SlideShare a Scribd company logo
So,	
  What	
  Does	
  a	
  Data	
  Scien/st	
  do?	
  
       A	
  Data	
  Scien/st	
  in	
  the	
  Music	
  Industry	
  

                     Dr	
  Jameel	
  Syed	
  
                            March	
  2012	
  
                   h>p://jasyed.com/datascience/	
  
Overview	
  
–  Musicmetric	
  CTO	
  
–  InforSense	
  founding	
  member	
  
    •  PhD	
  in	
  Workflows	
  for	
  Life	
  Sciences	
  Analysis	
  
–  Co-­‐organiser	
  Big	
  Data	
  London	
  meetup	
  
Some	
  ques/ons...	
  
Music	
  has	
  moved	
  online	
  
•  The	
  world	
  has	
  changed	
  
    –  Do	
  you	
  buy	
  vinyl/tapes/CDs	
  of	
  music?	
  
    –  Do	
  you	
  buy	
  music	
  downloads?	
  
    –  Do	
  you	
  download	
  illegal	
  content	
  from	
  bi>orrent?	
  
    –  Do	
  you	
  listen	
  to	
  music	
  on	
  YouTube?	
  
    –  Do	
  you	
  “like”	
  bands	
  on	
  Facebook?	
  
    –  Do	
  you	
  subscribe	
  to	
  Spo/fy?	
  
    –  Do	
  you	
  listen	
  on	
  the	
  radio	
  to	
  the	
  weekly	
  charts	
  on	
  a	
  
       Sunday	
  aWernoon?	
  
•  What’s	
  happening	
  online?	
  
How	
  popular	
  am	
  I?	
  
Who	
  are	
  my	
  fans?	
  
Where	
  are	
  my	
  fans?	
  
What	
  is	
  the	
  press	
  saying?	
  
 Who	
  is	
  popular?	
  	
  
A	
  Data	
  Scien/st	
  in	
  the	
  Music	
  Industry	
  
•     Raw	
  Data	
  -­‐>	
  Derived	
  Data	
  -­‐>	
  Insight	
  
        –  Who	
  is	
  popular	
  right	
  now/in	
  the	
  immediate	
  future?	
  
        –  What	
  was	
  the	
  effect	
  of	
  appearing	
  at	
  a	
  fes/val?	
  
        –  Which	
  ar/sts	
  are	
  (becoming)	
  popular	
  with	
  listeners	
  
           with	
  certain	
  demographics	
  (in	
  a	
  region)?	
  
•     Data	
  processing,	
  machine	
  learning	
  &	
  sta/s/cal	
  
      methods	
  
        –    Sen/ment	
  analysis	
  
        –    Named	
  En/ty	
  Recogni/on	
  
        –    Ranking	
  
        –    Segmenta/on	
  
•     One-­‐offs	
  
        –  Infographics	
  and	
  microsites	
  for	
  events	
  
        –  Brand	
  alignment	
  via	
  demographics	
  
        –  Music	
  Hack	
  Days	
  
•     Product	
  
        –  Daily	
  charts	
  
        –  Sen/ment	
  scoring	
  web	
  crawled	
  reviews	
  
What	
  is	
  a	
  Data	
  Scien/st?	
  
Have	
  we	
  been	
  here	
  before?	
  
•    Sta/s/cian	
  
•    Data	
  Analyst	
  
•    Quan/ta/ve	
  analyst	
  
•    Bioinforma/cian	
  
•    Data	
  Miner	
  
•    Business	
  Intelligence	
  consultant	
  
•    Computa/onal	
  physicst	
  
A	
  Life	
  Sciences	
  digression...	
  
What’s	
  new?	
  
•  Data	
  provides	
  the	
  opportunity	
  
    –  Old:	
  Collect	
  and	
  store	
  data	
  presupposing	
  how	
  it	
  will	
  be	
  used	
  
    –  New:	
  Collect	
  raw	
  data	
  &	
  explore	
  which	
  deriva/ons	
  are	
  
       interes/ng;	
  integra/ng	
  data	
  from	
  mul/ple	
  online	
  sources.	
  
    –  Big	
  Data	
  technology	
  to	
  cope	
  with	
  data	
  volume	
  
•  Programming	
  is	
  essen/al	
  
    –  APIs	
  
    –  Heterogeneous	
  environment(s)	
  
•  Method	
  of	
  presenta/on	
  
    –  Infographics	
  
    –  Interac/ve	
  (web)	
  applica/ons	
  
    –  (Raw	
  data)	
  
Data	
  Scien/st	
  
•  “Jack	
  of	
  all	
  trades”	
  
    –  “Hacker”	
  mentality:	
  learn	
  new	
  technology	
  and	
  
       approaches	
  for	
  a	
  project	
  on	
  short	
  no/ce	
  
    –  Crea/ve	
  self-­‐starters	
  
    –  Work	
  alongside	
  other	
  experts	
  (data,	
  domain,	
  
       soWware	
  engineering)	
  
A	
  Data	
  Scien/st	
  is	
  good	
  at	
  knieng?	
  
•  Not	
  building	
  from	
  scratch,	
  knieng	
  together	
  pre-­‐exis/ng	
  parts	
  

•  Data	
  
     –  Databases	
  (rela/onal/NoSQL)	
  
     –  Files	
  
     –  APIs	
  
•  Algorithms	
  
     –  Open	
  source	
  libraries	
  
     –  Off	
  the	
  shelf	
  tools	
  
•  Compute	
  
     –  Linux	
  
     –  AWS?	
  
•  Languages	
  
     –  Many,	
  especially	
  “scrip/ng”	
  languages	
  

More Related Content

PPS
Ad Stijnman (ICN), Databases for art technological source research: some do's...
PDF
Intro to dh data management
PDF
Jeremy Schiff, Senior Manager, Data Science, OpenTable at MLconf NYC
PPTX
Recommender Systems
PDF
Anima Anadkumar, Principal Scientist, Amazon Web Services, Endowed Professor,...
PDF
Building a Recommendation Engine - An example of a product recommendation engine
PDF
Recommender system algorithm and architecture
PPTX
So, What Does a Data Scientist do?
Ad Stijnman (ICN), Databases for art technological source research: some do's...
Intro to dh data management
Jeremy Schiff, Senior Manager, Data Science, OpenTable at MLconf NYC
Recommender Systems
Anima Anadkumar, Principal Scientist, Amazon Web Services, Endowed Professor,...
Building a Recommendation Engine - An example of a product recommendation engine
Recommender system algorithm and architecture
So, What Does a Data Scientist do?

Similar to A Data Scientist in the Music Industry (20)

PDF
Introduction to Data Science
PPTX
In-Depth Data Analytics
PDF
5_Data Analytics, Data Science and Machine Learning
PDF
So you want to be a Data Scientist?
PPTX
Fundamentals of Analytics and Statistic (1).pptx
ODP
Big dataweb, science, mining
PPT
Colloquium(7)_DataScience:ShivShaktiGhosh&MohitGarg
PDF
Big Data [sorry] & Data Science: What Does a Data Scientist Do?
PDF
Data Science & BI Salary & Skills Report
PDF
Introduction to Data Science
PDF
2017 06-14-getting started with data science
PDF
Data Science Highlights
PPTX
Data Science
PPTX
NYC Open Data Meetup-- Thoughtworks chief data scientist talk
PPTX
intro to data science Clustering and visualization of data science subfields ...
PDF
Data science guide
PPTX
introduction to data science
PPTX
Data_Science_Applications_&_Use_Cases.pptx
PDF
chapter 2 Data Science.pdf emerging ecnology freshman course
PPTX
Data_Science_Applications_&_Use_Cases.pptx
Introduction to Data Science
In-Depth Data Analytics
5_Data Analytics, Data Science and Machine Learning
So you want to be a Data Scientist?
Fundamentals of Analytics and Statistic (1).pptx
Big dataweb, science, mining
Colloquium(7)_DataScience:ShivShaktiGhosh&MohitGarg
Big Data [sorry] & Data Science: What Does a Data Scientist Do?
Data Science & BI Salary & Skills Report
Introduction to Data Science
2017 06-14-getting started with data science
Data Science Highlights
Data Science
NYC Open Data Meetup-- Thoughtworks chief data scientist talk
intro to data science Clustering and visualization of data science subfields ...
Data science guide
introduction to data science
Data_Science_Applications_&_Use_Cases.pptx
chapter 2 Data Science.pdf emerging ecnology freshman course
Data_Science_Applications_&_Use_Cases.pptx
Ad

More from Data Science London (20)

PPTX
Standardizing +113 million Merchant Names in Financial Services with Greenplu...
PDF
Real-Time Queries in Hadoop w/ Cloudera Impala
PDF
Nowcasting Business Performance
PDF
Numpy, the Python foundation for number crunching
PDF
Python pandas workshop iPython notebook (163 pages)
PPTX
Big Practical Recommendations with Alternating Least Squares
PDF
Bringing back the excitement to data analysis
PDF
Survival Analysis of Web Users
PDF
ACM RecSys 2012: Recommender Systems, Today
PDF
Beyond Accuracy: Goal-Driven Recommender Systems Design
PDF
Autonomous Discovery: The New Interface?
PDF
Machine Learning and Hadoop: Present and Future
PDF
Data Science for Live Music
PDF
Research at last.fm
PDF
Music and Data: Adding Up the UK Music Industry
PDF
Scientific Article Recommendations with Mahout
PPTX
Super-Fast Clustering Report in MapR
PPTX
Simple Matrix Factorization for Recommendation in Mahout
PPTX
Going Real-Time with Mahout, Predicting gender of Facebook Users
PDF
Practical Magic with Incanter
Standardizing +113 million Merchant Names in Financial Services with Greenplu...
Real-Time Queries in Hadoop w/ Cloudera Impala
Nowcasting Business Performance
Numpy, the Python foundation for number crunching
Python pandas workshop iPython notebook (163 pages)
Big Practical Recommendations with Alternating Least Squares
Bringing back the excitement to data analysis
Survival Analysis of Web Users
ACM RecSys 2012: Recommender Systems, Today
Beyond Accuracy: Goal-Driven Recommender Systems Design
Autonomous Discovery: The New Interface?
Machine Learning and Hadoop: Present and Future
Data Science for Live Music
Research at last.fm
Music and Data: Adding Up the UK Music Industry
Scientific Article Recommendations with Mahout
Super-Fast Clustering Report in MapR
Simple Matrix Factorization for Recommendation in Mahout
Going Real-Time with Mahout, Predicting gender of Facebook Users
Practical Magic with Incanter
Ad

Recently uploaded (20)

PPTX
20250228 LYD VKU AI Blended-Learning.pptx
PPTX
Cloud computing and distributed systems.
PDF
Architecting across the Boundaries of two Complex Domains - Healthcare & Tech...
PDF
How UI/UX Design Impacts User Retention in Mobile Apps.pdf
PDF
Advanced methodologies resolving dimensionality complications for autism neur...
PDF
Build a system with the filesystem maintained by OSTree @ COSCUP 2025
PDF
Network Security Unit 5.pdf for BCA BBA.
PDF
Machine learning based COVID-19 study performance prediction
PPTX
Detection-First SIEM: Rule Types, Dashboards, and Threat-Informed Strategy
PPT
Teaching material agriculture food technology
PDF
Agricultural_Statistics_at_a_Glance_2022_0.pdf
PDF
Chapter 3 Spatial Domain Image Processing.pdf
PPTX
Understanding_Digital_Forensics_Presentation.pptx
PDF
7 ChatGPT Prompts to Help You Define Your Ideal Customer Profile.pdf
PDF
Encapsulation_ Review paper, used for researhc scholars
PPTX
A Presentation on Artificial Intelligence
PPTX
MYSQL Presentation for SQL database connectivity
PDF
KodekX | Application Modernization Development
PPTX
Digital-Transformation-Roadmap-for-Companies.pptx
PDF
Modernizing your data center with Dell and AMD
20250228 LYD VKU AI Blended-Learning.pptx
Cloud computing and distributed systems.
Architecting across the Boundaries of two Complex Domains - Healthcare & Tech...
How UI/UX Design Impacts User Retention in Mobile Apps.pdf
Advanced methodologies resolving dimensionality complications for autism neur...
Build a system with the filesystem maintained by OSTree @ COSCUP 2025
Network Security Unit 5.pdf for BCA BBA.
Machine learning based COVID-19 study performance prediction
Detection-First SIEM: Rule Types, Dashboards, and Threat-Informed Strategy
Teaching material agriculture food technology
Agricultural_Statistics_at_a_Glance_2022_0.pdf
Chapter 3 Spatial Domain Image Processing.pdf
Understanding_Digital_Forensics_Presentation.pptx
7 ChatGPT Prompts to Help You Define Your Ideal Customer Profile.pdf
Encapsulation_ Review paper, used for researhc scholars
A Presentation on Artificial Intelligence
MYSQL Presentation for SQL database connectivity
KodekX | Application Modernization Development
Digital-Transformation-Roadmap-for-Companies.pptx
Modernizing your data center with Dell and AMD

A Data Scientist in the Music Industry

  • 1. So,  What  Does  a  Data  Scien/st  do?   A  Data  Scien/st  in  the  Music  Industry   Dr  Jameel  Syed   March  2012   h>p://jasyed.com/datascience/  
  • 2. Overview   –  Musicmetric  CTO   –  InforSense  founding  member   •  PhD  in  Workflows  for  Life  Sciences  Analysis   –  Co-­‐organiser  Big  Data  London  meetup  
  • 4. Music  has  moved  online   •  The  world  has  changed   –  Do  you  buy  vinyl/tapes/CDs  of  music?   –  Do  you  buy  music  downloads?   –  Do  you  download  illegal  content  from  bi>orrent?   –  Do  you  listen  to  music  on  YouTube?   –  Do  you  “like”  bands  on  Facebook?   –  Do  you  subscribe  to  Spo/fy?   –  Do  you  listen  on  the  radio  to  the  weekly  charts  on  a   Sunday  aWernoon?   •  What’s  happening  online?  
  • 6. Who  are  my  fans?  
  • 7. Where  are  my  fans?  
  • 8. What  is  the  press  saying?  
  • 10. A  Data  Scien/st  in  the  Music  Industry   •  Raw  Data  -­‐>  Derived  Data  -­‐>  Insight   –  Who  is  popular  right  now/in  the  immediate  future?   –  What  was  the  effect  of  appearing  at  a  fes/val?   –  Which  ar/sts  are  (becoming)  popular  with  listeners   with  certain  demographics  (in  a  region)?   •  Data  processing,  machine  learning  &  sta/s/cal   methods   –  Sen/ment  analysis   –  Named  En/ty  Recogni/on   –  Ranking   –  Segmenta/on   •  One-­‐offs   –  Infographics  and  microsites  for  events   –  Brand  alignment  via  demographics   –  Music  Hack  Days   •  Product   –  Daily  charts   –  Sen/ment  scoring  web  crawled  reviews  
  • 11. What  is  a  Data  Scien/st?  
  • 12. Have  we  been  here  before?   •  Sta/s/cian   •  Data  Analyst   •  Quan/ta/ve  analyst   •  Bioinforma/cian   •  Data  Miner   •  Business  Intelligence  consultant   •  Computa/onal  physicst  
  • 13. A  Life  Sciences  digression...  
  • 14. What’s  new?   •  Data  provides  the  opportunity   –  Old:  Collect  and  store  data  presupposing  how  it  will  be  used   –  New:  Collect  raw  data  &  explore  which  deriva/ons  are   interes/ng;  integra/ng  data  from  mul/ple  online  sources.   –  Big  Data  technology  to  cope  with  data  volume   •  Programming  is  essen/al   –  APIs   –  Heterogeneous  environment(s)   •  Method  of  presenta/on   –  Infographics   –  Interac/ve  (web)  applica/ons   –  (Raw  data)  
  • 15. Data  Scien/st   •  “Jack  of  all  trades”   –  “Hacker”  mentality:  learn  new  technology  and   approaches  for  a  project  on  short  no/ce   –  Crea/ve  self-­‐starters   –  Work  alongside  other  experts  (data,  domain,   soWware  engineering)  
  • 16. A  Data  Scien/st  is  good  at  knieng?   •  Not  building  from  scratch,  knieng  together  pre-­‐exis/ng  parts   •  Data   –  Databases  (rela/onal/NoSQL)   –  Files   –  APIs   •  Algorithms   –  Open  source  libraries   –  Off  the  shelf  tools   •  Compute   –  Linux   –  AWS?   •  Languages   –  Many,  especially  “scrip/ng”  languages