SlideShare a Scribd company logo
9/3/15
1
Joseph	
  P.	
  Messina	
  Ph.D.
Associate	
  Dean	
  for	
  Research	
  and	
  Professor
College	
  of	
  Social	
  Science,	
  Center	
  for	
  Global	
  Change	
  and	
  Earth	
  
Observations,	
  the	
  Department	
  of	
  Geography,	
  Michigan	
  State	
  
University.	
  
jpm@msu.edu 517-­‐432-­‐3436
Decadal Satellite Observations
and the Myth of Malawian Farm
Input Subsidy Programme
Farm Input Subsidy Program (FISP) in Malawi
• This widely discussed subsidy program has been praised
in the press as “brilliant” leading to “(doubled
production) within one harvest season” (J. Sachs, NYT
April 19, 2012)
• All popular press sources referred to government
statistics regarding production yields as having
significantly increased and being positive in the near
term for small-holder farmers.
• As Predro Sanchez commented (Nature: 2015) “in spite
of criticisms by donor agencies and academics, the seed
and fertilizer subsidies provided food security to millions
of Malawians.”
• This optimistic assessment of potential for an African
Green Revolution must be tempered by the fact that the
Malawian production miracle is largely a myth.
http://www.faceofmalawi.com/2014/10/donors-­‐demand-­‐
full-­‐details-­‐of-­‐fisp/
9/3/15
2
An	
  Accidental	
  Discovery	
  and	
  
how	
  I	
  started	
  this	
  process.
• Perennial	
  grains	
  to	
  improve	
  resilience	
  
to	
  climate	
  change.
• Malawi,	
  Mali,	
  Ghana,	
  Tanzania
• Pigeon	
  Pea	
  in	
  Malawi
• Where	
  are	
  the	
  marginal	
  lands?
1. Agricultural	
  lands?
2. Production	
  trends
3. Inter-­‐ vs.	
  inter-­‐annual	
  trends
Crop	
  Models?
• DSSAT,	
  SALUS,	
  APSIM,	
  …
• Scale
• Data	
  uncertainty
9/3/15
3
Yield?
• Yield	
  =	
  f(edaphic	
  *	
  climate	
  *	
  crop	
  *	
  social)
• Multiscalarprocesses
• Soils	
  are	
  local	
  but	
  also	
  a	
  product	
  of	
  
watershed	
  dynamics
• Climate	
  is	
  global	
  but	
  also	
  a	
  local	
  
physical	
  process
• Social	
  is	
  endogenous	
  (labor,	
  capital,…)	
  
and	
  exogenous	
  (FISP,	
  market	
  prices,	
  
trade,	
  …)
• Agronomy	
  is	
  local	
  but	
  also	
  responsive	
  
across	
  scale
• Food	
  security	
  scales	
  from	
  local	
  to	
  
national.	
  	
  
Global	
  Change	
  Biology.	
  doi:	
  10.1111/gcb.12838	
  
Uncertainty & Social vs. Biophysical Drivers
• CRU trend versus ERA40 trend in
rainfall.
• Blue=wetter trend,
• Orange = drying trend.
• Different spatial scales and process-based
methods that use THE SAME STATION
DATA lead to drastically different outcomes
based mainly on scale (i.e. where blue and
orange overlap).
• So, How do we fix this problem?
9/3/15
4
Where	
  are	
  the	
  marginal	
  
agricultural	
  lands?
Mozambique
Tanzania
Zimbabwe
Zambia
Agricultural Land Classification
Disagreement in Malawi
Coverage of Agricultural Land
FAO 2010 & IFPRI 2002 - 35%
IFPRI 2002 Only - 26%
FAO 2010 Only - 16%
Non Ag
0 10050
Kilometers
• What	
  does	
  this	
  even	
  mean?
• Standard	
  LULC	
  products	
  answer	
  
the	
  wrong	
  question	
  (How	
  much?)	
  
and	
  they	
  try	
  to	
  minimize	
  overall	
  
classification	
  error
• I	
  need	
  to	
  minimize	
  errors	
  of	
  
commission.	
  – a	
  very	
  reliable	
  
sample…
• Solution:	
  use	
  all	
  LULC	
  products
9/3/15
5
RS	
  based	
  LAI	
  vs.	
  SALUS	
  
Crop	
  Model
But	
  where	
  is	
  the	
  FISP	
  
bump???
Soils	
  and	
  climate	
  and	
  other	
  things	
  we	
  need	
  to	
  
distinguish
• Marginal	
  lands	
  – relative	
  terms
• Soils	
  – need	
  to	
  extract	
  soil	
  drivers
• Climate	
  – inter	
  and	
  intra	
  annual	
  variability
• Scale	
  – local	
  heterogeneity	
  is	
  likely	
  a	
  social	
  process
9/3/15
6
Factors:
1. Slope
2. Soil erosion hazard
3. Soil bulk density
4. Soil organic matter
5. Soil cation exchange capacity
6. Soil texture
7. Soil pH
8. Soil drainage
9. Soil depth
Methods:
Average of
1. Geometric mean
2. Rabia
3. Square root
4. Storie
5. Weighted sum
Malawi	
  Agricultural	
  Land	
  Suitability
Categories Area (ha) Percentage
Highly suitable 915431 7.8
Moderately suitable 2458882 20.8
Marginal suitable 2379508 20.1
Suitable land total 5753821 48.7
Poorly suitable 1081160 9.2
Permanently unsuitable 2496676 21.1
Unsuitable land total 3577836 30.3
Land subtotal 9331657 79.0
Water 2479429 21.0
Malawi total area 11811086 100.0
9/3/15
7
Optimal	
  Pigeon	
  Pea
• Niche	
  generation
• Extensive	
  data	
  – but	
  a	
  manageable	
  
process
• Organized	
  by	
  management	
  unit	
  to	
  
facilitate	
  scaling	
  and	
  adoption
• But,
• Sensitivity	
  to	
  climate?
• Variability	
   across	
  scales?
• This	
  is	
  not	
  substantially	
  different	
  than	
  
a	
  well	
  parameterized	
  crop	
  model
9/3/15
8
Production	
  trends
• Relative	
  terms
• Malawi	
  specific	
  scale
• Sensitive
• High	
  inter-­‐annual	
  variability
• Missing?
• Scaled	
  trends
• Sources	
  of	
  the	
  variability
9/3/15
9
Rainfall	
  and	
  Productivity	
  Trends	
  on	
  Agricultural	
  Land	
  in	
  Malawi
9/3/15
10
Now	
  what?
• We	
  can	
  improve	
  targeting.
• Biophysical	
  solutions	
   need	
  
to	
  target	
  biophysical	
  
problems
• Social	
  solutions	
   …
• Adoption	
  is	
  cultural
• Next	
  steps?
Climate	
  &	
  Changing	
  Seasons
9/3/15
11
FISP	
  comments
• There	
  are	
  multiple	
  lines	
  of	
  evidence	
  that	
  on	
  many	
  farms	
  soil	
  organic	
  
matter	
  status	
  has	
  degraded	
  to	
  a	
  level	
  that	
  no	
  longer	
  support’s	
   maize	
  
growth	
  or	
  responsiveness	
   to	
  fertilizer.	
  
• No	
  clear	
  trends	
  of	
  improvement	
  (Dorward et	
  al.,	
  2010a).	
  
• The	
  incremental	
  production	
  estimates	
  are,	
  however,	
  considerably	
  lower	
  than	
  those	
  
implicit	
  in	
  the	
  national	
  crop	
  estimates	
  for	
  maize	
  production,	
  with	
  much	
  lower	
  
variation.	
  (Dorwardet	
  al.,	
  2010a).	
  
• Annual	
  changes	
  in	
  maize	
  prices	
  also	
  suggest	
  that	
  post-­‐subsidy	
  maize	
  supplies	
  have	
  
been	
  lower	
  than	
  suggestedby	
  the	
  national	
  crop	
  estimates.	
  (Dorwardand	
  Chirwa,	
  
2011)
• “It	
  is	
  widely	
  believed	
  that	
  the	
  2007	
  Malawi	
  harvest	
  was	
  overestimated	
  by	
  at	
  least	
  
25%. If	
  the	
  government	
  had	
  been	
  able	
  to	
  produce	
  a	
  more	
  accurate	
  estimate	
  of	
  crop	
  
production,	
  it	
  might	
  not	
  have	
  arranged	
  to	
  export	
  maize,	
  which	
  in	
  turn	
  might	
  have	
  
avoided	
  the	
  huge	
  price	
  surge	
  in	
  late	
  2007/early	
  2008	
  which	
  caused	
  great	
  hardship	
  
for	
  maize	
  buying	
  households.”	
  (Jayne,	
  2008)
9/3/15
12
The	
  development	
  orthodoxy	
  on	
  agricultural
• Intensification	
   (all	
  the	
  time)
• Better	
  varieties
• Better	
  supply	
  chains
• Better	
  subsidies
• Scaling	
  matters
• A	
  function	
  of	
  targeting
• The	
  Climate	
   Change	
  Quandary
• The	
  new	
  varieties	
  may	
  not	
  be	
  appropriate
• Tools
• Adoption	
  potential
• Unintended	
   Consequences
• Disease	
  – livestock,	
  plant,	
  and	
  human
• Climate	
  and	
  Ag	
  feedbacks
• Big	
  Data	
  solutions	
   will	
  help	
  solve	
  some	
  of	
  the	
  
scaling,	
  climate,	
   and	
  targeting	
  challenges	
  
faced	
  by	
  the	
  development	
  community.
9/3/15
13
Funding  Provided  by:
• The  Bill  &  Melinda  Gates  Foundation
• USAID  – Global  Development  Lab  &  GCFSI
Thank You / Questions
Reference:   Decadal   Satellite   Observations   and  the   Myth  of  Malawian  Farm  Input   Subsidy  
Programme.  2015.   Messina,  J.  Peter,   B.  Li,  G.  DeVisser,  M.  Snapp,   S.  Moore,  N.  Nejadhashemi,   P.  
Putting   Perennial   crops  to  work  in  practice:   Pigeonpeas and   Sorghum.   Bamako,   Mali

More Related Content

PPTX
CSA options in mixed crop-livestock systems in sub-Saharan Africa
PPTX
Gender sensitive climate-smart agricultural practices by Patti Kristjanson 2...
PPTX
Realizing Rural and Agricultural Transformation in Ethiopia – Some Reflections
PPTX
Gender-Sensitive, Climate-Smart Agriculture for Improved Nutrition in Africa ...
PDF
Climate change and poverty: Regional perspectives
PDF
Contribution of agricultural research to poverty reduction with a focus on ‘F...
PDF
The Challenges of a Decision-Oriented, Multi-Sectoral Index
CSA options in mixed crop-livestock systems in sub-Saharan Africa
Gender sensitive climate-smart agricultural practices by Patti Kristjanson 2...
Realizing Rural and Agricultural Transformation in Ethiopia – Some Reflections
Gender-Sensitive, Climate-Smart Agriculture for Improved Nutrition in Africa ...
Climate change and poverty: Regional perspectives
Contribution of agricultural research to poverty reduction with a focus on ‘F...
The Challenges of a Decision-Oriented, Multi-Sectoral Index

What's hot (16)

PDF
Agricultural research for prosperity in South Asia: Rethinking pathways
PPTX
Overview of the 2016 Annual Trends and Outlook Report (ATOR)
PDF
Targeting CSA in S. Tanzania
PPTX
Are We Ready to Scale-out Climate-Smart Agriculture in South Asia?
PPTX
A Thriving Agriculture Sector in a Changing Climate: A Global Perspective for...
PPTX
Drought, Resilience, and Long-term Development
PPTX
Craig Cox - Corn/soy systems
PPTX
The Effects of Climate Change on Agriculture and Food in Africa
PPTX
Transforming Food Systems under a Changing Climate - Ana Maria Loboguerrero C...
PPTX
Pnp png workshop2016_fs climate change in png_nari_akkinapally
PPTX
Pathways Less Explored – Aspirations, Locus of Control, and Agricultural Tran...
PDF
Linkages Between Staple Crops Research and Poverty Outcomes
PPTX
The Effects of Widespread Adoption of Climate-Smart Agriculture in Africa Sou...
PDF
A4NH – Presentation for Discussion with Donors and Partners – June 2013
PDF
Barriers to adoption: policy & institutional arrangements to support CSA
 
PPTX
Agrienterprise development as pathway to youth and rural development in sub-S...
Agricultural research for prosperity in South Asia: Rethinking pathways
Overview of the 2016 Annual Trends and Outlook Report (ATOR)
Targeting CSA in S. Tanzania
Are We Ready to Scale-out Climate-Smart Agriculture in South Asia?
A Thriving Agriculture Sector in a Changing Climate: A Global Perspective for...
Drought, Resilience, and Long-term Development
Craig Cox - Corn/soy systems
The Effects of Climate Change on Agriculture and Food in Africa
Transforming Food Systems under a Changing Climate - Ana Maria Loboguerrero C...
Pnp png workshop2016_fs climate change in png_nari_akkinapally
Pathways Less Explored – Aspirations, Locus of Control, and Agricultural Tran...
Linkages Between Staple Crops Research and Poverty Outcomes
The Effects of Widespread Adoption of Climate-Smart Agriculture in Africa Sou...
A4NH – Presentation for Discussion with Donors and Partners – June 2013
Barriers to adoption: policy & institutional arrangements to support CSA
 
Agrienterprise development as pathway to youth and rural development in sub-S...
Ad

Similar to Decadal Satellite Observations and the Myth of Malawian Farm Input Subsidy Programme (20)

PPTX
The Future of Agriculture in Malawi with Climate Change_Sept 2019
PPTX
PDF
Climate/weather patterns in Malawi & determinants of adoption of CSA
 
PPT
Catalogue of tested crop, soil, and water management options in target areas ...
PDF
Climate Smart Agriculture Profile for Malawi (1).pdf
PPTX
Africa RISING Phase II in a nutshell
PPTX
What an ex-ICRAF DG does Rural Development or Research?
PPTX
2.1a Emerging priorities for food security in Malawi
PPT
Mer F - Use of climate predictions for impact studies, Nairobi Aug 2012
PDF
Methodological Tools to Address Mitigation Issues
PDF
Diversification & Climate Risk Management Strategies: Evidence from Rural Malawi
 
PPTX
Climate Change: Myth or reality? Potential impact on Food security in Africa
 
PPTX
Scaling-up CSA in Malawi, successes, challenges, opportunities
PPTX
Identifying Geospatial zones to guide agricultural development planning in M...
PDF
Climate change and food security in West Africa: Demand for climate and envir...
PPTX
The Economywide Impacts and Risks of Malawi's Farm Input Subsidy Program
PDF
Gordon Conway: On Being a Smallholder
PPTX
A unique partnership and systemic approach to food insecurity and climate cha...
PDF
Csa promotion through partnership coraf
PPT
Evaluation of the Fertiliser Input Subsidy Programme in Malawi
The Future of Agriculture in Malawi with Climate Change_Sept 2019
Climate/weather patterns in Malawi & determinants of adoption of CSA
 
Catalogue of tested crop, soil, and water management options in target areas ...
Climate Smart Agriculture Profile for Malawi (1).pdf
Africa RISING Phase II in a nutshell
What an ex-ICRAF DG does Rural Development or Research?
2.1a Emerging priorities for food security in Malawi
Mer F - Use of climate predictions for impact studies, Nairobi Aug 2012
Methodological Tools to Address Mitigation Issues
Diversification & Climate Risk Management Strategies: Evidence from Rural Malawi
 
Climate Change: Myth or reality? Potential impact on Food security in Africa
 
Scaling-up CSA in Malawi, successes, challenges, opportunities
Identifying Geospatial zones to guide agricultural development planning in M...
Climate change and food security in West Africa: Demand for climate and envir...
The Economywide Impacts and Risks of Malawi's Farm Input Subsidy Program
Gordon Conway: On Being a Smallholder
A unique partnership and systemic approach to food insecurity and climate cha...
Csa promotion through partnership coraf
Evaluation of the Fertiliser Input Subsidy Programme in Malawi
Ad

More from FAO (20)

PPTX
Nigeria
 
PPT
Niger
 
PPT
Namibia
 
PPT
Mozambique
 
PPT
Zimbabwe takesure
 
PPT
Zimbabwe
 
PPT
Zambia
 
PPT
Togo
 
PPT
Tanzania
 
PPT
Spal presentation
 
PPT
Rwanda
 
PPT
Nigeria uponi
 
PPTX
The multi-faced role of soil in the NENA regions (part 2)
 
PPTX
The multi-faced role of soil in the NENA regions (part 1)
 
PDF
Agenda of the launch of the soil policy brief at the Land&Water Days
 
PDF
Agenda of the 5th NENA Soil Partnership meeting
 
PPTX
The Voluntary Guidelines for Sustainable Soil Management
 
PPTX
GLOSOLAN - Mission, status and way forward
 
PPTX
Towards a Global Soil Information System (GLOSIS)
 
PPTX
GSP developments of regional interest in 2019
 
Nigeria
 
Niger
 
Namibia
 
Mozambique
 
Zimbabwe takesure
 
Zimbabwe
 
Zambia
 
Togo
 
Tanzania
 
Spal presentation
 
Rwanda
 
Nigeria uponi
 
The multi-faced role of soil in the NENA regions (part 2)
 
The multi-faced role of soil in the NENA regions (part 1)
 
Agenda of the launch of the soil policy brief at the Land&Water Days
 
Agenda of the 5th NENA Soil Partnership meeting
 
The Voluntary Guidelines for Sustainable Soil Management
 
GLOSOLAN - Mission, status and way forward
 
Towards a Global Soil Information System (GLOSIS)
 
GSP developments of regional interest in 2019
 

Recently uploaded (20)

PDF
Practical Manual AGRO-233 Principles and Practices of Natural Farming
PDF
GENETICS IN BIOLOGY IN SECONDARY LEVEL FORM 3
PPTX
A powerpoint presentation on the Revised K-10 Science Shaping Paper
PDF
Hazard Identification & Risk Assessment .pdf
PDF
Chinmaya Tiranga quiz Grand Finale.pdf
PDF
Black Hat USA 2025 - Micro ICS Summit - ICS/OT Threat Landscape
PDF
Supply Chain Operations Speaking Notes -ICLT Program
PDF
A systematic review of self-coping strategies used by university students to ...
PPTX
Digestion and Absorption of Carbohydrates, Proteina and Fats
PDF
Complications of Minimal Access Surgery at WLH
PPTX
Chinmaya Tiranga Azadi Quiz (Class 7-8 )
PDF
احياء السادس العلمي - الفصل الثالث (التكاثر) منهج متميزين/كلية بغداد/موهوبين
PDF
RMMM.pdf make it easy to upload and study
PDF
Trump Administration's workforce development strategy
PPTX
Onco Emergencies - Spinal cord compression Superior vena cava syndrome Febr...
PDF
1_English_Language_Set_2.pdf probationary
PPTX
202450812 BayCHI UCSC-SV 20250812 v17.pptx
DOC
Soft-furnishing-By-Architect-A.F.M.Mohiuddin-Akhand.doc
PDF
advance database management system book.pdf
PPTX
Tissue processing ( HISTOPATHOLOGICAL TECHNIQUE
Practical Manual AGRO-233 Principles and Practices of Natural Farming
GENETICS IN BIOLOGY IN SECONDARY LEVEL FORM 3
A powerpoint presentation on the Revised K-10 Science Shaping Paper
Hazard Identification & Risk Assessment .pdf
Chinmaya Tiranga quiz Grand Finale.pdf
Black Hat USA 2025 - Micro ICS Summit - ICS/OT Threat Landscape
Supply Chain Operations Speaking Notes -ICLT Program
A systematic review of self-coping strategies used by university students to ...
Digestion and Absorption of Carbohydrates, Proteina and Fats
Complications of Minimal Access Surgery at WLH
Chinmaya Tiranga Azadi Quiz (Class 7-8 )
احياء السادس العلمي - الفصل الثالث (التكاثر) منهج متميزين/كلية بغداد/موهوبين
RMMM.pdf make it easy to upload and study
Trump Administration's workforce development strategy
Onco Emergencies - Spinal cord compression Superior vena cava syndrome Febr...
1_English_Language_Set_2.pdf probationary
202450812 BayCHI UCSC-SV 20250812 v17.pptx
Soft-furnishing-By-Architect-A.F.M.Mohiuddin-Akhand.doc
advance database management system book.pdf
Tissue processing ( HISTOPATHOLOGICAL TECHNIQUE

Decadal Satellite Observations and the Myth of Malawian Farm Input Subsidy Programme

  • 1. 9/3/15 1 Joseph  P.  Messina  Ph.D. Associate  Dean  for  Research  and  Professor College  of  Social  Science,  Center  for  Global  Change  and  Earth   Observations,  the  Department  of  Geography,  Michigan  State   University.   jpm@msu.edu 517-­‐432-­‐3436 Decadal Satellite Observations and the Myth of Malawian Farm Input Subsidy Programme Farm Input Subsidy Program (FISP) in Malawi • This widely discussed subsidy program has been praised in the press as “brilliant” leading to “(doubled production) within one harvest season” (J. Sachs, NYT April 19, 2012) • All popular press sources referred to government statistics regarding production yields as having significantly increased and being positive in the near term for small-holder farmers. • As Predro Sanchez commented (Nature: 2015) “in spite of criticisms by donor agencies and academics, the seed and fertilizer subsidies provided food security to millions of Malawians.” • This optimistic assessment of potential for an African Green Revolution must be tempered by the fact that the Malawian production miracle is largely a myth. http://www.faceofmalawi.com/2014/10/donors-­‐demand-­‐ full-­‐details-­‐of-­‐fisp/
  • 2. 9/3/15 2 An  Accidental  Discovery  and   how  I  started  this  process. • Perennial  grains  to  improve  resilience   to  climate  change. • Malawi,  Mali,  Ghana,  Tanzania • Pigeon  Pea  in  Malawi • Where  are  the  marginal  lands? 1. Agricultural  lands? 2. Production  trends 3. Inter-­‐ vs.  inter-­‐annual  trends Crop  Models? • DSSAT,  SALUS,  APSIM,  … • Scale • Data  uncertainty
  • 3. 9/3/15 3 Yield? • Yield  =  f(edaphic  *  climate  *  crop  *  social) • Multiscalarprocesses • Soils  are  local  but  also  a  product  of   watershed  dynamics • Climate  is  global  but  also  a  local   physical  process • Social  is  endogenous  (labor,  capital,…)   and  exogenous  (FISP,  market  prices,   trade,  …) • Agronomy  is  local  but  also  responsive   across  scale • Food  security  scales  from  local  to   national.     Global  Change  Biology.  doi:  10.1111/gcb.12838   Uncertainty & Social vs. Biophysical Drivers • CRU trend versus ERA40 trend in rainfall. • Blue=wetter trend, • Orange = drying trend. • Different spatial scales and process-based methods that use THE SAME STATION DATA lead to drastically different outcomes based mainly on scale (i.e. where blue and orange overlap). • So, How do we fix this problem?
  • 4. 9/3/15 4 Where  are  the  marginal   agricultural  lands? Mozambique Tanzania Zimbabwe Zambia Agricultural Land Classification Disagreement in Malawi Coverage of Agricultural Land FAO 2010 & IFPRI 2002 - 35% IFPRI 2002 Only - 26% FAO 2010 Only - 16% Non Ag 0 10050 Kilometers • What  does  this  even  mean? • Standard  LULC  products  answer   the  wrong  question  (How  much?)   and  they  try  to  minimize  overall   classification  error • I  need  to  minimize  errors  of   commission.  – a  very  reliable   sample… • Solution:  use  all  LULC  products
  • 5. 9/3/15 5 RS  based  LAI  vs.  SALUS   Crop  Model But  where  is  the  FISP   bump??? Soils  and  climate  and  other  things  we  need  to   distinguish • Marginal  lands  – relative  terms • Soils  – need  to  extract  soil  drivers • Climate  – inter  and  intra  annual  variability • Scale  – local  heterogeneity  is  likely  a  social  process
  • 6. 9/3/15 6 Factors: 1. Slope 2. Soil erosion hazard 3. Soil bulk density 4. Soil organic matter 5. Soil cation exchange capacity 6. Soil texture 7. Soil pH 8. Soil drainage 9. Soil depth Methods: Average of 1. Geometric mean 2. Rabia 3. Square root 4. Storie 5. Weighted sum Malawi  Agricultural  Land  Suitability Categories Area (ha) Percentage Highly suitable 915431 7.8 Moderately suitable 2458882 20.8 Marginal suitable 2379508 20.1 Suitable land total 5753821 48.7 Poorly suitable 1081160 9.2 Permanently unsuitable 2496676 21.1 Unsuitable land total 3577836 30.3 Land subtotal 9331657 79.0 Water 2479429 21.0 Malawi total area 11811086 100.0
  • 7. 9/3/15 7 Optimal  Pigeon  Pea • Niche  generation • Extensive  data  – but  a  manageable   process • Organized  by  management  unit  to   facilitate  scaling  and  adoption • But, • Sensitivity  to  climate? • Variability   across  scales? • This  is  not  substantially  different  than   a  well  parameterized  crop  model
  • 8. 9/3/15 8 Production  trends • Relative  terms • Malawi  specific  scale • Sensitive • High  inter-­‐annual  variability • Missing? • Scaled  trends • Sources  of  the  variability
  • 9. 9/3/15 9 Rainfall  and  Productivity  Trends  on  Agricultural  Land  in  Malawi
  • 10. 9/3/15 10 Now  what? • We  can  improve  targeting. • Biophysical  solutions   need   to  target  biophysical   problems • Social  solutions   … • Adoption  is  cultural • Next  steps? Climate  &  Changing  Seasons
  • 11. 9/3/15 11 FISP  comments • There  are  multiple  lines  of  evidence  that  on  many  farms  soil  organic   matter  status  has  degraded  to  a  level  that  no  longer  support’s   maize   growth  or  responsiveness   to  fertilizer.   • No  clear  trends  of  improvement  (Dorward et  al.,  2010a).   • The  incremental  production  estimates  are,  however,  considerably  lower  than  those   implicit  in  the  national  crop  estimates  for  maize  production,  with  much  lower   variation.  (Dorwardet  al.,  2010a).   • Annual  changes  in  maize  prices  also  suggest  that  post-­‐subsidy  maize  supplies  have   been  lower  than  suggestedby  the  national  crop  estimates.  (Dorwardand  Chirwa,   2011) • “It  is  widely  believed  that  the  2007  Malawi  harvest  was  overestimated  by  at  least   25%. If  the  government  had  been  able  to  produce  a  more  accurate  estimate  of  crop   production,  it  might  not  have  arranged  to  export  maize,  which  in  turn  might  have   avoided  the  huge  price  surge  in  late  2007/early  2008  which  caused  great  hardship   for  maize  buying  households.”  (Jayne,  2008)
  • 12. 9/3/15 12 The  development  orthodoxy  on  agricultural • Intensification   (all  the  time) • Better  varieties • Better  supply  chains • Better  subsidies • Scaling  matters • A  function  of  targeting • The  Climate   Change  Quandary • The  new  varieties  may  not  be  appropriate • Tools • Adoption  potential • Unintended   Consequences • Disease  – livestock,  plant,  and  human • Climate  and  Ag  feedbacks • Big  Data  solutions   will  help  solve  some  of  the   scaling,  climate,   and  targeting  challenges   faced  by  the  development  community.
  • 13. 9/3/15 13 Funding  Provided  by: • The  Bill  &  Melinda  Gates  Foundation • USAID  – Global  Development  Lab  &  GCFSI Thank You / Questions Reference:   Decadal   Satellite   Observations   and  the   Myth  of  Malawian  Farm  Input   Subsidy   Programme.  2015.   Messina,  J.  Peter,   B.  Li,  G.  DeVisser,  M.  Snapp,   S.  Moore,  N.  Nejadhashemi,   P.   Putting   Perennial   crops  to  work  in  practice:   Pigeonpeas and   Sorghum.   Bamako,   Mali