SlideShare a Scribd company logo
Data visualization with ggplot2 : : CHEAT SHEET
ggplot2 is based on the grammar of graphics, the idea
that you can build every graph from the same
components: a data set, a coordinate system,
and geoms—visual marks that represent data points.
Basics
GRAPHICAL PRIMITIVES
a + geom_blank() and a + expand_limits()


Ensure limits include values across all plots.


b + geom_curve(aes(yend = lat + 1,


xend = long + 1), curvature = 1) - x, xend, y, yend,
alpha, angle, color, curvature, linetype, size


a + geom_path(lineend = "butt",


linejoin = "round", linemitre = 1)


x, y, alpha, color, group, linetype, size


a + geom_polygon(aes(alpha = 50)) - x, y, alpha,
color, fill, group, subgroup, linetype, size


b + geom_rect(aes(xmin = long, ymin = lat,


xmax = long + 1, ymax = lat + 1)) - xmax, xmin,
ymax, ymin, alpha, color, fill, linetype, size


a + geom_ribbon(aes(ymin = unemploy - 900,
ymax = unemploy + 900)) - x, ymax, ymin,


alpha, color, fill, group, linetype, size
+ =
To display values, map variables in the data to visual
properties of the geom (aesthetics) like size, color, and x
and y locations.
+ =
data geom


x = F · y = A
coordinate
system
plot
data geom


x = F · y = A


color = F


size = A
coordinate
system
plot
Complete the template below to build a graph.
required
ggplot(data = mpg, aes(x = cty, y = hwy)) Begins a plot
that you finish by adding layers to. Add one geom
function per layer.


last_plot() Returns the last plot.


ggsave("plot.png", width = 5, height = 5) Saves last plot
as 5’ x 5’ file named "plot.png" in working directory.
Matches file type to file extension.
F M A
F M A
LINE SEGMENTS


common aesthetics: x, y, alpha, color, linetype, size
b + geom_abline(aes(intercept = 0, slope = 1))


b + geom_hline(aes(yintercept = lat))


b + geom_vline(aes(xintercept = long))
b + geom_segment(aes(yend = lat + 1, xend = long + 1))


b + geom_spoke(aes(angle = 1:1155, radius = 1))
a <- ggplot(economics, aes(date, unemploy))


b <- ggplot(seals, aes(x = long, y = lat))
ONE VARIABLE continuous
c <- ggplot(mpg, aes(hwy)); c2 <- ggplot(mpg)
c + geom_area(stat = "bin")


x, y, alpha, color, fill, linetype, size


c + geom_density(kernel = "gaussian")


x, y, alpha, color, fill, group, linetype, size, weight


c + geom_dotplot()


x, y, alpha, color, fill


c + geom_freqpoly()


x, y, alpha, color, group, linetype, size


c + geom_histogram(binwidth = 5)


x, y, alpha, color, fill, linetype, size, weight


c2 + geom_qq(aes(sample = hwy))


x, y, alpha, color, fill, linetype, size, weight
discrete


d <- ggplot(mpg, aes(fl))
d + geom_bar()


x, alpha, color, fill, linetype, size, weight
e + geom_label(aes(label = cty), nudge_x = 1,
nudge_y = 1) - x, y, label, alpha, angle, color,
family, fontface, hjust, lineheight, size, vjust


e + geom_point()


x, y, alpha, color, fill, shape, size, stroke


e + geom_quantile()


x, y, alpha, color, group, linetype, size, weight


e + geom_rug(sides = “bl")


x, y, alpha, color, linetype, size


e + geom_smooth(method = lm)


x, y, alpha, color, fill, group, linetype, size, weight


e + geom_text(aes(label = cty), nudge_x = 1,
nudge_y = 1) - x, y, label, alpha, angle, color,
family, fontface, hjust, lineheight, size, vjust
one discrete, one continuous


f <- ggplot(mpg, aes(class, hwy))
f + geom_col()


x, y, alpha, color, fill, group, linetype, size


f + geom_boxplot()


x, y, lower, middle, upper, ymax, ymin, alpha,


color, fill, group, linetype, shape, size, weight


f + geom_dotplot(binaxis = "y", stackdir = “center")
x, y, alpha, color, fill, group


f + geom_violin(scale = “area")


x, y, alpha, color, fill, group, linetype, size, weight
both discrete


g <- ggplot(diamonds, aes(cut, color))
g + geom_count()


x, y, alpha, color, fill, shape, size, stroke


e + geom_jitter(height = 2, width = 2)


x, y, alpha, color, fill, shape, size
THREE VARIABLES


seals$z <- with(seals, sqrt(delta_long^2 + delta_lat^2)); l <- ggplot(seals, aes(long, lat))
l + geom_raster(aes(fill = z), hjust = 0.5,


vjust = 0.5, interpolate = FALSE)


x, y, alpha, fill


l + geom_tile(aes(fill = z))


x, y, alpha, color, fill, linetype, size, width
h + geom_bin2d(binwidth = c(0.25, 500))


x, y, alpha, color, fill, linetype, size, weight


h + geom_density_2d()


x, y, alpha, color, group, linetype, size


h + geom_hex()


x, y, alpha, color, fill, size
continuous function


i <- ggplot(economics, aes(date, unemploy))
visualizing error


df <- data.frame(grp = c("A", "B"), fit = 4:5, se = 1:2)


j <- ggplot(df, aes(grp, fit, ymin = fit - se, ymax = fit + se))
maps


data <- data.frame(murder = USArrests$Murder,


state = tolower(rownames(USArrests)))


map <- map_data("state")


k <- ggplot(data, aes(fill = murder))
k + geom_map(aes(map_id = state), map = map)


+ expand_limits(x = map$long, y = map$lat)


map_id, alpha, color, fill, linetype, size
Not


required,
sensible
defaults
supplied
Geoms Use a geom function to represent data points, use the geom’s aesthetic properties to represent variables.


Each function returns a layer.
TWO VARIABLES


both continuous


e <- ggplot(mpg, aes(cty, hwy))


continuous bivariate distribution


h <- ggplot(diamonds, aes(carat, price))
RStudio® is a trademark of RStudio, PBC • CC BY SA RStudio • info@rstudio.com • 844-448-1212 • rstudio.com • Learn more at ggplot2.tidyverse.org • ggplot2 3.3.5 • Updated: 2021-08
ggplot (data = <DATA> ) +


<GEOM_FUNCTION> (mapping = aes( <MAPPINGS> ),


stat = <STAT> , position = <POSITION> ) +


<COORDINATE_FUNCTION> +


<FACET_FUNCTION> +


<SCALE_FUNCTION> +


<THEME_FUNCTION>
l + geom_contour(aes(z = z))


x, y, z, alpha, color, group, linetype, size, weight


l + geom_contour_filled(aes(fill = z))


x, y, alpha, color, fill, group, linetype, size, subgroup
i + geom_area()


x, y, alpha, color, fill, linetype, size


i + geom_line()


x, y, alpha, color, group, linetype, size


i + geom_step(direction = "hv")


x, y, alpha, color, group, linetype, size
j + geom_crossbar(fatten = 2) - x, y, ymax,


ymin, alpha, color, fill, group, linetype, size


j + geom_errorbar() - x, ymax, ymin,


alpha, color, group, linetype, size, width


Also geom_errorbarh().


j + geom_linerange()


x, ymin, ymax, alpha, color, group, linetype, size


j + geom_pointrange() - x, y, ymin, ymax,


alpha, color, fill, group, linetype, shape, size
Aes
color and fill - string ("red", "#RRGGBB")


linetype - integer or string (0 = "blank", 1 = "solid",


2 = "dashed", 3 = "dotted", 4 = "dotdash", 5 = "longdash",


6 = "twodash")


lineend - string ("round", "butt", or "square")


linejoin - string ("round", "mitre", or "bevel")


size - integer (line width in mm)


shape - integer/shape name or


a single character ("a")
Common aesthetic values.
Scales Coordinate Systems
A stat builds new variables to plot (e.g., count, prop).
Stats An alternative way to build a layer.
+ =
data geom


x = x ·


y = ..count..
coordinate
system
plot
fl cty cyl
x ..count..
stat
Visualize a stat by changing the default stat of a geom
function, geom_bar(stat="count") or by using a stat
function, stat_count(geom="bar"), which calls a default
geom to make a layer (equivalent to a geom function).


Use ..name.. syntax to map stat variables to aesthetics.
i + stat_density_2d(aes(fill = ..level..),


geom = "polygon")
stat function geommappings
variable created by stat
geom to use
c + stat_bin(binwidth = 1, boundary = 10)


x, y | ..count.., ..ncount.., ..density.., ..ndensity..


c + stat_count(width = 1) x, y | ..count.., ..prop..


c + stat_density(adjust = 1, kernel = "gaussian")


x, y | ..count.., ..density.., ..scaled..


e + stat_bin_2d(bins = 30, drop = T)


x, y, fill | ..count.., ..density..


e + stat_bin_hex(bins = 30) x, y, fill | ..count.., ..density..


e + stat_density_2d(contour = TRUE, n = 100)


x, y, color, size | ..level..


e + stat_ellipse(level = 0.95, segments = 51, type = "t")


l + stat_contour(aes(z = z)) x, y, z, order | ..level..


l + stat_summary_hex(aes(z = z), bins = 30, fun = max)


x, y, z, fill | ..value..


l + stat_summary_2d(aes(z = z), bins = 30, fun = mean)


x, y, z, fill | ..value..


f + stat_boxplot(coef = 1.5)


x, y | ..lower.., ..middle.., ..upper.., ..width.. , ..ymin.., ..ymax..


f + stat_ydensity(kernel = "gaussian", scale = "area") x, y
| ..density.., ..scaled.., ..count.., ..n.., ..violinwidth.., ..width..


e + stat_ecdf(n = 40) x, y | ..x.., ..y..


e + stat_quantile(quantiles = c(0.1, 0.9),


formula = y ~ log(x), method = "rq") x, y | ..quantile..


e + stat_smooth(method = "lm", formula = y ~ x, se = T,


level = 0.95) x, y | ..se.., ..x.., ..y.., ..ymin.., ..ymax..


ggplot() + xlim(-5, 5) + stat_function(fun = dnorm,


n = 20, geom = “point”) x | ..x.., ..y..


ggplot() + stat_qq(aes(sample = 1:100))


x, y, sample | ..sample.., ..theoretical..


e + stat_sum() x, y, size | ..n.., ..prop..


e + stat_summary(fun.data = "mean_cl_boot")


h + stat_summary_bin(fun = "mean", geom = "bar")


e + stat_identity()


e + stat_unique()
Scales map data values to the visual values of an
aesthetic. To change a mapping, add a new scale.
n <- d + geom_bar(aes(fill = fl))
n + scale_fill_manual(


values = c("skyblue", "royalblue", "blue", "navy"),


limits = c("d", "e", "p", "r"), breaks =c("d", "e", "p", “r"),


name = "fuel", labels = c("D", "E", "P", "R"))
scale_
aesthetic
to adjust
prepackaged
scale to use
scale-specific
arguments
title to use in
legend/axis
labels to use
in legend/axis
breaks to use in
legend/axis
range of
values to include
in mapping
GENERAL PURPOSE SCALES


Use with most aesthetics


scale_*_continuous() - Map cont’ values to visual ones.


scale_*_discrete() - Map discrete values to visual ones.


scale_*_binned() - Map continuous values to discrete bins.


scale_*_identity() - Use data values as visual ones.


scale_*_manual(values = c()) - Map discrete values to
manually chosen visual ones.


scale_*_date(date_labels = "%m/%d"),


date_breaks = "2 weeks") - Treat data values as dates.


scale_*_datetime() - Treat data values as date times.


Same as scale_*_date(). See ?strptime for label formats.
X & Y LOCATION SCALES


Use with x or y aesthetics (x shown here)


scale_x_log10() - Plot x on log10 scale.


scale_x_reverse() - Reverse the direction of the x axis.


scale_x_sqrt() - Plot x on square root scale.
COLOR AND FILL SCALES (DISCRETE)


n + scale_fill_brewer(palette = "Blues")


For palette choices:
RColorBrewer::display.brewer.all()


n + scale_fill_grey(start = 0.2,


end = 0.8, na.value = "red")
COLOR AND FILL SCALES (CONTINUOUS)


o <- c + geom_dotplot(aes(fill = ..x..))


o + scale_fill_distiller(palette = “Blues”)


o + scale_fill_gradient(low="red", high=“yellow")


o + scale_fill_gradient2(low = "red", high = “blue”,


mid = "white", midpoint = 25)


o + scale_fill_gradientn(colors = topo.colors(6))


Also: rainbow(), heat.colors(), terrain.colors(),
cm.colors(), RColorBrewer::brewer.pal()
SHAPE AND SIZE SCALES


p <- e + geom_point(aes(shape = fl, size = cyl))


p + scale_shape() + scale_size()


p + scale_shape_manual(values = c(3:7))


p + scale_radius(range = c(1,6))


p + scale_size_area(max_size = 6)
r <- d + geom_bar()


r + coord_cartesian(xlim = c(0, 5)) - xlim, ylim


The default cartesian coordinate system.


r + coord_fixed(ratio = 1/2)


ratio, xlim, ylim - Cartesian coordinates with
fixed aspect ratio between x and y units.


ggplot(mpg, aes(y = fl)) + geom_bar()


Flip cartesian coordinates by switching


x and y aesthetic mappings.


r + coord_polar(theta = "x", direction=1)


theta, start, direction - Polar coordinates.


r + coord_trans(y = “sqrt") - x, y, xlim, ylim


Transformed cartesian coordinates. Set xtrans
and ytrans to the name of a window function.


π + coord_quickmap()


π + coord_map(projection = "ortho", orientation
= c(41, -74, 0)) - projection, xlim, ylim


Map projections from the mapproj package
(mercator (default), azequalarea, lagrange, etc.).
Position Adjustments
Position adjustments determine how to arrange geoms
that would otherwise occupy the same space.


s <- ggplot(mpg, aes(fl, fill = drv))


s + geom_bar(position = "dodge")


Arrange elements side by side.


s + geom_bar(position = "fill")


Stack elements on top of one


another, normalize height.


e + geom_point(position = "jitter")


Add random noise to X and Y position of


each element to avoid overplotting.


e + geom_label(position = "nudge")


Nudge labels away from points.


s + geom_bar(position = "stack")


Stack elements on top of one another.


Each position adjustment can be recast as a function


with manual width and height arguments:


s + geom_bar(position = position_dodge(width = 1))
A
B
Themes
r + theme_bw()


White background


with grid lines.


r + theme_gray()


Grey background


(default theme).


r + theme_dark()


Dark for contrast.
r + theme_classic()


r + theme_light()


r + theme_linedraw()


r + theme_minimal()


Minimal theme.


r + theme_void()


Empty theme.
Faceting
Facets divide a plot into


subplots based on the


values of one or more


discrete variables.


t <- ggplot(mpg, aes(cty, hwy)) + geom_point()


t + facet_grid(cols = vars(fl))


Facet into columns based on fl.


t + facet_grid(rows = vars(year))


Facet into rows based on year.


t + facet_grid(rows = vars(year), cols = vars(fl))


Facet into both rows and columns.


t + facet_wrap(vars(fl))


Wrap facets into a rectangular layout.


Set scales to let axis limits vary across facets.


t + facet_grid(rows = vars(drv), cols = vars(fl),


scales = "free")


x and y axis limits adjust to individual facets:


"free_x" - x axis limits adjust


"free_y" - y axis limits adjust


Set labeller to adjust facet label:


t + facet_grid(cols = vars(fl), labeller = label_both)


t + facet_grid(rows = vars(fl),


labeller = label_bquote(alpha ^ .(fl)))
fl: c fl: d fl: e fl: p fl: r
↵c
↵d ↵e
↵p
↵r
Labels and Legends
Use labs() to label the elements of your plot.


t + labs(x = "New x axis label", y = "New y axis label",


title ="Add a title above the plot",


subtitle = "Add a subtitle below title",


caption = "Add a caption below plot",


alt = "Add alt text to the plot",


<aes> = "New <aes> legend title")


t + annotate(geom = "text", x = 8, y = 9, label = “A")


Places a geom with manually selected aesthetics.


p + guides(x = guide_axis(n.dodge = 2)) Avoid crowded


or overlapping labels with guide_axis(n.dodge or angle).


n + guides(fill = “none") Set legend type for each


aesthetic: colorbar, legend, or none (no legend).


n + theme(legend.position = "bottom")


Place legend at "bottom", "top", "le
ft
", or “right”.


n + scale_fill_discrete(name = "Title",


labels = c("A", "B", "C", "D", "E"))


Set legend title and labels with a scale function.
<AES> <AES>
Zooming
Without clipping (preferred):


t + coord_cartesian(xlim = c(0, 100), ylim = c(10, 20))


With clipping (removes unseen data points):


t + xlim(0, 100) + ylim(10, 20)


t + scale_x_continuous(limits = c(0, 100)) +
scale_y_continuous(limits = c(0, 100))
RStudio® is a trademark of RStudio, PBC • CC BY SA RStudio • info@rstudio.com • 844-448-1212 • rstudio.com • Learn more at ggplot2.tidyverse.org • ggplot2 3.3.5 • Updated: 2021-08
60
long
lat
r + theme() Customize aspects of the theme such


as axis, legend, panel, and facet properties.


r + ggtitle(“Title”) + theme(plot.title.postion = “plot”)


r + theme(panel.background = element_rect(fill = “blue”))
Override defaults with scales package.

More Related Content

PDF
Data visualization-2.1
PDF
Data Visualization with ggplot2.pdf
PDF
VISIALIZACION DE DATA.pdf
PDF
Ggplot2 cheatsheet-2.1
PDF
PDF
Download full ebook of Datacamp Ggplot2 Cheatsheet Itebooks instant download pdf
PPTX
RBootcamp Day 4
PPTX
Seminar PSU 09.04.2013 - 10.04.2013 MiFIT, Arbuzov Vyacheslav
Data visualization-2.1
Data Visualization with ggplot2.pdf
VISIALIZACION DE DATA.pdf
Ggplot2 cheatsheet-2.1
Download full ebook of Datacamp Ggplot2 Cheatsheet Itebooks instant download pdf
RBootcamp Day 4
Seminar PSU 09.04.2013 - 10.04.2013 MiFIT, Arbuzov Vyacheslav

Similar to data-visualization.pdf (20)

PDF
r for data science 2. grammar of graphics (ggplot2) clean -ref
PDF
ggplot2: An Extensible Platform for Publication-quality Graphics
PDF
Joclad 2010 d
PDF
Data visualization using the grammar of graphics
PDF
Geo Spatial Plot using R
PDF
8. R Graphics with R
 
DOCX
Genomic Graphics
PDF
Grammar of Graphics - Darya Vanichkina
PDF
Foliumcheatsheet
PPT
R graphics
DOCX
Advanced Data Visualization Examples with R-Part II
PPTX
Tech talk ggplot2
PDF
Stata cheat sheet: Data visualization
PDF
Stata cheat sheet: data visualization
PPTX
Introduction to R
PDF
Lectures r-graphics
PDF
Spatial Analysis with R - the Good, the Bad, and the Pretty
PDF
Computer Graphics in Java and Scala - Part 1b
PDF
Programming with matlab session 6
PPT
Cgo2007 P3 3 Birkbeck
r for data science 2. grammar of graphics (ggplot2) clean -ref
ggplot2: An Extensible Platform for Publication-quality Graphics
Joclad 2010 d
Data visualization using the grammar of graphics
Geo Spatial Plot using R
8. R Graphics with R
 
Genomic Graphics
Grammar of Graphics - Darya Vanichkina
Foliumcheatsheet
R graphics
Advanced Data Visualization Examples with R-Part II
Tech talk ggplot2
Stata cheat sheet: Data visualization
Stata cheat sheet: data visualization
Introduction to R
Lectures r-graphics
Spatial Analysis with R - the Good, the Bad, and the Pretty
Computer Graphics in Java and Scala - Part 1b
Programming with matlab session 6
Cgo2007 P3 3 Birkbeck
Ad

Recently uploaded (20)

PPTX
retention in jsjsksksksnbsndjddjdnFPD.pptx
PPTX
CYBER SECURITY the Next Warefare Tactics
PDF
Systems Analysis and Design, 12th Edition by Scott Tilley Test Bank.pdf
PPT
ISS -ESG Data flows What is ESG and HowHow
PPTX
Introduction to Inferential Statistics.pptx
PPTX
DS-40-Pre-Engagement and Kickoff deck - v8.0.pptx
PPTX
modul_python (1).pptx for professional and student
PPTX
SAP 2 completion done . PRESENTATION.pptx
PDF
[EN] Industrial Machine Downtime Prediction
PDF
Microsoft 365 products and services descrption
PDF
Introduction to Data Science and Data Analysis
PDF
Business Analytics and business intelligence.pdf
PPTX
Leprosy and NLEP programme community medicine
PPT
Predictive modeling basics in data cleaning process
PPTX
Topic 5 Presentation 5 Lesson 5 Corporate Fin
PPTX
Copy of 16 Timeline & Flowchart Templates – HubSpot.pptx
PDF
Tetra Pak Index 2023 - The future of health and nutrition - Full report.pdf
PPTX
Business_Capability_Map_Collection__pptx
PPTX
A Complete Guide to Streamlining Business Processes
PDF
Votre score augmente si vous choisissez une catégorie et que vous rédigez une...
retention in jsjsksksksnbsndjddjdnFPD.pptx
CYBER SECURITY the Next Warefare Tactics
Systems Analysis and Design, 12th Edition by Scott Tilley Test Bank.pdf
ISS -ESG Data flows What is ESG and HowHow
Introduction to Inferential Statistics.pptx
DS-40-Pre-Engagement and Kickoff deck - v8.0.pptx
modul_python (1).pptx for professional and student
SAP 2 completion done . PRESENTATION.pptx
[EN] Industrial Machine Downtime Prediction
Microsoft 365 products and services descrption
Introduction to Data Science and Data Analysis
Business Analytics and business intelligence.pdf
Leprosy and NLEP programme community medicine
Predictive modeling basics in data cleaning process
Topic 5 Presentation 5 Lesson 5 Corporate Fin
Copy of 16 Timeline & Flowchart Templates – HubSpot.pptx
Tetra Pak Index 2023 - The future of health and nutrition - Full report.pdf
Business_Capability_Map_Collection__pptx
A Complete Guide to Streamlining Business Processes
Votre score augmente si vous choisissez une catégorie et que vous rédigez une...
Ad

data-visualization.pdf

  • 1. Data visualization with ggplot2 : : CHEAT SHEET ggplot2 is based on the grammar of graphics, the idea that you can build every graph from the same components: a data set, a coordinate system, and geoms—visual marks that represent data points. Basics GRAPHICAL PRIMITIVES a + geom_blank() and a + expand_limits() 
 Ensure limits include values across all plots. b + geom_curve(aes(yend = lat + 1, 
 xend = long + 1), curvature = 1) - x, xend, y, yend, alpha, angle, color, curvature, linetype, size a + geom_path(lineend = "butt", 
 linejoin = "round", linemitre = 1) 
 x, y, alpha, color, group, linetype, size a + geom_polygon(aes(alpha = 50)) - x, y, alpha, color, fill, group, subgroup, linetype, size b + geom_rect(aes(xmin = long, ymin = lat, 
 xmax = long + 1, ymax = lat + 1)) - xmax, xmin, ymax, ymin, alpha, color, fill, linetype, size a + geom_ribbon(aes(ymin = unemploy - 900, ymax = unemploy + 900)) - x, ymax, ymin, 
 alpha, color, fill, group, linetype, size + = To display values, map variables in the data to visual properties of the geom (aesthetics) like size, color, and x and y locations. + = data geom x = F · y = A coordinate system plot data geom x = F · y = A color = F size = A coordinate system plot Complete the template below to build a graph. required ggplot(data = mpg, aes(x = cty, y = hwy)) Begins a plot that you finish by adding layers to. Add one geom function per layer. last_plot() Returns the last plot. ggsave("plot.png", width = 5, height = 5) Saves last plot as 5’ x 5’ file named "plot.png" in working directory. Matches file type to file extension. F M A F M A LINE SEGMENTS common aesthetics: x, y, alpha, color, linetype, size b + geom_abline(aes(intercept = 0, slope = 1)) b + geom_hline(aes(yintercept = lat)) b + geom_vline(aes(xintercept = long)) b + geom_segment(aes(yend = lat + 1, xend = long + 1)) b + geom_spoke(aes(angle = 1:1155, radius = 1)) a <- ggplot(economics, aes(date, unemploy)) b <- ggplot(seals, aes(x = long, y = lat)) ONE VARIABLE continuous c <- ggplot(mpg, aes(hwy)); c2 <- ggplot(mpg) c + geom_area(stat = "bin") 
 x, y, alpha, color, fill, linetype, size c + geom_density(kernel = "gaussian") 
 x, y, alpha, color, fill, group, linetype, size, weight c + geom_dotplot() 
 x, y, alpha, color, fill c + geom_freqpoly() 
 x, y, alpha, color, group, linetype, size c + geom_histogram(binwidth = 5) 
 x, y, alpha, color, fill, linetype, size, weight c2 + geom_qq(aes(sample = hwy)) 
 x, y, alpha, color, fill, linetype, size, weight discrete 
 d <- ggplot(mpg, aes(fl)) d + geom_bar() 
 x, alpha, color, fill, linetype, size, weight e + geom_label(aes(label = cty), nudge_x = 1, nudge_y = 1) - x, y, label, alpha, angle, color, family, fontface, hjust, lineheight, size, vjust e + geom_point() 
 x, y, alpha, color, fill, shape, size, stroke e + geom_quantile() 
 x, y, alpha, color, group, linetype, size, weight e + geom_rug(sides = “bl") 
 x, y, alpha, color, linetype, size e + geom_smooth(method = lm) 
 x, y, alpha, color, fill, group, linetype, size, weight e + geom_text(aes(label = cty), nudge_x = 1, nudge_y = 1) - x, y, label, alpha, angle, color, family, fontface, hjust, lineheight, size, vjust one discrete, one continuous f <- ggplot(mpg, aes(class, hwy)) f + geom_col() 
 x, y, alpha, color, fill, group, linetype, size f + geom_boxplot() 
 x, y, lower, middle, upper, ymax, ymin, alpha, 
 color, fill, group, linetype, shape, size, weight f + geom_dotplot(binaxis = "y", stackdir = “center") x, y, alpha, color, fill, group f + geom_violin(scale = “area") 
 x, y, alpha, color, fill, group, linetype, size, weight both discrete g <- ggplot(diamonds, aes(cut, color)) g + geom_count() 
 x, y, alpha, color, fill, shape, size, stroke e + geom_jitter(height = 2, width = 2) 
 x, y, alpha, color, fill, shape, size THREE VARIABLES seals$z <- with(seals, sqrt(delta_long^2 + delta_lat^2)); l <- ggplot(seals, aes(long, lat)) l + geom_raster(aes(fill = z), hjust = 0.5, 
 vjust = 0.5, interpolate = FALSE) 
 x, y, alpha, fill l + geom_tile(aes(fill = z)) 
 x, y, alpha, color, fill, linetype, size, width h + geom_bin2d(binwidth = c(0.25, 500)) 
 x, y, alpha, color, fill, linetype, size, weight h + geom_density_2d() 
 x, y, alpha, color, group, linetype, size h + geom_hex() 
 x, y, alpha, color, fill, size continuous function i <- ggplot(economics, aes(date, unemploy)) visualizing error df <- data.frame(grp = c("A", "B"), fit = 4:5, se = 1:2) j <- ggplot(df, aes(grp, fit, ymin = fit - se, ymax = fit + se)) maps data <- data.frame(murder = USArrests$Murder, 
 state = tolower(rownames(USArrests))) 
 map <- map_data("state") 
 k <- ggplot(data, aes(fill = murder)) k + geom_map(aes(map_id = state), map = map) + expand_limits(x = map$long, y = map$lat) map_id, alpha, color, fill, linetype, size Not 
 required, sensible defaults supplied Geoms Use a geom function to represent data points, use the geom’s aesthetic properties to represent variables. 
 Each function returns a layer. TWO VARIABLES both continuous e <- ggplot(mpg, aes(cty, hwy)) 
 continuous bivariate distribution h <- ggplot(diamonds, aes(carat, price)) RStudio® is a trademark of RStudio, PBC • CC BY SA RStudio • info@rstudio.com • 844-448-1212 • rstudio.com • Learn more at ggplot2.tidyverse.org • ggplot2 3.3.5 • Updated: 2021-08 ggplot (data = <DATA> ) + <GEOM_FUNCTION> (mapping = aes( <MAPPINGS> ), stat = <STAT> , position = <POSITION> ) + <COORDINATE_FUNCTION> + <FACET_FUNCTION> + <SCALE_FUNCTION> + <THEME_FUNCTION> l + geom_contour(aes(z = z)) 
 x, y, z, alpha, color, group, linetype, size, weight l + geom_contour_filled(aes(fill = z)) 
 x, y, alpha, color, fill, group, linetype, size, subgroup i + geom_area() 
 x, y, alpha, color, fill, linetype, size i + geom_line() 
 x, y, alpha, color, group, linetype, size i + geom_step(direction = "hv") 
 x, y, alpha, color, group, linetype, size j + geom_crossbar(fatten = 2) - x, y, ymax, 
 ymin, alpha, color, fill, group, linetype, size j + geom_errorbar() - x, ymax, ymin, 
 alpha, color, group, linetype, size, width 
 Also geom_errorbarh(). j + geom_linerange() 
 x, ymin, ymax, alpha, color, group, linetype, size j + geom_pointrange() - x, y, ymin, ymax, 
 alpha, color, fill, group, linetype, shape, size Aes color and fill - string ("red", "#RRGGBB") linetype - integer or string (0 = "blank", 1 = "solid", 
 2 = "dashed", 3 = "dotted", 4 = "dotdash", 5 = "longdash", 
 6 = "twodash") lineend - string ("round", "butt", or "square") linejoin - string ("round", "mitre", or "bevel") size - integer (line width in mm) shape - integer/shape name or 
 a single character ("a") Common aesthetic values.
  • 2. Scales Coordinate Systems A stat builds new variables to plot (e.g., count, prop). Stats An alternative way to build a layer. + = data geom x = x · 
 y = ..count.. coordinate system plot fl cty cyl x ..count.. stat Visualize a stat by changing the default stat of a geom function, geom_bar(stat="count") or by using a stat function, stat_count(geom="bar"), which calls a default geom to make a layer (equivalent to a geom function). Use ..name.. syntax to map stat variables to aesthetics. i + stat_density_2d(aes(fill = ..level..), geom = "polygon") stat function geommappings variable created by stat geom to use c + stat_bin(binwidth = 1, boundary = 10) 
 x, y | ..count.., ..ncount.., ..density.., ..ndensity.. c + stat_count(width = 1) x, y | ..count.., ..prop.. c + stat_density(adjust = 1, kernel = "gaussian") 
 x, y | ..count.., ..density.., ..scaled.. e + stat_bin_2d(bins = 30, drop = T) 
 x, y, fill | ..count.., ..density.. e + stat_bin_hex(bins = 30) x, y, fill | ..count.., ..density.. e + stat_density_2d(contour = TRUE, n = 100) 
 x, y, color, size | ..level.. e + stat_ellipse(level = 0.95, segments = 51, type = "t") l + stat_contour(aes(z = z)) x, y, z, order | ..level.. l + stat_summary_hex(aes(z = z), bins = 30, fun = max) 
 x, y, z, fill | ..value.. l + stat_summary_2d(aes(z = z), bins = 30, fun = mean) 
 x, y, z, fill | ..value.. f + stat_boxplot(coef = 1.5) 
 x, y | ..lower.., ..middle.., ..upper.., ..width.. , ..ymin.., ..ymax.. f + stat_ydensity(kernel = "gaussian", scale = "area") x, y | ..density.., ..scaled.., ..count.., ..n.., ..violinwidth.., ..width.. e + stat_ecdf(n = 40) x, y | ..x.., ..y.. e + stat_quantile(quantiles = c(0.1, 0.9), 
 formula = y ~ log(x), method = "rq") x, y | ..quantile.. e + stat_smooth(method = "lm", formula = y ~ x, se = T, 
 level = 0.95) x, y | ..se.., ..x.., ..y.., ..ymin.., ..ymax.. ggplot() + xlim(-5, 5) + stat_function(fun = dnorm, 
 n = 20, geom = “point”) x | ..x.., ..y.. ggplot() + stat_qq(aes(sample = 1:100)) 
 x, y, sample | ..sample.., ..theoretical.. e + stat_sum() x, y, size | ..n.., ..prop.. e + stat_summary(fun.data = "mean_cl_boot") h + stat_summary_bin(fun = "mean", geom = "bar") e + stat_identity() e + stat_unique() Scales map data values to the visual values of an aesthetic. To change a mapping, add a new scale. n <- d + geom_bar(aes(fill = fl)) n + scale_fill_manual( values = c("skyblue", "royalblue", "blue", "navy"), limits = c("d", "e", "p", "r"), breaks =c("d", "e", "p", “r"), name = "fuel", labels = c("D", "E", "P", "R")) scale_ aesthetic to adjust prepackaged scale to use scale-specific arguments title to use in legend/axis labels to use in legend/axis breaks to use in legend/axis range of values to include in mapping GENERAL PURPOSE SCALES Use with most aesthetics scale_*_continuous() - Map cont’ values to visual ones. scale_*_discrete() - Map discrete values to visual ones. scale_*_binned() - Map continuous values to discrete bins. scale_*_identity() - Use data values as visual ones. scale_*_manual(values = c()) - Map discrete values to manually chosen visual ones. scale_*_date(date_labels = "%m/%d"), 
 date_breaks = "2 weeks") - Treat data values as dates. scale_*_datetime() - Treat data values as date times. 
 Same as scale_*_date(). See ?strptime for label formats. X & Y LOCATION SCALES Use with x or y aesthetics (x shown here) scale_x_log10() - Plot x on log10 scale. scale_x_reverse() - Reverse the direction of the x axis. scale_x_sqrt() - Plot x on square root scale. COLOR AND FILL SCALES (DISCRETE) n + scale_fill_brewer(palette = "Blues") 
 For palette choices: RColorBrewer::display.brewer.all() n + scale_fill_grey(start = 0.2, 
 end = 0.8, na.value = "red") COLOR AND FILL SCALES (CONTINUOUS) o <- c + geom_dotplot(aes(fill = ..x..)) o + scale_fill_distiller(palette = “Blues”) o + scale_fill_gradient(low="red", high=“yellow") o + scale_fill_gradient2(low = "red", high = “blue”, 
 mid = "white", midpoint = 25) o + scale_fill_gradientn(colors = topo.colors(6)) 
 Also: rainbow(), heat.colors(), terrain.colors(), cm.colors(), RColorBrewer::brewer.pal() SHAPE AND SIZE SCALES 
 p <- e + geom_point(aes(shape = fl, size = cyl)) p + scale_shape() + scale_size() p + scale_shape_manual(values = c(3:7)) p + scale_radius(range = c(1,6)) p + scale_size_area(max_size = 6) r <- d + geom_bar() r + coord_cartesian(xlim = c(0, 5)) - xlim, ylim 
 The default cartesian coordinate system. r + coord_fixed(ratio = 1/2) 
 ratio, xlim, ylim - Cartesian coordinates with fixed aspect ratio between x and y units. ggplot(mpg, aes(y = fl)) + geom_bar() 
 Flip cartesian coordinates by switching 
 x and y aesthetic mappings. r + coord_polar(theta = "x", direction=1) 
 theta, start, direction - Polar coordinates. r + coord_trans(y = “sqrt") - x, y, xlim, ylim 
 Transformed cartesian coordinates. Set xtrans and ytrans to the name of a window function. π + coord_quickmap() 
 π + coord_map(projection = "ortho", orientation = c(41, -74, 0)) - projection, xlim, ylim Map projections from the mapproj package (mercator (default), azequalarea, lagrange, etc.). Position Adjustments Position adjustments determine how to arrange geoms that would otherwise occupy the same space. s <- ggplot(mpg, aes(fl, fill = drv)) s + geom_bar(position = "dodge") 
 Arrange elements side by side. s + geom_bar(position = "fill") 
 Stack elements on top of one 
 another, normalize height. e + geom_point(position = "jitter") 
 Add random noise to X and Y position of 
 each element to avoid overplotting. e + geom_label(position = "nudge") 
 Nudge labels away from points. s + geom_bar(position = "stack") 
 Stack elements on top of one another. Each position adjustment can be recast as a function 
 with manual width and height arguments: s + geom_bar(position = position_dodge(width = 1)) A B Themes r + theme_bw() 
 White background 
 with grid lines. r + theme_gray() 
 Grey background 
 (default theme). r + theme_dark() 
 Dark for contrast. r + theme_classic() r + theme_light() r + theme_linedraw() r + theme_minimal() 
 Minimal theme. r + theme_void() 
 Empty theme. Faceting Facets divide a plot into 
 subplots based on the 
 values of one or more 
 discrete variables. t <- ggplot(mpg, aes(cty, hwy)) + geom_point() t + facet_grid(cols = vars(fl)) 
 Facet into columns based on fl. t + facet_grid(rows = vars(year)) 
 Facet into rows based on year. t + facet_grid(rows = vars(year), cols = vars(fl)) 
 Facet into both rows and columns. t + facet_wrap(vars(fl)) 
 Wrap facets into a rectangular layout. Set scales to let axis limits vary across facets. t + facet_grid(rows = vars(drv), cols = vars(fl), 
 scales = "free") 
 x and y axis limits adjust to individual facets: 
 "free_x" - x axis limits adjust 
 "free_y" - y axis limits adjust Set labeller to adjust facet label: t + facet_grid(cols = vars(fl), labeller = label_both) t + facet_grid(rows = vars(fl), labeller = label_bquote(alpha ^ .(fl))) fl: c fl: d fl: e fl: p fl: r ↵c ↵d ↵e ↵p ↵r Labels and Legends Use labs() to label the elements of your plot. t + labs(x = "New x axis label", y = "New y axis label", 
 title ="Add a title above the plot", 
 subtitle = "Add a subtitle below title", 
 caption = "Add a caption below plot", 
 alt = "Add alt text to the plot", <aes> = "New <aes> legend title") t + annotate(geom = "text", x = 8, y = 9, label = “A") 
 Places a geom with manually selected aesthetics. p + guides(x = guide_axis(n.dodge = 2)) Avoid crowded 
 or overlapping labels with guide_axis(n.dodge or angle). n + guides(fill = “none") Set legend type for each 
 aesthetic: colorbar, legend, or none (no legend). n + theme(legend.position = "bottom") 
 Place legend at "bottom", "top", "le ft ", or “right”. n + scale_fill_discrete(name = "Title", 
 labels = c("A", "B", "C", "D", "E")) 
 Set legend title and labels with a scale function. <AES> <AES> Zooming Without clipping (preferred): t + coord_cartesian(xlim = c(0, 100), ylim = c(10, 20)) With clipping (removes unseen data points): t + xlim(0, 100) + ylim(10, 20) t + scale_x_continuous(limits = c(0, 100)) + scale_y_continuous(limits = c(0, 100)) RStudio® is a trademark of RStudio, PBC • CC BY SA RStudio • info@rstudio.com • 844-448-1212 • rstudio.com • Learn more at ggplot2.tidyverse.org • ggplot2 3.3.5 • Updated: 2021-08 60 long lat r + theme() Customize aspects of the theme such 
 as axis, legend, panel, and facet properties. 
 r + ggtitle(“Title”) + theme(plot.title.postion = “plot”) 
 r + theme(panel.background = element_rect(fill = “blue”)) Override defaults with scales package.