SlideShare a Scribd company logo
Data Types
• Programming languages need a variety of data types in
order to better model/match the world
– more data types make programming easier but too many data
types might be confusing
• which data types are most common?
• which data types are necessary?
• which data types are uncommon yet useful?
– how are data types implemented in the various languages?
• Almost all programming languages provide a set of
primitive data types
– primitive data types are those not defined in terms of other data
types
– some primitive data types are implemented directly in hardware
(integers, floating point, etc) while others require some non-
hardware support for their implementation such as arrays
Language Support of Data Types
• Historically, we see the following:
– FORTRAN only had numeric types and arrays
– COBOL introduced advanced record structures, character
strings and decimal
– Lisp had built-in linked lists
– PL/I was the first language to offer a wide range of types but
did not allow for tailor-made types
– ALGOL 68 took a different approach by offering few types
but these types were combinable into many advanced types
• strings = arrays + chars
• lists, trees, queues, stacks, graphs, sets = records + pointers or arrays
• Most languages since ALGOL have adopted ALGOL’s
approach – few basic types that can are used to define a
greater variety
– later on, the notion of abstract data types and even later,
object-oriented programming, expanded on these ideas
• we study these concepts in chapters 11 and 12
Primitive Data Types
• Types supported directly in hardware of the machine
– Integer: byte, short, int, long, signed, unsigned
– Floating Point: single and double precision
• stored in 3 parts: sign bit, exponent, mantissa
– Complex: numbers that contain an imaginary part
• available in languages like Common Lisp, FORTRAN and Python
– Decimal: BCD (2 decimal digits per byte)
• for business processing whereby numbers (dollars and cents) are
stored as 1 digit per ½ byte instead of using an int format
• popularized in COBOL, also used in PL/I and C#
– Boolean: 1-bit value (usually referenced as true or false)
• available in C++, Java, Pascal, Ada, Lisp, but not C
• in Lisp, the values are T or NIL
• for hardware convenience, these are often stored in 1 byte or 1 word!
– Character: ASCII or Unicode
• IBM mainframes use a different code called EBCDIC
• Java, Javascript C# support Unicode
Types Found in PL/I
• We briefly look at PL/I types because of the wide range and depth
– Numeric types:
• Fixed decimal (like BCD, with specified length and decimal point)
• Fixed binary (same but values specified in binary)
• Float decimal/binary (true floating point, including integers)
• Zoned decimal (any form of number used for output to files)
• Complex
– Non-numeric types:
• Character, Bit, Pointers, Builtin – when requesting a piece of built-in
information such as calling the function DATE or TIME
– Structures:
• Strings indicated by number of Characters, “varying” means any length up to a
specified maximum as in DCL NAME CHAR(20) VARYING;
• Records – declared much like COBOL records
• Pictures –like COBOL: specified char-by-char (Z, V, 0, 9, .)
• Files
• Lists – circular and bidirectional available
• Binary Tree
• Stack
Character Strings
• Should a string be a primitive type or defined as an array of chars?
– few languages offer them as primitives (SNOBOL does)
– in most languages, they are arrays of chars (Pascal, Ada, C/C++)
– Java/C# offer them as objects
• Design issues:
– should strings have static or dynamic length?
– can they be accessed using indices (like arrays)?
• this is true if the string is treated as an array
– what operations should be available on strings?
• assignment, <, =, >, concat, substring
– available in Pascal/Ada only if declared as packed arrays
– available through libraries in C/C++ and through built-in objects in Java/C#
• Character string types could be supported directly in hardware, but
in most cases, software implements them as arrays of chars
– so the questions are:
• how are the various operations implemented
– as library routines/class methods or directly in the language?
• how is string length handled?
Implementing Strings
• Three forms of string lengths:
– Static length strings – string size is set when the string is created
• this is the case with FORTRAN 77/90, COBOL, C#, C++ and Java
• if the string is an object as is the case in Java, and possibly in C#/C++, strings
are immutable
– Limited dynamic length strings – string lengths can vary up to a specified
limit, for instance, if we declare the string to be 50, it can hold up to 50 chars
• this is the case with Pascal, C, C++, PL/I
– Dynamic length strings – strings can change length at any time with no
maximum restriction
• this is the case with SNOBOL, LISP, JavaScript, Perl
• strings might be stored in a linked list, or as an array from heap memory which
needs a lot of memory movement as the string grows
• Most languages generate a descriptor for every compiled string
The dynamic string requires dynamic
memory but only uses a single current
length field for the length
Ordinal Types
• Ordinal: countable, or where the items have an ordering
• Does the language provide a facility for programmers to define ordinals?
– ordinal types can promote readability
– programmers provide symbolic constants (names)
– often used in for-loops and switch statements
• Languages which support Ordinal types:
– C and Pascal were the first two languages to offer this, C++ cleaned up C’s enum type
– Pascal includes operations PRED, SUCC, ORD
– C/C++ permit ++ and --
– in C#, enum types are not treated as ints
– Java does not include ordinals but can be simulated through proper class definitions
– FORTRAN 77 can simulate enums through constants
• Another form of user-defined ordinal type is the subrange
– limited range of a previously defined ordinal type
– introduced in Pascal and made available in Ada
– for example: use .. to indicate the subrange as in 0..5
– subranges require compile-time type checking and run-time range-checking
– subranges have not been made available in the C-like languages
Array Types
• Arrays are homogenous aggregate data elements
– design issues include:
• what types are legal for subscripts?
• when are subscript ranges bound?
• when does array allocation take place?
• how many subscripts are allowed? is there a limit to array dimensions?
• are multi-dimensional arrays rectangular or are ragged arrays allowed?
• can arrays be initialized at allocation time?
• are slices allowed?
• Array dimensions:
– FORTRAN I - limited to 3, FORTRAN IV and onward - up to 7
– most other languages have no restriction on array dimensions
• C/C++/Java - arrays are limited to 1 dimension only but arrays can be nested
• this is actually an array of pointers so that you can have as many dimensions as
you want
• because the pointers might point to different sized arrays, this can lead to
jagged arrays
• most languages restrict you to rectangular arrays (the number of elements for
each row are the same)
– C# supports both rectangular and jagged arrays
Indexes
• Index maps array element to memory location
– early languages did no run-time range checking, but range-checking is done
in most modern languages for reliability
• Array indexes are usually placed in some syntactic unit
– [ ] in most languages: Pascal, Modula-2, C-languages
– ( ) in FORTRAN, PL/I, Ada
• parens weaken readability because something like foo(x) is now hard to read – is
it a subroutine call or an array access?
– Lisp uses a function as in (aref array 6) to mean array[6]
• Most languages separate dimensions by ,
– but C-languages use [ ][ ]
• Two types associated with arrays that need to be declared
– the type of value being stored
– the type of value used for an index (in Pascal-like languages)
• Are lower bounds automatically set?
– C/C++, Java, early FORTRAN use 0
– 1 is used in later FORTRANs
– explicit in all other languages
Array Subscript Categories
• When is the subscript range bound? That is, when is
the decision on the size of the array made?
– Static
• subscript range bound before run-time (compile, link or load-time)
• most efficient but most restrictive, the array is fixed in size
• FORTRAN I – 77, C/C++ if declared with the word static
– Fixed Stack-Dynamic
• subscript range is bound at compile time but allocation of the array
occurs at run-time from the run-time stack – array size determined
when function called
• Ada, Basic, C, C++, Pascal, Java, FORTRAN 90
– Stack-Dynamic
• subscript range dynamically bound and dynamically allocated but
remains fixed for lifetime of the array – this allows the array size to be
determined at run-time for more efficient space-usage
• Ada if specifically declared this way, ALGOL-60 arrays
Language Examples
• Fixed Heap-dynamic
– like fixed stack-dynamic except that memory comes from the heap, not the
stack, so the size and memory is dynamically allocated, but size is static
once created
– C/C++ if allocated using malloc or calloc
– all arrays in Java and C# since they are objects and all objects are allocated
from the heap
– FORTRAN 90 and 95
• Heap-Dynamic
– dynamically bound and allocated, and changeable during array’s lifetime –
the most flexible type of array as it can permit the array to grow or shrink
as needed during run-time
– Perl, JavaScript, Lisp
– C# if declared as an object of type ArrayList
– ALGOL-60 could simulate heap-dynamic using the flex command
– Java and C# can simulate heap-dynamic through array copying
Array Initialization and Operations
• Initialization
– FORTRAN 77 offers optional initialization at allocation time (load time)
– C/C++/Java offer optional initialization that can also dictate array size and
through initializations, you can create jagged arrays
– in Ada, specific elements can be specified rather than initializing the entire
array
– for Pascal, Modula-2, no array initializations
– most languages permit only initialization and access to a single element
• Assignment
– Ada, Pascal allow entire array assignment if the arrays are of the same
type/size
• Ada also has array concatenation
– in C/C++/Java, assignment is copying a pointer, not duplicating the array
– FORTRAN 95 includes a variety of array operations
• such as +, relational operations (comparisons), matrix multiplication and
transpose, etc (all through library routines)
– APL includes a collection of vector and matrix operations (see p 271)
Slices
• Definable substructure of an array
– e.g., a row of a 2 D array or a plane of a 3-D array
• In FORTRAN:
– Integer Vector(1:10), Matrix(1:10, 1:20)
• Vector(3:6) defines a subarray of 4 elements in Vector
• : by itself is used to denote “wild card” (all elements) in FORTRAN 95 so
Matrix(1:5, :) means half of the first dimension and all of the second
• FORTRAN 90 & 95 have very complex Slice features such as
skipping every other location
– slices can be used to initialize arrays that are different in size and
dimension
• for instance, initializing a 1-D array to be the first row of a 2-D array
– slice references can appear on either the left or right hand side of an
assignment statement
• Ada restricts slices to consecutive memory locations within a
dimension of an array for instance, a part of a row
• Python provides mechanisms for slices of tuples
– recall Python does not have arrays, instead it has this list-like constructs
that can be heterogeneous
Array Implementations
• Arrays are almost always a contiguous block of memory equal to
the size needed to store the array
– each successive array element is stored in the next memory location
• We define a mapping function which translates the array indexes
to the memory location, for instance a 1-D array in C maps as
– a[i] = OFFSET + i * length
• OFFSET is the starting point of the array and length is the size in bytes of
each element
• if the language has a lower bound of 1, then we change the above to be (i – 1)
• Multi-dimensional arrays in C-languages are altered to include
the memory used by all previous rows:
a[i][j] = OFFSET + i * n * length + j * length
That is, the array element at [i, j] has i previous rows of n
(including row 0) items each, and j elements in the current row
More generically, for languages that allow for a non-0 lower
bound, we would use a[i, j] = OFFSET + (i – loweri) * n *
length + (j – lowerj) * length
More on Mapping
• Most languages use row-major order
– in row-major order, all of row i is placed consecutively,
followed by all of row i+1, etc.
• FORTRAN is the only common language to instead use column-major
order (see pages 274-275 for example)
– we don’t have to know whether a language uses row-major or
column-major order when writing our code
• but we could potentially write more efficient code when dealing with
memory management and pointer arithmetic if we did know
• With multi-dimensional arrays (beyond 2), the mapping
function is just an extension of what we had already seen
– for a 3-d array a[m][n][p], we would use:
• a[i, j, k] = OFFSET + i*n*length + j*m*length + k*length
– this formula will not work if we are dealing with jagged arrays
Array Descriptors
• As with strings, arrays are commonly implemented by
the compiler generating array descriptors for each array
– these descriptors include all information necessary to generate
the mapping function
– in most languages, both the lower and upper bounds are
required, in C/C++/Java/C#, lower bounds are always 0 and in
FORTRAN, they are always 1
here we have
descriptors for
1-D and multi-D
arrays
Associative Arrays
• An associative array uses a key to map to the proper
location rather than an index
– keys are user-defined and must be stored in the data structure
itself
– this is basically a hash table
• Associative arrays are available in Java, Perl, and PHP,
and supported in C++ as a class and Python as a type
called a dictionary
– in Perl, associative arrays are implemented using a hash table
and a 32-bit hash value, but, at least initially, only a portion of
the hash value is used and stored, this is increased as needed
if the hash table grows
– in PHP, associative arrays are implemented as linked lists
with a hashing function that can point into the linked list
• see page 278 for some examples in Perl
Record Types
• Heterogeneous aggregate of
data elements
– elements referred to as fields or
members
– introduced in COBOL
– incorporated into most
languages since then
• Java does not have a record
type but uses the class construct
instead
– may be hierarchically structured
(nested)
• Design Issues:
– how to build hierarchical
structure
– referencing of fields
– record operations and
implementations
Examples:
COBOL (nested structure in one definition)
01 EMPLOYEE-RECORD.
02 EMPLOYEE-NAME.
05 FIRST PICTURE IS X(10).
05 MIDDLE PICTURE IS X(10).
05 LAST PICTURE IS X(20).
02 HOURLY-RATE PICTURE IS 99V99.
Ada (nested through multiple definitions)
type Employee_Name_Type is record
First : String(1..10);
Middle : String(1..10);
Last : String(1..10);
end record;
type Employee_Record is record
Employee_Name : Employee_Name_Type
Hourly_Rate : Float;
end record;
Record Operations
• Assignment
– if both records are the same type
– allowed in Pascal, Ada, Modula-2, C/C++
• Comparison (Ada)
• Initialization (Ada, C/C++)
• Move Corresponding (COBOL)
– copies input record to output file while possibly performing some
modification
• To reference an individual element:
– COBOL uses OF as in First OF Emp-Name
– Ada uses “.” as in Emp_Rec.Emp_Name.First
– Pascal, Modula-2 same as Ada but also allow a With statement so that
variable names can be omitted
• with emp_record do
– begin
– first = …
– end;
– FORTRAN 90/95 use % sign as in Emp_Rec%Emp_Name%First
– PL/I and COBOL allow elliptical references where you only specify the
field name if the name is unambiguous
Record Implementation
• Similar to Arrays, requires a mapping function
– since fields are statically defined, mapping function is determined at
compile-time
– example:
type Foo is record
name : String(1..10);
sex : char;
salary : float;
end record;
If a variable, x, of type Foo starts at offset, then
x.name = offset
x.sex = offset + 10
x.salary = offset + 11
If we have an array a of Foo starting at index 0, then
a[i].name = offset + 12 * i
a[i].sex = offset + 12 * i + 10
a[i].salary = offset + 12 * i + 11
A generic
compile-time
descriptor for
a record is
given to the right
Union Types
• Types which can store different types of variables at
different times of execution
– FORTRAN’s Equivalence instruction:
• Integer X
Real Y
Equivalence (X, Y)
• declares one memory location for both X and Y
– the Equivalence statement is not a type, it just commands the compiler to
share the same memory location
• in FORTRAN, there is no mechanism for the program to determine
whether X or Y is currently stored in that location and so no type
checking can be done
• Other languages have union types
– the type defines 1 location for two variables of different types
– design issues:
• should type checking be required? If so, this must be dynamic type
checking
• can unions be embedded in records?
Union Examples
• A Free Union is a union in which no type checking is
performed
– this is the case with FORTRAN’s Equivalence, and with
C/C++ union construct
• A Discriminating Union is a union in which a tag (also
called a discriminant) is added to the memory location
to determine which type is currently being stored
– ALGOL 68 introduced this idea and it is supported in Ada
– in ALGOL 68:
• UNION(int, real) ir1, ir2
– ir1 and ir2 share the same memory location which stores an
int if it is currently ir1, and a real if it is currently ir2
– union (int, real) ir1;
int count;
ir1 := 33;
count := ir1; (this statement is not legal)
Variant Records
• In Pascal, Ada, and Modula-2, another type of Union is
available called the Variant Records
– in this case, the fields of a record are variable depending on
the type of specific record
– here is a definition for a variant record in Pascal and the
memory reserved for it:
type shape=(circle, triangle,rectangle);
type colors = (red, green, blue);
object = record
filled : boolean;
color : colors;
case form : shape of
circle : (diameter : real);
rectangle : (side1, side2 : integer);
triangle : (leftside, rightside : integer; angle : real);
end;
Problems with Union Types
• If the user program can modify the discriminant (tag),
then the value(s) stored there are no longer what was
expected
– for instance, consider changing the discriminant of our
previous shape from triangle to rectangle, then the values of
side1 and side2 are actually the old values of leftside and
rightside, which are meaningless
• Free unions are not type checked
– this gives the programmer flexibility but reduces reliability
• Union types (whether free or discriminated) are hard to
read and may not make much sense to those who have
not used them
– Union types continue to be available in many modern
languages so that the language is not strongly typed
• that is, unions are specifically made available to give the programmer a
mechanism to avoid type checking!
Pointer Types
• Used for indirect addressing for dynamic memory
– dynamic memory when allocated, does not have a name, so these
are unnamed or anonymous variables and can only be accessed
through a pointer
• Pointers store memory locations or null
– usually null is a special value so that pointers can be implemented
as special types of int values
• By making pointers a specific type, some static allocation is
possible
– the pointer itself can be allocated at compile-time, and uses of the
pointer can be type checked at compile-time
• Design issues:
– what is the scope and lifetime of the pointer?
– what is the lifetime of the variable being pointed to?
– are there restrictions on the type that a pointer can point to?
– should the pointer be implemented as a pointer or reference
variable?
Pointer Operations
• Pointer Access
– retrieve the memory location stored in the pointer
• if available, this can allow pointer arithmetic (e.g., C)
• Dereferencing
– using a pointer to access the item being pointed to
• Implicit Dereferencing
– dereferencing is done automatically when the pointer is accessed
• used in FORTRAN, ALGOL 68, Lisp, Java, Python
• in more recent languages, the pointer is not even treated (or called) a pointer
because all access is done implicitly, this makes the use of the pointer much
safer although far more restrictive
• Explicit Dereferencing
– explicit command to access what the pointer is pointing too
• C/C++ use * (or -> for structs), Ada uses ., Pascal uses ^
• Explicit Allocation
– used in C/C++ (malloc or new), PL/I (allocate), Pascal (new), etc
• Explicit Deallocation
– used in Ada, PL/I, C, C++, and Pascal but not Java, Lisp or C#
• in many of these languages, while there is a command to deallocate memory, it
is often not implemented so the result is that the pointer still points to memory!
Pointer Problems
• Type Checking
– if pointers are not restricted as to what they can point to, type checking can
not be done at compile-time
• is it done at run-time (time consuming) or is the language unreliable?
• in C/C++, void * pointers are allowed which can point to any type
– dereferencing requires casting the value to permit some type checking
• Dangling Pointers
– if a pointer is deallocated, then the memory that was being used is now
returned to the heap
– if the pointer still retains the address, then we have a dangling pointer
• that is, the pointer may still be pointed at the deallocated value in memory
• this can lead to accessing something unexpected
• Lost Heap-Dynamic Variables
– allocated memory which no longer has a pointer pointing at it can not be
accessed – if the programmer is responsible for deallocating the memory,
then this could result in heap memory that is not used by is not available
• in Java, C#, and Lisp, such items are automatically garbage collected
• Pointer Arithmetic
– available in C/C++ which can lead to accessing the wrong areas of memory
Pointers in PLs
• PL/I: first language to use pointers, very flexible which led to
errors
• ALGOL 68: less error due to explicitly declaring referenced type
(type checking) and no explicit deallocation so no dangling
pointers
• Ada: memory can be automatically deallocated at the end of a
block to lessen dangling pointers, but also has explicit deallocation
if more desired
• C/C++: extremely flexible pointers
– often used as a means of indirect addressing similar to assembly
– pointer arithmetic available for convenience in array accessing
• FORTRAN 95: pointers can point to both heap and static variables
but all pointers are required to have a Target attribute to ensure
type checking
• Java & C#: both use implicit pointers (reference types) although
C# also has standard pointers
– C++ also has a reference type although used primarily for formal parameters
in function definitions, which acts as a constant
Implementing Pointer Types
• Pointers are implemented along with heap management
– the heap is a section of memory that is reserved for program
allocation and deallocation
• pointers themselves are usually 2 or 4-byte int values storing addresses
as offsets into the heap
– to deal with dangling ptrs:
• tombstones are special pointers that denote whether a given pointer’s
memory is still allocated or has been deallocated
• locks and keys are two values stored with the pointer (key) and the
allocated memory (lock)
– if the two values don’t match on an access, then it is a dangling pointer
situation and access is disallowed
– heap management requires the ability to
• allocate memory
• restore the heap upon deallocation (or garbage collection)
– the book covers heap restoration in some detail (pages 300 – 304), but this
is more an OS issue, so we won’t cover it here

More Related Content

PDF
Datatype
PPT
pl12ch6.ppt
PPT
Theory of programming language chapter 6
PPT
Primitive data types
PDF
6 data types
PPT
L6.1 Primitive data types, array, records and union.ppt
Datatype
pl12ch6.ppt
Theory of programming language chapter 6
Primitive data types
6 data types
L6.1 Primitive data types, array, records and union.ppt

Similar to Data.ppt (20)

PPT
pl10ch6_datatypesprinciplesof programing.ppt
PPT
6 data types
PDF
332 ch07
PPT
ch6-Short.ppt eee cse www rrr www qqq rrr ttt
PPT
chapter 5.ppt
PPT
Primitive data types in java
PPT
Ch06Part1.ppt
PPTX
Chapter 6 data types
PPT
14-types.ppt
PPTX
Plc (1)
PDF
(2) collections algorithms
PPT
Quarter-2-CH-1.ppt
PPTX
Chapter 4.pptx
PPTX
Hema wt (1)
PPT
09_java_DataTypesand associated class.ppt
PPT
data of computer and type of value required to represent the actual data.ppt
PPT
SD & D Data Types
PPTX
datatypes in java helpfull for collage students.pptx
PPT
National 5 Data Types
PPTX
a brief explanation on the topic of Imperative Programming Paradigm.pptx
pl10ch6_datatypesprinciplesof programing.ppt
6 data types
332 ch07
ch6-Short.ppt eee cse www rrr www qqq rrr ttt
chapter 5.ppt
Primitive data types in java
Ch06Part1.ppt
Chapter 6 data types
14-types.ppt
Plc (1)
(2) collections algorithms
Quarter-2-CH-1.ppt
Chapter 4.pptx
Hema wt (1)
09_java_DataTypesand associated class.ppt
data of computer and type of value required to represent the actual data.ppt
SD & D Data Types
datatypes in java helpfull for collage students.pptx
National 5 Data Types
a brief explanation on the topic of Imperative Programming Paradigm.pptx
Ad

More from RithikRaj25 (17)

PPT
html1.ppt
PPT
PPTX
PPT
Introduction To Database.ppt
PPT
DataTypes.ppt
PPTX
NoSQL.pptx
PPTX
PPT
text classification_NB.ppt
PPT
html1.ppt
PPTX
slide-keras-tf.pptx
PPT
Intro_OpenCV.ppt
PPT
lec1b.ppt
PPT
PR7.ppt
PPT
objectdetect_tutorial.ppt
PPTX
14_ReinforcementLearning.pptx
PPTX
datamining-lect11.pptx
PPT
week6a.ppt
html1.ppt
Introduction To Database.ppt
DataTypes.ppt
NoSQL.pptx
text classification_NB.ppt
html1.ppt
slide-keras-tf.pptx
Intro_OpenCV.ppt
lec1b.ppt
PR7.ppt
objectdetect_tutorial.ppt
14_ReinforcementLearning.pptx
datamining-lect11.pptx
week6a.ppt
Ad

Recently uploaded (20)

PPTX
AI Strategy room jwfjksfksfjsjsjsjsjfsjfsj
PDF
Capcut Pro Crack For PC Latest Version {Fully Unlocked 2025}
PDF
Votre score augmente si vous choisissez une catégorie et que vous rédigez une...
PDF
Microsoft Core Cloud Services powerpoint
PPTX
mbdjdhjjodule 5-1 rhfhhfjtjjhafbrhfnfbbfnb
PDF
Global Data and Analytics Market Outlook Report
PPTX
IBA_Chapter_11_Slides_Final_Accessible.pptx
PPTX
A Complete Guide to Streamlining Business Processes
PPTX
importance of Data-Visualization-in-Data-Science. for mba studnts
PDF
Transcultural that can help you someday.
PDF
REAL ILLUMINATI AGENT IN KAMPALA UGANDA CALL ON+256765750853/0705037305
PPTX
01_intro xxxxxxxxxxfffffffffffaaaaaaaaaaafg
PDF
Jean-Georges Perrin - Spark in Action, Second Edition (2020, Manning Publicat...
PPTX
Microsoft-Fabric-Unifying-Analytics-for-the-Modern-Enterprise Solution.pptx
PPT
ISS -ESG Data flows What is ESG and HowHow
PPTX
CYBER SECURITY the Next Warefare Tactics
PPTX
(Ali Hamza) Roll No: (F24-BSCS-1103).pptx
DOCX
Factor Analysis Word Document Presentation
PPTX
Managing Community Partner Relationships
PDF
168300704-gasification-ppt.pdfhghhhsjsjhsuxush
AI Strategy room jwfjksfksfjsjsjsjsjfsjfsj
Capcut Pro Crack For PC Latest Version {Fully Unlocked 2025}
Votre score augmente si vous choisissez une catégorie et que vous rédigez une...
Microsoft Core Cloud Services powerpoint
mbdjdhjjodule 5-1 rhfhhfjtjjhafbrhfnfbbfnb
Global Data and Analytics Market Outlook Report
IBA_Chapter_11_Slides_Final_Accessible.pptx
A Complete Guide to Streamlining Business Processes
importance of Data-Visualization-in-Data-Science. for mba studnts
Transcultural that can help you someday.
REAL ILLUMINATI AGENT IN KAMPALA UGANDA CALL ON+256765750853/0705037305
01_intro xxxxxxxxxxfffffffffffaaaaaaaaaaafg
Jean-Georges Perrin - Spark in Action, Second Edition (2020, Manning Publicat...
Microsoft-Fabric-Unifying-Analytics-for-the-Modern-Enterprise Solution.pptx
ISS -ESG Data flows What is ESG and HowHow
CYBER SECURITY the Next Warefare Tactics
(Ali Hamza) Roll No: (F24-BSCS-1103).pptx
Factor Analysis Word Document Presentation
Managing Community Partner Relationships
168300704-gasification-ppt.pdfhghhhsjsjhsuxush

Data.ppt

  • 1. Data Types • Programming languages need a variety of data types in order to better model/match the world – more data types make programming easier but too many data types might be confusing • which data types are most common? • which data types are necessary? • which data types are uncommon yet useful? – how are data types implemented in the various languages? • Almost all programming languages provide a set of primitive data types – primitive data types are those not defined in terms of other data types – some primitive data types are implemented directly in hardware (integers, floating point, etc) while others require some non- hardware support for their implementation such as arrays
  • 2. Language Support of Data Types • Historically, we see the following: – FORTRAN only had numeric types and arrays – COBOL introduced advanced record structures, character strings and decimal – Lisp had built-in linked lists – PL/I was the first language to offer a wide range of types but did not allow for tailor-made types – ALGOL 68 took a different approach by offering few types but these types were combinable into many advanced types • strings = arrays + chars • lists, trees, queues, stacks, graphs, sets = records + pointers or arrays • Most languages since ALGOL have adopted ALGOL’s approach – few basic types that can are used to define a greater variety – later on, the notion of abstract data types and even later, object-oriented programming, expanded on these ideas • we study these concepts in chapters 11 and 12
  • 3. Primitive Data Types • Types supported directly in hardware of the machine – Integer: byte, short, int, long, signed, unsigned – Floating Point: single and double precision • stored in 3 parts: sign bit, exponent, mantissa – Complex: numbers that contain an imaginary part • available in languages like Common Lisp, FORTRAN and Python – Decimal: BCD (2 decimal digits per byte) • for business processing whereby numbers (dollars and cents) are stored as 1 digit per ½ byte instead of using an int format • popularized in COBOL, also used in PL/I and C# – Boolean: 1-bit value (usually referenced as true or false) • available in C++, Java, Pascal, Ada, Lisp, but not C • in Lisp, the values are T or NIL • for hardware convenience, these are often stored in 1 byte or 1 word! – Character: ASCII or Unicode • IBM mainframes use a different code called EBCDIC • Java, Javascript C# support Unicode
  • 4. Types Found in PL/I • We briefly look at PL/I types because of the wide range and depth – Numeric types: • Fixed decimal (like BCD, with specified length and decimal point) • Fixed binary (same but values specified in binary) • Float decimal/binary (true floating point, including integers) • Zoned decimal (any form of number used for output to files) • Complex – Non-numeric types: • Character, Bit, Pointers, Builtin – when requesting a piece of built-in information such as calling the function DATE or TIME – Structures: • Strings indicated by number of Characters, “varying” means any length up to a specified maximum as in DCL NAME CHAR(20) VARYING; • Records – declared much like COBOL records • Pictures –like COBOL: specified char-by-char (Z, V, 0, 9, .) • Files • Lists – circular and bidirectional available • Binary Tree • Stack
  • 5. Character Strings • Should a string be a primitive type or defined as an array of chars? – few languages offer them as primitives (SNOBOL does) – in most languages, they are arrays of chars (Pascal, Ada, C/C++) – Java/C# offer them as objects • Design issues: – should strings have static or dynamic length? – can they be accessed using indices (like arrays)? • this is true if the string is treated as an array – what operations should be available on strings? • assignment, <, =, >, concat, substring – available in Pascal/Ada only if declared as packed arrays – available through libraries in C/C++ and through built-in objects in Java/C# • Character string types could be supported directly in hardware, but in most cases, software implements them as arrays of chars – so the questions are: • how are the various operations implemented – as library routines/class methods or directly in the language? • how is string length handled?
  • 6. Implementing Strings • Three forms of string lengths: – Static length strings – string size is set when the string is created • this is the case with FORTRAN 77/90, COBOL, C#, C++ and Java • if the string is an object as is the case in Java, and possibly in C#/C++, strings are immutable – Limited dynamic length strings – string lengths can vary up to a specified limit, for instance, if we declare the string to be 50, it can hold up to 50 chars • this is the case with Pascal, C, C++, PL/I – Dynamic length strings – strings can change length at any time with no maximum restriction • this is the case with SNOBOL, LISP, JavaScript, Perl • strings might be stored in a linked list, or as an array from heap memory which needs a lot of memory movement as the string grows • Most languages generate a descriptor for every compiled string The dynamic string requires dynamic memory but only uses a single current length field for the length
  • 7. Ordinal Types • Ordinal: countable, or where the items have an ordering • Does the language provide a facility for programmers to define ordinals? – ordinal types can promote readability – programmers provide symbolic constants (names) – often used in for-loops and switch statements • Languages which support Ordinal types: – C and Pascal were the first two languages to offer this, C++ cleaned up C’s enum type – Pascal includes operations PRED, SUCC, ORD – C/C++ permit ++ and -- – in C#, enum types are not treated as ints – Java does not include ordinals but can be simulated through proper class definitions – FORTRAN 77 can simulate enums through constants • Another form of user-defined ordinal type is the subrange – limited range of a previously defined ordinal type – introduced in Pascal and made available in Ada – for example: use .. to indicate the subrange as in 0..5 – subranges require compile-time type checking and run-time range-checking – subranges have not been made available in the C-like languages
  • 8. Array Types • Arrays are homogenous aggregate data elements – design issues include: • what types are legal for subscripts? • when are subscript ranges bound? • when does array allocation take place? • how many subscripts are allowed? is there a limit to array dimensions? • are multi-dimensional arrays rectangular or are ragged arrays allowed? • can arrays be initialized at allocation time? • are slices allowed? • Array dimensions: – FORTRAN I - limited to 3, FORTRAN IV and onward - up to 7 – most other languages have no restriction on array dimensions • C/C++/Java - arrays are limited to 1 dimension only but arrays can be nested • this is actually an array of pointers so that you can have as many dimensions as you want • because the pointers might point to different sized arrays, this can lead to jagged arrays • most languages restrict you to rectangular arrays (the number of elements for each row are the same) – C# supports both rectangular and jagged arrays
  • 9. Indexes • Index maps array element to memory location – early languages did no run-time range checking, but range-checking is done in most modern languages for reliability • Array indexes are usually placed in some syntactic unit – [ ] in most languages: Pascal, Modula-2, C-languages – ( ) in FORTRAN, PL/I, Ada • parens weaken readability because something like foo(x) is now hard to read – is it a subroutine call or an array access? – Lisp uses a function as in (aref array 6) to mean array[6] • Most languages separate dimensions by , – but C-languages use [ ][ ] • Two types associated with arrays that need to be declared – the type of value being stored – the type of value used for an index (in Pascal-like languages) • Are lower bounds automatically set? – C/C++, Java, early FORTRAN use 0 – 1 is used in later FORTRANs – explicit in all other languages
  • 10. Array Subscript Categories • When is the subscript range bound? That is, when is the decision on the size of the array made? – Static • subscript range bound before run-time (compile, link or load-time) • most efficient but most restrictive, the array is fixed in size • FORTRAN I – 77, C/C++ if declared with the word static – Fixed Stack-Dynamic • subscript range is bound at compile time but allocation of the array occurs at run-time from the run-time stack – array size determined when function called • Ada, Basic, C, C++, Pascal, Java, FORTRAN 90 – Stack-Dynamic • subscript range dynamically bound and dynamically allocated but remains fixed for lifetime of the array – this allows the array size to be determined at run-time for more efficient space-usage • Ada if specifically declared this way, ALGOL-60 arrays
  • 11. Language Examples • Fixed Heap-dynamic – like fixed stack-dynamic except that memory comes from the heap, not the stack, so the size and memory is dynamically allocated, but size is static once created – C/C++ if allocated using malloc or calloc – all arrays in Java and C# since they are objects and all objects are allocated from the heap – FORTRAN 90 and 95 • Heap-Dynamic – dynamically bound and allocated, and changeable during array’s lifetime – the most flexible type of array as it can permit the array to grow or shrink as needed during run-time – Perl, JavaScript, Lisp – C# if declared as an object of type ArrayList – ALGOL-60 could simulate heap-dynamic using the flex command – Java and C# can simulate heap-dynamic through array copying
  • 12. Array Initialization and Operations • Initialization – FORTRAN 77 offers optional initialization at allocation time (load time) – C/C++/Java offer optional initialization that can also dictate array size and through initializations, you can create jagged arrays – in Ada, specific elements can be specified rather than initializing the entire array – for Pascal, Modula-2, no array initializations – most languages permit only initialization and access to a single element • Assignment – Ada, Pascal allow entire array assignment if the arrays are of the same type/size • Ada also has array concatenation – in C/C++/Java, assignment is copying a pointer, not duplicating the array – FORTRAN 95 includes a variety of array operations • such as +, relational operations (comparisons), matrix multiplication and transpose, etc (all through library routines) – APL includes a collection of vector and matrix operations (see p 271)
  • 13. Slices • Definable substructure of an array – e.g., a row of a 2 D array or a plane of a 3-D array • In FORTRAN: – Integer Vector(1:10), Matrix(1:10, 1:20) • Vector(3:6) defines a subarray of 4 elements in Vector • : by itself is used to denote “wild card” (all elements) in FORTRAN 95 so Matrix(1:5, :) means half of the first dimension and all of the second • FORTRAN 90 & 95 have very complex Slice features such as skipping every other location – slices can be used to initialize arrays that are different in size and dimension • for instance, initializing a 1-D array to be the first row of a 2-D array – slice references can appear on either the left or right hand side of an assignment statement • Ada restricts slices to consecutive memory locations within a dimension of an array for instance, a part of a row • Python provides mechanisms for slices of tuples – recall Python does not have arrays, instead it has this list-like constructs that can be heterogeneous
  • 14. Array Implementations • Arrays are almost always a contiguous block of memory equal to the size needed to store the array – each successive array element is stored in the next memory location • We define a mapping function which translates the array indexes to the memory location, for instance a 1-D array in C maps as – a[i] = OFFSET + i * length • OFFSET is the starting point of the array and length is the size in bytes of each element • if the language has a lower bound of 1, then we change the above to be (i – 1) • Multi-dimensional arrays in C-languages are altered to include the memory used by all previous rows: a[i][j] = OFFSET + i * n * length + j * length That is, the array element at [i, j] has i previous rows of n (including row 0) items each, and j elements in the current row More generically, for languages that allow for a non-0 lower bound, we would use a[i, j] = OFFSET + (i – loweri) * n * length + (j – lowerj) * length
  • 15. More on Mapping • Most languages use row-major order – in row-major order, all of row i is placed consecutively, followed by all of row i+1, etc. • FORTRAN is the only common language to instead use column-major order (see pages 274-275 for example) – we don’t have to know whether a language uses row-major or column-major order when writing our code • but we could potentially write more efficient code when dealing with memory management and pointer arithmetic if we did know • With multi-dimensional arrays (beyond 2), the mapping function is just an extension of what we had already seen – for a 3-d array a[m][n][p], we would use: • a[i, j, k] = OFFSET + i*n*length + j*m*length + k*length – this formula will not work if we are dealing with jagged arrays
  • 16. Array Descriptors • As with strings, arrays are commonly implemented by the compiler generating array descriptors for each array – these descriptors include all information necessary to generate the mapping function – in most languages, both the lower and upper bounds are required, in C/C++/Java/C#, lower bounds are always 0 and in FORTRAN, they are always 1 here we have descriptors for 1-D and multi-D arrays
  • 17. Associative Arrays • An associative array uses a key to map to the proper location rather than an index – keys are user-defined and must be stored in the data structure itself – this is basically a hash table • Associative arrays are available in Java, Perl, and PHP, and supported in C++ as a class and Python as a type called a dictionary – in Perl, associative arrays are implemented using a hash table and a 32-bit hash value, but, at least initially, only a portion of the hash value is used and stored, this is increased as needed if the hash table grows – in PHP, associative arrays are implemented as linked lists with a hashing function that can point into the linked list • see page 278 for some examples in Perl
  • 18. Record Types • Heterogeneous aggregate of data elements – elements referred to as fields or members – introduced in COBOL – incorporated into most languages since then • Java does not have a record type but uses the class construct instead – may be hierarchically structured (nested) • Design Issues: – how to build hierarchical structure – referencing of fields – record operations and implementations Examples: COBOL (nested structure in one definition) 01 EMPLOYEE-RECORD. 02 EMPLOYEE-NAME. 05 FIRST PICTURE IS X(10). 05 MIDDLE PICTURE IS X(10). 05 LAST PICTURE IS X(20). 02 HOURLY-RATE PICTURE IS 99V99. Ada (nested through multiple definitions) type Employee_Name_Type is record First : String(1..10); Middle : String(1..10); Last : String(1..10); end record; type Employee_Record is record Employee_Name : Employee_Name_Type Hourly_Rate : Float; end record;
  • 19. Record Operations • Assignment – if both records are the same type – allowed in Pascal, Ada, Modula-2, C/C++ • Comparison (Ada) • Initialization (Ada, C/C++) • Move Corresponding (COBOL) – copies input record to output file while possibly performing some modification • To reference an individual element: – COBOL uses OF as in First OF Emp-Name – Ada uses “.” as in Emp_Rec.Emp_Name.First – Pascal, Modula-2 same as Ada but also allow a With statement so that variable names can be omitted • with emp_record do – begin – first = … – end; – FORTRAN 90/95 use % sign as in Emp_Rec%Emp_Name%First – PL/I and COBOL allow elliptical references where you only specify the field name if the name is unambiguous
  • 20. Record Implementation • Similar to Arrays, requires a mapping function – since fields are statically defined, mapping function is determined at compile-time – example: type Foo is record name : String(1..10); sex : char; salary : float; end record; If a variable, x, of type Foo starts at offset, then x.name = offset x.sex = offset + 10 x.salary = offset + 11 If we have an array a of Foo starting at index 0, then a[i].name = offset + 12 * i a[i].sex = offset + 12 * i + 10 a[i].salary = offset + 12 * i + 11 A generic compile-time descriptor for a record is given to the right
  • 21. Union Types • Types which can store different types of variables at different times of execution – FORTRAN’s Equivalence instruction: • Integer X Real Y Equivalence (X, Y) • declares one memory location for both X and Y – the Equivalence statement is not a type, it just commands the compiler to share the same memory location • in FORTRAN, there is no mechanism for the program to determine whether X or Y is currently stored in that location and so no type checking can be done • Other languages have union types – the type defines 1 location for two variables of different types – design issues: • should type checking be required? If so, this must be dynamic type checking • can unions be embedded in records?
  • 22. Union Examples • A Free Union is a union in which no type checking is performed – this is the case with FORTRAN’s Equivalence, and with C/C++ union construct • A Discriminating Union is a union in which a tag (also called a discriminant) is added to the memory location to determine which type is currently being stored – ALGOL 68 introduced this idea and it is supported in Ada – in ALGOL 68: • UNION(int, real) ir1, ir2 – ir1 and ir2 share the same memory location which stores an int if it is currently ir1, and a real if it is currently ir2 – union (int, real) ir1; int count; ir1 := 33; count := ir1; (this statement is not legal)
  • 23. Variant Records • In Pascal, Ada, and Modula-2, another type of Union is available called the Variant Records – in this case, the fields of a record are variable depending on the type of specific record – here is a definition for a variant record in Pascal and the memory reserved for it: type shape=(circle, triangle,rectangle); type colors = (red, green, blue); object = record filled : boolean; color : colors; case form : shape of circle : (diameter : real); rectangle : (side1, side2 : integer); triangle : (leftside, rightside : integer; angle : real); end;
  • 24. Problems with Union Types • If the user program can modify the discriminant (tag), then the value(s) stored there are no longer what was expected – for instance, consider changing the discriminant of our previous shape from triangle to rectangle, then the values of side1 and side2 are actually the old values of leftside and rightside, which are meaningless • Free unions are not type checked – this gives the programmer flexibility but reduces reliability • Union types (whether free or discriminated) are hard to read and may not make much sense to those who have not used them – Union types continue to be available in many modern languages so that the language is not strongly typed • that is, unions are specifically made available to give the programmer a mechanism to avoid type checking!
  • 25. Pointer Types • Used for indirect addressing for dynamic memory – dynamic memory when allocated, does not have a name, so these are unnamed or anonymous variables and can only be accessed through a pointer • Pointers store memory locations or null – usually null is a special value so that pointers can be implemented as special types of int values • By making pointers a specific type, some static allocation is possible – the pointer itself can be allocated at compile-time, and uses of the pointer can be type checked at compile-time • Design issues: – what is the scope and lifetime of the pointer? – what is the lifetime of the variable being pointed to? – are there restrictions on the type that a pointer can point to? – should the pointer be implemented as a pointer or reference variable?
  • 26. Pointer Operations • Pointer Access – retrieve the memory location stored in the pointer • if available, this can allow pointer arithmetic (e.g., C) • Dereferencing – using a pointer to access the item being pointed to • Implicit Dereferencing – dereferencing is done automatically when the pointer is accessed • used in FORTRAN, ALGOL 68, Lisp, Java, Python • in more recent languages, the pointer is not even treated (or called) a pointer because all access is done implicitly, this makes the use of the pointer much safer although far more restrictive • Explicit Dereferencing – explicit command to access what the pointer is pointing too • C/C++ use * (or -> for structs), Ada uses ., Pascal uses ^ • Explicit Allocation – used in C/C++ (malloc or new), PL/I (allocate), Pascal (new), etc • Explicit Deallocation – used in Ada, PL/I, C, C++, and Pascal but not Java, Lisp or C# • in many of these languages, while there is a command to deallocate memory, it is often not implemented so the result is that the pointer still points to memory!
  • 27. Pointer Problems • Type Checking – if pointers are not restricted as to what they can point to, type checking can not be done at compile-time • is it done at run-time (time consuming) or is the language unreliable? • in C/C++, void * pointers are allowed which can point to any type – dereferencing requires casting the value to permit some type checking • Dangling Pointers – if a pointer is deallocated, then the memory that was being used is now returned to the heap – if the pointer still retains the address, then we have a dangling pointer • that is, the pointer may still be pointed at the deallocated value in memory • this can lead to accessing something unexpected • Lost Heap-Dynamic Variables – allocated memory which no longer has a pointer pointing at it can not be accessed – if the programmer is responsible for deallocating the memory, then this could result in heap memory that is not used by is not available • in Java, C#, and Lisp, such items are automatically garbage collected • Pointer Arithmetic – available in C/C++ which can lead to accessing the wrong areas of memory
  • 28. Pointers in PLs • PL/I: first language to use pointers, very flexible which led to errors • ALGOL 68: less error due to explicitly declaring referenced type (type checking) and no explicit deallocation so no dangling pointers • Ada: memory can be automatically deallocated at the end of a block to lessen dangling pointers, but also has explicit deallocation if more desired • C/C++: extremely flexible pointers – often used as a means of indirect addressing similar to assembly – pointer arithmetic available for convenience in array accessing • FORTRAN 95: pointers can point to both heap and static variables but all pointers are required to have a Target attribute to ensure type checking • Java & C#: both use implicit pointers (reference types) although C# also has standard pointers – C++ also has a reference type although used primarily for formal parameters in function definitions, which acts as a constant
  • 29. Implementing Pointer Types • Pointers are implemented along with heap management – the heap is a section of memory that is reserved for program allocation and deallocation • pointers themselves are usually 2 or 4-byte int values storing addresses as offsets into the heap – to deal with dangling ptrs: • tombstones are special pointers that denote whether a given pointer’s memory is still allocated or has been deallocated • locks and keys are two values stored with the pointer (key) and the allocated memory (lock) – if the two values don’t match on an access, then it is a dangling pointer situation and access is disallowed – heap management requires the ability to • allocate memory • restore the heap upon deallocation (or garbage collection) – the book covers heap restoration in some detail (pages 300 – 304), but this is more an OS issue, so we won’t cover it here