine similarity, correlation, etc. 4. K-means will converge for common similarity measures mentioned above. 5. Most of the convergence happens in the first few iterations.5. Most of the convergence happens in the first few iterations. - Often the stopping condition is changed to ‘Until relatively few points change clusters’ Algorithm Statement  Euclidean Distance A simple example: Find the distance between two points, the original and the point (3,4)
  • 5. 3/22/2012 5 Algorithm Statement  Update Centroid We use the following equation to calculate the n dimensionalWe use the following equation to calculate the n dimensional centroid point amid k n-dimensional points Example: Find the centroid of 3 2D points, (2,4), (5,2) and (8,9)and (8,9) Example of K-means  Select three initial centroids 1 1.5 2 2.5 3 y Iteration 1 -2 -1.5 -1 -0.5 0 0.5 1 1.5 2 0 0.5 x
  • 6. 3/22/2012 6 Example of K-means  Assigning the points to nearest K clusters and re-compute the centroids 1 1.5 2 2.5 3 y Iteration 3 -2 -1.5 -1 -0.5 0 0.5 1 1.5 2 0 0.5 x Example of K-means  K-means terminates since the centroids converge to certain points and do not change. 1 1.5 2 2.5 3 y Iteration 6 -2 -1.5 -1 -0.5 0 0.5 1 1.5 2 0 0.5 x
  • 7. 3/22/2012 7 Example of K-means 2 2.5 3 Iteration 1 2 2.5 3 Iteration 2 2 2.5 3 Iteration 3 -2 -1.5 -1 -0.5 0 0.5 1 1.5 2 0 0.5 1 1.5 x y -2 -1.5 -1 -0.5 0 0.5 1 1.5 2 0 0.5 1 1.5 x y -2 -1.5 -1 -0.5 0 0.5 1 1.5 2 0 0.5 1 1.5 x y 3 Iteration 4 3 Iteration 5 3 Iteration 6 -2 -1.5 -1 -0.5 0 0.5 1 1.5 2 0 0.5 1 1.5 2 2.5 x y -2 -1.5 -1 -0.5 0 0.5 1 1.5 2 0 0.5 1 1.5 2 2.5 x y -2 -1.5 -1 -0.5 0 0.5 1 1.5 2 0 0.5 1 1.5 2 2.5 x y Example of K-means  Demo of K-means
  • 8. 3/22/2012 8 Evaluating K-means Clusters  Most common measure is Sum of Squared Error (SSE)  For each point, the error is the distance to the nearest cluster  To get SSE we square these errors and sum them To get SSE, we square these errors and sum them.  x is a data point in cluster Ci and mi is the representative point for cluster Ci  can show that mi corresponds to the center (mean) of the cluster  Given two clusters we can choose the one with the smallest error    K i Cx i i xmdistSSE 1 2 ),(  Given two clusters, we can choose the one with the smallest error  One easy way to reduce SSE is to increase K, the number of clusters  A good clustering with smaller K can have a lower SSE than a poor clustering with higher K Problem about K  How to choose K? 1. Use another clustering method, like EM. 2. Run algorithm on data with several different values of K. 3. Use the prior knowledge about the characteristics of the problem.
  • 9. 3/22/2012 9 Problem about initialize centers  How to initialize centers? - Random Points in Feature Space - Random Points From Data Set - Look For Dense Regions of Space - Space them uniformly around the feature space Cluster Quality
  • 10. 3/22/2012 10 Cluster Quality Limitation of K-means  K-means has problems when clusters are of differingg  Sizes  Densities  Non-globular shapes K h bl h h d i K-means has problems when the data contains outliers.
  • 11. 3/22/2012 11 Limitation of K-means Original Points K-means (3 Clusters) Application of K-means  Image Segmentation The k-means clustering algorithm is commonly used in computer vision as a form of image segmentation. The results of the segmentation are used to aid border detection and object recognition.
  • 12. 3/22/2012 12 K-means in Wind Energy  Clustering can be applied to detect b lit i i d d t ( b labnormality in wind data (abnormal vibration)  Monitor Wind Turbine Conditions  Beneficial to preventative maintenance  K means can be more powerful and K-means can be more powerful and applicable after appropriate modifications K-means in Wind Energy Modified K-means
  • 13. 3/22/2012 13 K-means in Wind Energy  Clustering cost function 2 1 1 ( , , ) j i k j i i C d k n             x x c x c 1 k i i n m    21 k     1 1 1 ( , , ) j i j ik i C i i d k m              x x c x c K-means in Wind Energy  Determination of k value 0 02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 Costofclustering 0 0.01 0.02 2 3 4 5 6 7 8 9 10 11 12 13 Numberof clusters
  • 14. 3/22/2012 14 K-means in Wind Energy  Summary of clustering result No. of Cluster c1 (Drive train acc.) c2 (Wind speed) Number of points Percentage (%) 1 71.9612 9.97514 313 8.75524 2 65.8387 9.42031 295 8.25175 3 233.9184 9.57990 96 2.68531 4 17.4187 7.13375 240 6.71329 5 3.3706 8.99211 437 12.22378 6 0.3741 0.40378 217 6.06993 7 18.1361 8.09900 410 11.46853 8 0.7684 10.56663 419 11.72028 9 62.0493 8.81445 283 7.91608 10 81.7522 10.67867 181 5.06294 11 83.8067 8.10663 101 2.82517 12 0.9283 9.78571 583 16.30769 K-means in Wind Energy  Visualization of monitoring result
  • 15. 3/22/2012 15 K-means in Wind Energy  Visualization of vibration under normal condition 14 4 6 8 10 12 14 Windspeed(m/s) 0 2 0 20 40 60 80 100 120 140 Drive train acceleration Reference 1. Introduction to Data Mining, P.N. Tan, M. Steinbach, V. Kumar, Addison Wesley 2. An efficient k-means clustering algorithm: Analysis and implementation, T. Kanungo, D. M. Mount, N. Netanyahu, C. Piatko, R. Silverman, and A. Y. Wu, IEEE Trans. PatternAnalysis and Machine Intelligence, 24 (2002), 881-892 3. http://www.cs.cmu.edu/~cga/ai-course/kmeans.pdf 4. http://www.cse.msstate.edu/~url/teaching/CSE6633Fall08/lec16%20k-means.pdf
  • 16. 3/22/2012 16 Appendix One Original Points K-means (2 Clusters) Appendix Two Original Points K-means Clusters One solution is to use many clusters. Find parts of clusters, but need to put together.