Chapter 3
Dead Time Compensation – Smith
Predictor, A Model Based Approach
1. Effects of Dead-Time (Time
Delay)
 Process with large dead time (relative
to the time constant of the process)
are difficult to control by pure
feedback alone:
 Effect of disturbances is not seen by controller
for a while
 Effect of control action is not seen at the
output for a while. This causes controller to
take additional compensation unnecessary
 This results in a loop that has inherently built
in limitations to control
Example – A Bode Plot Example
 3
1
)
(



s
e
s
G
s
h=tf(1,[1 3 3 1],'inputdelay',1);
Example- continued, case without
time delay
 3
1
1
)
(


s
s
G
PID Control Results- Case with dela
y (Kc=1,Ki=1,Kd=1)
PID Control Results- Case without d
elay (Kc=1,Ki=1,Kd=1)
2. Causes of Dead-Time
 Transportation lag (long pipelines)
 Sampling downstream of the process
 Slow measuring device: GC
 Large number of first-order time
constants in series (e.g. distillation
column)
 Sampling delays introduced by
computer control
3. The Smith Predictor
 
S
Gc
Controller
+
-
Process
 
S
G s
td
e
 
S
ysp
 
S
y
 
S
y
 
S
Gc
Controller
+
-
Process
 
S
G s
td
e
 
S
ysp
 
S
y
 
S
y*
 
S
Gc
Controller
+
-
Process
 
S
G s
td
e
 
S
ysp  
S
y
 
S
y
 
S
G
e s
td
)
1
( 

+
+  
S
y'
 
S
y*
Dead-time compensator
Controller mechanism
Control with Smith Predictor: (K
c=1,Ki=1,Kd=1)
Alternate form
 
S
G
 
S
G
 
S
Gc
+
-
d
 
S
G
s
td
e
sp
y y
+
- +
-
s
td
e
d
Example 2: Long time delay
-10
-8
-6
-4
-2
0
Magnitude
(dB)
10
-2
10
-1
10
0
-360
-270
-180
-90
0
Phase
(deg)
Bode Diagram
Frequency (rad/sec)
1
G(s)=
s^3 + 3 s^2 + 3 s +
1
exp(-3*s) * ---------------------
Mag=-3.3dB=20log10(AR);
AR=0.6839;
Wu=0.5;Pu=2π/0.5=12.5664
Ku=1/0.6839=1.4622
Kc=0.8601
Taui=Pu/2=6.2832
Taud=Pu/8=1.5708
Load Disturbance Response
0 5 10 15 20 25 30
-0.6
-0.4
-0.2
0
0.2
0.4
0.6
0.8
1
Gc(s) G(s)
(1-e-td’s
)G’(s)
e-tds
Process
Controller mechanism
)
(s
ysp
)
(s
y
)
(s
y
+
-
+
-
)
(s
y
a
)
(
' s
y
The Effect of Modeling Error
 
 
  sp
s
t
s
t
c
sp
c
s
t
s
t
c
y
e
G
Ge
G
G
s
y
or
y
G
G
e
Ge
G
s
y
d
d
d
d
'
'
'
'
)
(
*
'
1
)
(
*










Errors in td’,G’ both cause the control system to degrade
Smith Predictor with Modeling Error
Model=e-s
/(s3
+s2
+s+1)
Plant=e-s
/(s3
+3s2
+3s+1)
Model=e-0.5s
/(s3
+s2
+s+1)
Analytical Predictor
GC(s)
GPe-DS
Analytical
Predictor
ySP
y(t+D)
y(s)
Analytical Predictor is a model that projects what y will be
D units into the future (on-line model identification)
y(t)
time
Step response to manipulate
variable
Processes with inverse response
The output goes to the wrong way first
Example:
This can occurs in (1) reboiler level response to change in heat
input to the reboiler. (2) Some tubular reactor exist temperature
To inlet flow rate .
Inverse response is caused by a RHP zero
1
1
)
(
2
2
1
1




s
K
s
K
s
y


Example: Inverse response of concentration and t
emperature to a chanbe in process flow of 0.15 ft3
/min
Gc(s)
Process with inverse response
)
(s
ysp
)
(s
y
)
(s
y
+
-
1
1
1

s
k

Controller
1
2
2

s
k

+
-
Gc(s)
Process with inverse response
Controller mechanism
)
(s
ysp
)
(s
y
)
(s
y
+
-
+
-
)
(s
y
a
)
(
' s
y
)
1
1
1
1
(
1
2 

 s
s
k


1
1
1

s
k

Controller
1
2
2

s
k

+
-
Open Loop Response Analysis
  
  
 
s
y
s
s
K
K
s
K
K
s
G
s
y sp
c
1
1
)
(
2
1
2
1
1
2
2
1










 
 
         
   
  
LHP
in the
is
zero
the
if
and
1
1
)
(
'
*
then
1
1
1
1
)
(
response
loop
open
the
to
add
we
If
positive
is
then
,
1
:
at
zero
RHP
2
1
2
1
1
2
2
1
2
1
2
1
1
2
2
1
1
2
2
1
2
1
1
2
2
1
2
1















































K
K
K
y
s
s
K
K
s
K
K
K
s
G
s
y
s
y
s
y
s
y
s
s
K
G
s
y'
s
K
K
if
Note
K
K
K
K
s
s
c
sp
c

More Related Content

PPTX
Design of PID CONTROLLER FOR ENGINEERING
PPTX
Design of PID CONTROLLER FOR ENGINEERING
PDF
control system and instrumentation bode plot.pdf
PDF
control system and instrumentation bode plot.pdf
PPT
14583787.ppt
PPT
14583787.ppt
PDF
First-Order_Process_Time__Delay_2002.pdf
PDF
First-Order_Process_Time__Delay_2002.pdf
Design of PID CONTROLLER FOR ENGINEERING
Design of PID CONTROLLER FOR ENGINEERING
control system and instrumentation bode plot.pdf
control system and instrumentation bode plot.pdf
14583787.ppt
14583787.ppt
First-Order_Process_Time__Delay_2002.pdf
First-Order_Process_Time__Delay_2002.pdf

Similar to Dead time compensation of Control Chapter 3_507.ppt (20)

PPT
7 2 dead time compensation
PPT
7 2 dead time compensation
PDF
Analysis of Electro-Mechanical System
PDF
Analysis of Electro-Mechanical System
PDF
FirstOrderDynamic.pdf
PDF
FirstOrderDynamic.pdf
PPTX
Presentation Group 1 untuk perancangan keairan.pptx
PPTX
Presentation Group 1 untuk perancangan keairan.pptx
PPT
DC servo motor
PPT
DC servo motor
PPT
pid1.ppt
PPT
PPT
pid1.ppt
PPT
PPTX
Slids of intellegent assignment
PPTX
Slids of intellegent assignment
PDF
Modern Control - Lec 05 - Analysis and Design of Control Systems using Freque...
PDF
Modern Control - Lec 05 - Analysis and Design of Control Systems using Freque...
PPTX
presentationart tyuttilyiol gukuiuliol.pptx
PPTX
presentationart tyuttilyiol gukuiuliol.pptx
7 2 dead time compensation
7 2 dead time compensation
Analysis of Electro-Mechanical System
Analysis of Electro-Mechanical System
FirstOrderDynamic.pdf
FirstOrderDynamic.pdf
Presentation Group 1 untuk perancangan keairan.pptx
Presentation Group 1 untuk perancangan keairan.pptx
DC servo motor
DC servo motor
pid1.ppt
pid1.ppt
Slids of intellegent assignment
Slids of intellegent assignment
Modern Control - Lec 05 - Analysis and Design of Control Systems using Freque...
Modern Control - Lec 05 - Analysis and Design of Control Systems using Freque...
presentationart tyuttilyiol gukuiuliol.pptx
presentationart tyuttilyiol gukuiuliol.pptx
Ad

Recently uploaded (20)

PDF
UEFA_Embodied_Carbon_Emissions_Football_Infrastructure.pdf
PDF
Computer System Architecture 3rd Edition-M Morris Mano.pdf
DOC
T Pandian CV Madurai pandi kokkaf illaya
PDF
UEFA_Carbon_Footprint_Calculator_Methology_2.0.pdf
PDF
distributed database system" (DDBS) is often used to refer to both the distri...
PDF
Java Basics-Introduction and program control
PDF
Influence of Green Infrastructure on Residents’ Endorsement of the New Ecolog...
PDF
Computer organization and architecuture Digital Notes....pdf
PPTX
Software Engineering and software moduleing
PDF
Exploratory_Data_Analysis_Fundamentals.pdf
PPTX
CN_Unite_1 AI&DS ENGGERING SPPU PUNE UNIVERSITY
PPTX
"Array and Linked List in Data Structures with Types, Operations, Implementat...
PPTX
wireless networks, mobile computing.pptx
PDF
Design of Material Handling Equipment Lecture Note
PDF
Unit1 - AIML Chapter 1 concept and ethics
PPTX
ASME PCC-02 TRAINING -DESKTOP-NLE5HNP.pptx
PPTX
Chapter 2 -Technology and Enginerring Materials + Composites.pptx
PDF
20250617 - IR - Global Guide for HR - 51 pages.pdf
PPTX
Graph Data Structures with Types, Traversals, Connectivity, and Real-Life App...
PDF
LOW POWER CLASS AB SI POWER AMPLIFIER FOR WIRELESS MEDICAL SENSOR NETWORK
UEFA_Embodied_Carbon_Emissions_Football_Infrastructure.pdf
Computer System Architecture 3rd Edition-M Morris Mano.pdf
T Pandian CV Madurai pandi kokkaf illaya
UEFA_Carbon_Footprint_Calculator_Methology_2.0.pdf
distributed database system" (DDBS) is often used to refer to both the distri...
Java Basics-Introduction and program control
Influence of Green Infrastructure on Residents’ Endorsement of the New Ecolog...
Computer organization and architecuture Digital Notes....pdf
Software Engineering and software moduleing
Exploratory_Data_Analysis_Fundamentals.pdf
CN_Unite_1 AI&DS ENGGERING SPPU PUNE UNIVERSITY
"Array and Linked List in Data Structures with Types, Operations, Implementat...
wireless networks, mobile computing.pptx
Design of Material Handling Equipment Lecture Note
Unit1 - AIML Chapter 1 concept and ethics
ASME PCC-02 TRAINING -DESKTOP-NLE5HNP.pptx
Chapter 2 -Technology and Enginerring Materials + Composites.pptx
20250617 - IR - Global Guide for HR - 51 pages.pdf
Graph Data Structures with Types, Traversals, Connectivity, and Real-Life App...
LOW POWER CLASS AB SI POWER AMPLIFIER FOR WIRELESS MEDICAL SENSOR NETWORK
Ad

Dead time compensation of Control Chapter 3_507.ppt

  • 1. Chapter 3 Dead Time Compensation – Smith Predictor, A Model Based Approach
  • 2. 1. Effects of Dead-Time (Time Delay)  Process with large dead time (relative to the time constant of the process) are difficult to control by pure feedback alone:  Effect of disturbances is not seen by controller for a while  Effect of control action is not seen at the output for a while. This causes controller to take additional compensation unnecessary  This results in a loop that has inherently built in limitations to control
  • 3. Example – A Bode Plot Example  3 1 ) (    s e s G s h=tf(1,[1 3 3 1],'inputdelay',1);
  • 4. Example- continued, case without time delay  3 1 1 ) (   s s G
  • 5. PID Control Results- Case with dela y (Kc=1,Ki=1,Kd=1)
  • 6. PID Control Results- Case without d elay (Kc=1,Ki=1,Kd=1)
  • 7. 2. Causes of Dead-Time  Transportation lag (long pipelines)  Sampling downstream of the process  Slow measuring device: GC  Large number of first-order time constants in series (e.g. distillation column)  Sampling delays introduced by computer control
  • 8. 3. The Smith Predictor   S Gc Controller + - Process   S G s td e   S ysp   S y   S y   S Gc Controller + - Process   S G s td e   S ysp   S y   S y*   S Gc Controller + - Process   S G s td e   S ysp   S y   S y   S G e s td ) 1 (   + +   S y'   S y* Dead-time compensator Controller mechanism
  • 9. Control with Smith Predictor: (K c=1,Ki=1,Kd=1)
  • 10. Alternate form   S G   S G   S Gc + - d   S G s td e sp y y + - + - s td e d
  • 11. Example 2: Long time delay -10 -8 -6 -4 -2 0 Magnitude (dB) 10 -2 10 -1 10 0 -360 -270 -180 -90 0 Phase (deg) Bode Diagram Frequency (rad/sec) 1 G(s)= s^3 + 3 s^2 + 3 s + 1 exp(-3*s) * --------------------- Mag=-3.3dB=20log10(AR); AR=0.6839; Wu=0.5;Pu=2π/0.5=12.5664 Ku=1/0.6839=1.4622 Kc=0.8601 Taui=Pu/2=6.2832 Taud=Pu/8=1.5708
  • 12. Load Disturbance Response 0 5 10 15 20 25 30 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1
  • 13. Gc(s) G(s) (1-e-td’s )G’(s) e-tds Process Controller mechanism ) (s ysp ) (s y ) (s y + - + - ) (s y a ) ( ' s y The Effect of Modeling Error       sp s t s t c sp c s t s t c y e G Ge G G s y or y G G e Ge G s y d d d d ' ' ' ' ) ( * ' 1 ) ( *           Errors in td’,G’ both cause the control system to degrade
  • 14. Smith Predictor with Modeling Error Model=e-s /(s3 +s2 +s+1) Plant=e-s /(s3 +3s2 +3s+1) Model=e-0.5s /(s3 +s2 +s+1)
  • 15. Analytical Predictor GC(s) GPe-DS Analytical Predictor ySP y(t+D) y(s) Analytical Predictor is a model that projects what y will be D units into the future (on-line model identification)
  • 16. y(t) time Step response to manipulate variable Processes with inverse response The output goes to the wrong way first Example: This can occurs in (1) reboiler level response to change in heat input to the reboiler. (2) Some tubular reactor exist temperature To inlet flow rate . Inverse response is caused by a RHP zero 1 1 ) ( 2 2 1 1     s K s K s y  
  • 17. Example: Inverse response of concentration and t emperature to a chanbe in process flow of 0.15 ft3 /min
  • 18. Gc(s) Process with inverse response ) (s ysp ) (s y ) (s y + - 1 1 1  s k  Controller 1 2 2  s k  + -
  • 19. Gc(s) Process with inverse response Controller mechanism ) (s ysp ) (s y ) (s y + - + - ) (s y a ) ( ' s y ) 1 1 1 1 ( 1 2    s s k   1 1 1  s k  Controller 1 2 2  s k  + -
  • 20. Open Loop Response Analysis         s y s s K K s K K s G s y sp c 1 1 ) ( 2 1 2 1 1 2 2 1                                LHP in the is zero the if and 1 1 ) ( ' * then 1 1 1 1 ) ( response loop open the to add we If positive is then , 1 : at zero RHP 2 1 2 1 1 2 2 1 2 1 2 1 1 2 2 1 1 2 2 1 2 1 1 2 2 1 2 1                                                K K K y s s K K s K K K s G s y s y s y s y s s K G s y' s K K if Note K K K K s s c sp c