SlideShare a Scribd company logo
Deciding language inclusion problems
using quasiorders
Pierre Ganty IMDEA Software Institute
joint work with Pedro Valero (IMDEA) and Francesco Ranzato (Uni. Padova)
L1
L1
L2
L1
L2
L2
ρ(L1)
L2
ρ(L1)
• ρ is extensive: L ⊆ ρ(L)
• ρ is monotone: L ⊆ L implies ρ(L) ⊆ ρ(L )
• ρ is idempotent: ρ(ρ(L)) = ρ(L)
L2
ρ(L1)
L1 ⊆ L2 iff ρ(L1) ⊆ L2
Assume ρ(L2) = L2, then
ρ(L2) = L2
L1 as a fixed point
q
q
b a
a
lfp λ
Xq
Xq
.
{ } ∪ bXq
∅ ∪ aXq ∪ aXq
L1 as a fixed point
q
q
b a
a
lfp λ
Xq
Xq
.
{ } ∪ bXq
∅ ∪ aXq ∪ aXq
Xq ∅
Xq ∅
L1 as a fixed point
q
q
b a
a
lfp λ
Xq
Xq
.
{ } ∪ bXq
∅ ∪ aXq ∪ aXq
Xq ∅
Xq ∅
{ε}
∅
L1 as a fixed point
q
q
b a
a
lfp λ
Xq
Xq
.
{ } ∪ bXq
∅ ∪ aXq ∪ aXq
Xq ∅
Xq ∅
{ε}
∅
{ε}
{a}
L1 as a fixed point
q
q
b a
a
lfp λ
Xq
Xq
.
{ } ∪ bXq
∅ ∪ aXq ∪ aXq
Lq (ba+
)∗
Lq a+
(ba+
)∗
Xq ∅
Xq ∅
{ε}
∅
{ε}
{a}
L1 as a fixed point
q
q
b a
a
lfp λ
Xq
Xq
.
{ } ∪ bXq
∅ ∪ aXq ∪ aXq
L1 = Lq = (ba+
)∗
= lfp λX. b ∪ Fn(X) q
Lq (ba+
)∗
Lq a+
(ba+
)∗
Xq ∅
Xq ∅
{ε}
∅
{ε}
{a}
L1 as a fixed point
q
q
b a
a
lfp λ
Xq
Xq
.
{ } ∪ bXq
∅ ∪ aXq ∪ aXq
L1 = Lq = (ba+
)∗
= lfp λX. b ∪ Fn(X) q
Lq (ba+
)∗
Lq a+
(ba+
)∗
Xq ∅
Xq ∅
{ε}
∅
{ε}
{a}
b Fn
ρ(L1) = ρ lfp λX. b ∪ Fn(X)
ρ(L1)
if ρ is complete for Fn (i.e. ρ Fn ρ = ρ Fn) then
ρ(L1) = lfp λX. ρ b ∪ Fn(X)
ρ(L1) = ρ lfp λX. b ∪ Fn(X)
ρ(L1)
if ρ is complete for Fn (i.e. ρ Fn ρ = ρ Fn) then
ρ(L1) = lfp λX. ρ b ∪ Fn(X)
ρ is complete for Fn
Wanted
ρ(L2) = L2
ρ is complete for Fn
Quasiorder induced ρ
Given a quasiorder on words, define
ρ (X) = {y | ∃x ∈ X : x y}
Quasiorder induced ρ
Given a quasiorder on words, define
ρ (X) = {y | ∃x ∈ X : x y}
∩ (L2 × L2) = ∅
x y implies a x a y for all a
Quasiorder induced ρ
Given a quasiorder on words, define
ρ (X) = {y | ∃x ∈ X : x y}
∩ (L2 × L2) = ∅
x y implies a x a y for all a
ρ (L2) = L2
ρ is complete for λX. aX for all a
Quasiorder induced ρ
Given a quasiorder on words, define
ρ (X) = {y | ∃x ∈ X : x y}
∩ (L2 × L2) = ∅
x y implies a x a y for all a
ρ (L2) = L2
ρ is complete for λX. aX for all a
is a left L2
consistent qo
Example of quasiorder
Nerode left quasiorder relative to L2 [Varricchio,deLuca’94]
x l
L2
y ⇔ L2 x−1
⊆ L2 y−1
Example of quasiorder
Nerode left quasiorder relative to L2 [Varricchio,deLuca’94]
x l
L2
y ⇔ L2 x−1
⊆ L2 y−1
Lx−1
= {w | wx ∈ L}
Example of quasiorder
Nerode left quasiorder relative to L2 [Varricchio,deLuca’94]
x l
L2
y ⇔ L2 x−1
⊆ L2 y−1
l
L2
is left L2 consistent
Example of quasiorder
Nerode left quasiorder relative to L2 [Varricchio,deLuca’94]
x l
L2
y ⇔ L2 x−1
⊆ L2 y−1
l
L2
is left L2 consistent
l
L2
is a well-quasi order if L2 is regular
Example of quasiorder
Nerode left quasiorder relative to L2 [Varricchio,deLuca’94]
x l
L2
y ⇔ L2 x−1
⊆ L2 y−1
l
L2
is left L2 consistent
l
L2
is a well-quasi order if L2 is regular
l
L2
is decidable if L2 is regular
Deciding L1 ⊆ L2 using Nerode’s left qo l
L2
L1 ⊆ L2 iff ρ l
L2
(L1) ⊆ L2
Deciding L1 ⊆ L2 using Nerode’s left qo l
L2
L1 ⊆ L2 iff ρ l
L2
(L1) ⊆ L2
ρ l
L2
(L1)
Deciding L1 ⊆ L2 using Nerode’s left qo l
L2
L1 ⊆ L2 iff ρ l
L2
(L1) ⊆ L2
ρ l
L2
(L1)
L2
Deciding L1 ⊆ L2 using Nerode’s left qo l
L2
L1 ⊆ L2 iff ρ l
L2
(L1) ⊆ L2
iff min l
L2
(ρ l
L2
(L1)) ⊆ L2
ρ l
L2
(L1)
L2
Deciding L1 ⊆ L2 using Nerode’s left qo l
L2
L1 ⊆ L2 iff ρ l
L2
(L1) ⊆ L2
iff min l
L2
(ρ l
L2
(L1)) ⊆ L2
iff ∀w ∈ min l
L2
(ρ l
L2
(L1)): w ∈ L2
ρ l
L2
(L1)
L2
Deciding L1 ⊆ L2 using l
L2
(cont’d)
L1 ⊆ L2 iff ∀w ∈ min l
L2
(ρ l
L2
(L1)): w ∈ L2
Deciding L1 ⊆ L2 using l
L2
(cont’d)
L1 ⊆ L2 iff ∀w ∈ min l
L2
(ρ l
L2
(L1)): w ∈ L2
iff ∀w ∈ min l
L2
(lfp λX. ρ l
L2
b ∪ Fn(X) : w ∈ L2
Deciding L1 ⊆ L2 using l
L2
(cont’d)
L1 ⊆ L2 iff ∀w ∈ min l
L2
(ρ l
L2
(L1)): w ∈ L2
iff ∀w ∈ min l
L2
(lfp λX. ρ l
L2
b ∪ Fn(X) : w ∈ L2
Deciding L1 ⊆ L2 using l
L2
(cont’d)
L1 ⊆ L2 iff ∀w ∈ min l
L2
(ρ l
L2
(L1)): w ∈ L2
iff ∀w ∈ min l
L2
(lfp λX. ρ l
L2
b ∪ Fn(X) : w ∈ L2
Deciding L1 ⊆ L2 using l
L2
(cont’d)
L1 ⊆ L2 iff ∀w ∈ min l
L2
(ρ l
L2
(L1)): w ∈ L2
iff ∀w ∈ min l
L2
(lfp λX. ρ l
L2
b ∪ Fn(X) : w ∈ L2
Deciding L1 ⊆ L2 using l
L2
(cont’d)
L1 ⊆ L2 iff ∀w ∈ min l
L2
(ρ l
L2
(L1)): w ∈ L2
iff ∀w ∈ min l
L2
(lfp λX. ρ l
L2
b ∪ Fn(X) : w ∈ L2
Deciding L1 ⊆ L2 using l
L2
(cont’d)
L1 ⊆ L2 iff ∀w ∈ min l
L2
(ρ l
L2
(L1)): w ∈ L2
iff ∀w ∈ lfp λX. min l
L2
b ∪ Fn(X) : w ∈ L2
iff ∀w ∈ min l
L2
(lfp λX. ρ l
L2
b ∪ Fn(X) : w ∈ L2
Deciding L1 ⊆ L2 using l
L2
(cont’d)
L1 ⊆ L2 iff ∀w ∈ min l
L2
(ρ l
L2
(L1)): w ∈ L2
iff ∀w ∈ lfp λX. min l
L2
b ∪ Fn(X) : w ∈ L2
iff ∀w ∈ min l
L2
(lfp λX. ρ l
L2
b ∪ Fn(X) : w ∈ L2
Word-based antichain algorithm for L(A) ⊆ L2
Data: FA A = Q, δ, q0
, F
Data: L2 regular
1 Yq q∈Q := ∅;
2 repeat
3 Xq q∈Q := Yq q∈Q;
4 Yq q∈Q := min l
L2
b ∪ Fn( Yq q∈Q) ;
5 until ρ l
L2
( Yq q∈Q) ⊆ ρ l
L2
( Xq q∈Q);
6 forall u ∈ Yq0 do
7 if u /∈ L2 then return false;
8 return true;
What else?
Nerode left quasiorder relative to L2 [Varricchio,deLuca’94]
x l
L2
y ⇔ L2 x−1
⊆ L2 y−1
What else?
State based quasiorder
Let A2 = Q2, δ2, q0
2, F2 be an automaton for L2
x l
A2
y ⇔ prex(F2) ⊆ prey(F2)
Nerode left quasiorder relative to L2 [Varricchio,deLuca’94]
x l
L2
y ⇔ L2 x−1
⊆ L2 y−1
What else?
State based quasiorder
Let A2 = Q2, δ2, q0
2, F2 be an automaton for L2
x l
A2
y ⇔ prex(F2) ⊆ prey(F2)
Nerode left quasiorder relative to L2 [Varricchio,deLuca’94]
x l
L2
y ⇔ L2 x−1
⊆ L2 y−1
1. l
A2
∩ (L2 × L2) = ∅
2. x l
A2
y implies a x l
A2
a y for all a
3. l
A2
is a well-quasiorder
4. l
A2
is decidable
What else?
State based quasiorder
Let A2 = Q2, δ2, q0
2, F2 be an automaton for L2
x l
A2
y ⇔ prex(F2) ⊆ prey(F2)
Nerode left quasiorder relative to L2 [Varricchio,deLuca’94]
x l
L2
y ⇔ L2 x−1
⊆ L2 y−1
1. l
A2
∩ (L2 × L2) = ∅
2. x l
A2
y implies a x l
A2
a y for all a
3. l
A2
is a well-quasiorder
4. l
A2
is decidable
l
A2
is left L2 consistent
decidable wqo
Word-based antichain algorithm for L(A1) ⊆ L(A2)
Data: FA A1 = Q1, δ1, q0
1, F1
Data: FA A2 = Q2, δ2, q0
2, F2
1 Yq q∈Q1
:= ∅;
2 repeat
3 Xq q∈Q1
:= Yq q∈Q1
;
4 Yq q∈Q1
:= min l
A2
b ∪ Fn( Yq q∈Q1
) ;
5 until ρ l
A2
( Yq q∈Q1
) ⊆ ρ l
A2
( Xq q∈Q1
);
6 forall u ∈ Yq0
1
do
7 if u /∈ L(A2) then return false;
8 return true;
Word-based antichain algorithm for L(A1) ⊆ L(A2)
Data: FA A1 = Q1, δ1, q0
1, F1
Data: FA A2 = Q2, δ2, q0
2, F2
1 Yq q∈Q1
:= ∅;
2 repeat
3 Xq q∈Q1
:= Yq q∈Q1
;
4 Yq q∈Q1
:= min l
A2
b ∪ Fn( Yq q∈Q1
) ;
5 until ρ l
A2
( Yq q∈Q1
) ⊆ ρ l
A2
( Xq q∈Q1
);
6 forall u ∈ Yq0
1
do
7 if u /∈ L(A2) then return false;
8 return true;
State based quasiorder
Let A2 = Q2, δ2, q0
2, F2 be an automaton for L2
x l
A2
y ⇔ prex(F2) ⊆ prey(F2)
Ditching words altogether
State-based antichain algorithm for L(A1) ⊆ L(A2)
Data: FA A1 = Q1, δ1, q0
1, F1
Data: FA A2 = Q2, δ2, q0
2, F2
1 Yq q∈Q1
:= ∅;
2 repeat
3 Xq q∈Q1
:= Yq q∈Q1
;
4 Yq q∈Q1 := [. . .];
5 until Yq ⊆∀∃
Xq, for all q ∈ Q1;
6 forall s ∈ Yq0
1
do
7 if q0
2 /∈ s then return false;
8 return true;
[. . .] = min⊆∀∃ {preA2
a (s) | ∃a ∈ Σ, q ∈ δ1(q, a), s ∈ Xq } ∪ F2
• Same as antichain algo
• Derived from general solution instantiated to l
A2
• Variants of the antichain algorithm as instantiations
• Simulation enhanced qo 2
• Nerode’s qo induce the coarsest qo based abstractions
• Same as antichain algo
• Derived from general solution instantiated to l
A2
• Variants of the antichain algorithm as instantiations
• Simulation enhanced qo 2
• Nerode’s qo induce the coarsest qo based abstractions
l
L2
and r
L2
are wqo’s if L2 is regular
L2 is a one-counter net trace set
q2
q1
q3a, 1
a, 0
a, −1
b, 1
The right Nerode qo for L2 ( r
L2
) is a wqo but it’s undecidable
u r
O2
v is a right L2 consistent decidable wqo
u r
O2
v iff mu ≤ mv where mu, mv ∈ (N ∪ {⊥})3
L2 = L(O2) is the set of traces
from configuration q2 0
Decision procedure for L(A1) ⊆ L(O2) using r
O2
Word-based antichain algorithm for L(A) ⊆ L(O2)
Data: FA A = Q, δ, q0
, F
Data: OCN O2
1 Yq q∈Q := ∅;
2 repeat
3 Xq q∈Q := Yq q∈Q;
4 Yq q∈Q := min r
O2
b ∪ Gn( Yq q∈Q) ;
5 until ρ r
O2
( Yq q∈Q) ⊆ ρ r
O2
( Xq q∈Q);
6 forall u ∈ Yq0 do
7 if u /∈ L2 then return false;
8 return true;
So far. . .
L(A1) ⊆ L(A2)
L(A1) ⊆ L(O2)
ρ(L1) = ρ lfp λX. b ∪ Fn(X)
= lfp λX. ρ b ∪ Fn(X)
L2
ρ(L1)
ρ(L1) = ρ lfp λX. b ∪ Fn(X)
= lfp λX. ρ b ∪ Fn(X)
L2
ρ(L1)
ρ Fn ρ = ρ Fn
ρ(L1) = ρ lfp λX. b ∪ Fn(X)
= lfp λX. ρ b ∪ Fn(X)
L2
ρ(L1)
When L1 is regular, ρ is complete for λX. aX for all a
ρ Fn ρ = ρ Fn
lfp λ
Xq
Xq
.
{ } ∪ bXq
∅ ∪ aXq ∪ aXq
Quasiorders for the case L(G1) ⊆ L(A2)
FnG1
is more general: from aX, Xa, aXb, XX
Quasiorders for the case L(G1) ⊆ L(A2)
FnG1
is more general: from aX, Xa, aXb, XX
ρ(L1) = lfp λX. ρ b ∪ FnG1 (X)
if ρ is complete for λX. aX and λX. Xa for all a
Quasiorders for the case L(G1) ⊆ L(A2)
FnG1
is more general: from aX, Xa, aXb, XX
1. ∩ (L2 × L2) = ∅
2. x y implies a x a y and x a y a for all a
ρ(L1) = lfp λX. ρ b ∪ FnG1 (X)
if ρ is complete for λX. aX and λX. Xa for all a
Quasiorders for the case L(G1) ⊆ L(A2)
Myhill quasiorder relative to L2 [Varricchio, deLuca’94]
x L2
y ⇔ {(u, v) | u x v∈L2} ⊆ {(u, v) | u y v∈L2}
FnG1
is more general: from aX, Xa, aXb, XX
1. ∩ (L2 × L2) = ∅
2. x y implies a x a y and x a y a for all a
ρ(L1) = lfp λX. ρ b ∪ FnG1 (X)
if ρ is complete for λX. aX and λX. Xa for all a
Quasiorders for the case L(G1) ⊆ L(A2)
Myhill quasiorder relative to L2 [Varricchio, deLuca’94]
x L2
y ⇔ {(u, v) | u x v∈L2} ⊆ {(u, v) | u y v∈L2}
State based quasi order [Netys’15]
x A2
y ⇔ {(q, q ) | q
x
q } ⊆ {(q, q ) | q
y
q }
FnG1
is more general: from aX, Xa, aXb, XX
1. ∩ (L2 × L2) = ∅
2. x y implies a x a y and x a y a for all a
ρ(L1) = lfp λX. ρ b ∪ FnG1 (X)
if ρ is complete for λX. aX and λX. Xa for all a
Greatest fixpoint based approach
lfp λX. b ∪ Fn(X) ⊆ L2 iff b ⊆ gfp λX. L2 ∩ Fn(X)
∪ becomes ∩
λX. aX becomes λX. a−1
X
ρ Fn ρ = ρ Fn becomes ρ Fn ρ = Fn ρ
gfp λX. ρ(L2 ∩ Fn(X)) stepwise equal gfp λX. L2 ∩ Fn(X)
Greatest fixpoint based approach
lfp λX. b ∪ Fn(X) ⊆ L2 iff b ⊆ gfp λX. L2 ∩ Fn(X)
∪ becomes ∩
λX. aX becomes λX. a−1
X
ρ Fn ρ = ρ Fn becomes ρ Fn ρ = Fn ρ
gfp λX. ρ(L2 ∩ Fn(X)) stepwise equal gfp λX. L2 ∩ Fn(X)
Does not terminate in general
Greatest fixpoint based approach
lfp λX. b ∪ Fn(X) ⊆ L2 iff b ⊆ gfp λX. L2 ∩ Fn(X)
∪ becomes ∩
λX. aX becomes λX. a−1
X
ρ Fn ρ = ρ Fn becomes ρ Fn ρ = Fn ρ
gfp λX. ρ(L2 ∩ Fn(X)) stepwise equal gfp λX. L2 ∩ Fn(X)
Does not terminate in general
Does always terminate 1
Conclusion
Promising framework for language inclusion
Conclusion
Promising framework for language inclusion
Extension to trees, ω-languages, timed languages,. . .
Conclusion
Promising framework for language inclusion
Extension to trees, ω-languages, timed languages,. . .
Technical Report 1904.01388 on arxiv.org

More Related Content

PPTX
Unit 1 quantifiers
PPTX
CMSC 56 | Lecture 3: Predicates & Quantifiers
PDF
CPSC 125 Ch 1 sec 4
PDF
Lecture 2 predicates quantifiers and rules of inference
PPT
Predicates and Quantifiers
PDF
Lecture 3 qualtifed rules of inference
PDF
Analysis Solutions CIV
PDF
Matrix calculus
Unit 1 quantifiers
CMSC 56 | Lecture 3: Predicates & Quantifiers
CPSC 125 Ch 1 sec 4
Lecture 2 predicates quantifiers and rules of inference
Predicates and Quantifiers
Lecture 3 qualtifed rules of inference
Analysis Solutions CIV
Matrix calculus

What's hot (19)

PDF
Harmonic Analysis and Deep Learning
PDF
Proof of Kraft-McMillan theorem
PPT
Finite automata examples
PPT
Algoritmos Greedy
PDF
Maksim Zhukovskii – Zero-one k-laws for G(n,n−α)
PPTX
Predicates and Quantifiers
PDF
Boolean Programs and Quantified Propositional Proof System -
PDF
PDF
Predicate Logic
PDF
Random variables
PDF
QMC: Operator Splitting Workshop, Thresholdings, Robustness, and Generalized ...
PDF
Intro probability 2
PPTX
The Euclidean Spaces (elementary topology and sequences)
PDF
Intro probability 3
PDF
Research Inventy : International Journal of Engineering and Science
PDF
"Exact and approximate algorithms for resultant polytopes."
PDF
Module of algelbra analyses 2
PPTX
Analysis of algorithms
Harmonic Analysis and Deep Learning
Proof of Kraft-McMillan theorem
Finite automata examples
Algoritmos Greedy
Maksim Zhukovskii – Zero-one k-laws for G(n,n−α)
Predicates and Quantifiers
Boolean Programs and Quantified Propositional Proof System -
Predicate Logic
Random variables
QMC: Operator Splitting Workshop, Thresholdings, Robustness, and Generalized ...
Intro probability 2
The Euclidean Spaces (elementary topology and sequences)
Intro probability 3
Research Inventy : International Journal of Engineering and Science
"Exact and approximate algorithms for resultant polytopes."
Module of algelbra analyses 2
Analysis of algorithms
Ad

Similar to Deciding language inclusion problems using quasiorders (20)

PDF
Well Quasi Orders in a Categorical Setting
PDF
Variations on the Higman's Lemma
PDF
Mathematical logic
PPT
PredicateLogic or FOL for Computer Science
PPT
Lec8-PredicateLogic knowledge representation.ppt
PDF
Data Complexity in EL Family of Description Logics
PDF
140106 isaim-okayama
PDF
End semexam | Theory of Computation | Akash Anand | MTH 401A | IIT Kanpur
PPTX
Resolution method in AI.pptx
PDF
Talk mlm-rule ml-rr-2019
PPT
Ambiguity Pilambda
PPT
Ambiguity Pilambda
PPTX
First order logic
PDF
Intuitionistic First-Order Logic: Categorical semantics via the Curry-Howard ...
PDF
Acyclicity Conditions and their Application to Query Answering in Description...
PPTX
1004_theorem_proving_2018.pptx on the to
PDF
Pumping lemma (1)
PDF
IRJET- Ordered Meet Hyperlattices
PPT
0227 regularlanguages
PDF
2015 CMS Winter Meeting Poster
Well Quasi Orders in a Categorical Setting
Variations on the Higman's Lemma
Mathematical logic
PredicateLogic or FOL for Computer Science
Lec8-PredicateLogic knowledge representation.ppt
Data Complexity in EL Family of Description Logics
140106 isaim-okayama
End semexam | Theory of Computation | Akash Anand | MTH 401A | IIT Kanpur
Resolution method in AI.pptx
Talk mlm-rule ml-rr-2019
Ambiguity Pilambda
Ambiguity Pilambda
First order logic
Intuitionistic First-Order Logic: Categorical semantics via the Curry-Howard ...
Acyclicity Conditions and their Application to Query Answering in Description...
1004_theorem_proving_2018.pptx on the to
Pumping lemma (1)
IRJET- Ordered Meet Hyperlattices
0227 regularlanguages
2015 CMS Winter Meeting Poster
Ad

More from Facultad de Informática UCM (20)

PDF
¿Por qué debemos seguir trabajando en álgebra lineal?
PDF
TECNOPOLÍTICA Y ACTIVISMO DE DATOS: EL MAPEO COMO FORMA DE RESILIENCIA ANTE L...
PDF
DRAC: Designing RISC-V-based Accelerators for next generation Computers
PDF
uElectronics ongoing activities at ESA
PDF
Tendencias en el diseño de procesadores con arquitectura Arm
PDF
Formalizing Mathematics in Lean
PDF
Introduction to Quantum Computing and Quantum Service Oriented Computing
PPTX
Computer Design Concepts for Machine Learning
PDF
Inteligencia Artificial en la atención sanitaria del futuro
PDF
Design Automation Approaches for Real-Time Edge Computing for Science Applic...
PDF
Estrategias de navegación para robótica móvil de campo: caso de estudio proye...
PPTX
Fault-tolerance Quantum computation and Quantum Error Correction
PDF
Cómo construir un chatbot inteligente sin morir en el intento
PDF
Automatic generation of hardware memory architectures for HPC
PDF
Type and proof structures for concurrency
PDF
Hardware/software security contracts: Principled foundations for building sec...
PDF
Jose carlossancho slidesLa seguridad en el desarrollo de software implementad...
PDF
Do you trust your artificial intelligence system?
PDF
Redes neuronales y reinforcement learning. Aplicación en energía eólica.
PDF
Challenges and Opportunities for AI and Data analytics in Offshore wind
¿Por qué debemos seguir trabajando en álgebra lineal?
TECNOPOLÍTICA Y ACTIVISMO DE DATOS: EL MAPEO COMO FORMA DE RESILIENCIA ANTE L...
DRAC: Designing RISC-V-based Accelerators for next generation Computers
uElectronics ongoing activities at ESA
Tendencias en el diseño de procesadores con arquitectura Arm
Formalizing Mathematics in Lean
Introduction to Quantum Computing and Quantum Service Oriented Computing
Computer Design Concepts for Machine Learning
Inteligencia Artificial en la atención sanitaria del futuro
Design Automation Approaches for Real-Time Edge Computing for Science Applic...
Estrategias de navegación para robótica móvil de campo: caso de estudio proye...
Fault-tolerance Quantum computation and Quantum Error Correction
Cómo construir un chatbot inteligente sin morir en el intento
Automatic generation of hardware memory architectures for HPC
Type and proof structures for concurrency
Hardware/software security contracts: Principled foundations for building sec...
Jose carlossancho slidesLa seguridad en el desarrollo de software implementad...
Do you trust your artificial intelligence system?
Redes neuronales y reinforcement learning. Aplicación en energía eólica.
Challenges and Opportunities for AI and Data analytics in Offshore wind

Recently uploaded (20)

PPTX
additive manufacturing of ss316l using mig welding
PPTX
FINAL REVIEW FOR COPD DIANOSIS FOR PULMONARY DISEASE.pptx
PDF
keyrequirementskkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkk
PPTX
CYBER-CRIMES AND SECURITY A guide to understanding
PPTX
MCN 401 KTU-2019-PPE KITS-MODULE 2.pptx
PDF
The CXO Playbook 2025 – Future-Ready Strategies for C-Suite Leaders Cerebrai...
PDF
BMEC211 - INTRODUCTION TO MECHATRONICS-1.pdf
PPTX
CARTOGRAPHY AND GEOINFORMATION VISUALIZATION chapter1 NPTE (2).pptx
PDF
Digital Logic Computer Design lecture notes
PPTX
OOP with Java - Java Introduction (Basics)
PPTX
IOT PPTs Week 10 Lecture Material.pptx of NPTEL Smart Cities contd
PPTX
CH1 Production IntroductoryConcepts.pptx
PDF
TFEC-4-2020-Design-Guide-for-Timber-Roof-Trusses.pdf
PPTX
Engineering Ethics, Safety and Environment [Autosaved] (1).pptx
PPTX
KTU 2019 -S7-MCN 401 MODULE 2-VINAY.pptx
PDF
Evaluating the Democratization of the Turkish Armed Forces from a Normative P...
PDF
July 2025 - Top 10 Read Articles in International Journal of Software Enginee...
PPTX
MET 305 2019 SCHEME MODULE 2 COMPLETE.pptx
PPT
CRASH COURSE IN ALTERNATIVE PLUMBING CLASS
PPTX
Welding lecture in detail for understanding
additive manufacturing of ss316l using mig welding
FINAL REVIEW FOR COPD DIANOSIS FOR PULMONARY DISEASE.pptx
keyrequirementskkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkk
CYBER-CRIMES AND SECURITY A guide to understanding
MCN 401 KTU-2019-PPE KITS-MODULE 2.pptx
The CXO Playbook 2025 – Future-Ready Strategies for C-Suite Leaders Cerebrai...
BMEC211 - INTRODUCTION TO MECHATRONICS-1.pdf
CARTOGRAPHY AND GEOINFORMATION VISUALIZATION chapter1 NPTE (2).pptx
Digital Logic Computer Design lecture notes
OOP with Java - Java Introduction (Basics)
IOT PPTs Week 10 Lecture Material.pptx of NPTEL Smart Cities contd
CH1 Production IntroductoryConcepts.pptx
TFEC-4-2020-Design-Guide-for-Timber-Roof-Trusses.pdf
Engineering Ethics, Safety and Environment [Autosaved] (1).pptx
KTU 2019 -S7-MCN 401 MODULE 2-VINAY.pptx
Evaluating the Democratization of the Turkish Armed Forces from a Normative P...
July 2025 - Top 10 Read Articles in International Journal of Software Enginee...
MET 305 2019 SCHEME MODULE 2 COMPLETE.pptx
CRASH COURSE IN ALTERNATIVE PLUMBING CLASS
Welding lecture in detail for understanding

Deciding language inclusion problems using quasiorders

  • 1. Deciding language inclusion problems using quasiorders Pierre Ganty IMDEA Software Institute joint work with Pedro Valero (IMDEA) and Francesco Ranzato (Uni. Padova)
  • 2. L1
  • 6. L2 ρ(L1) • ρ is extensive: L ⊆ ρ(L) • ρ is monotone: L ⊆ L implies ρ(L) ⊆ ρ(L ) • ρ is idempotent: ρ(ρ(L)) = ρ(L)
  • 7. L2 ρ(L1) L1 ⊆ L2 iff ρ(L1) ⊆ L2 Assume ρ(L2) = L2, then ρ(L2) = L2
  • 8. L1 as a fixed point q q b a a lfp λ Xq Xq . { } ∪ bXq ∅ ∪ aXq ∪ aXq
  • 9. L1 as a fixed point q q b a a lfp λ Xq Xq . { } ∪ bXq ∅ ∪ aXq ∪ aXq Xq ∅ Xq ∅
  • 10. L1 as a fixed point q q b a a lfp λ Xq Xq . { } ∪ bXq ∅ ∪ aXq ∪ aXq Xq ∅ Xq ∅ {ε} ∅
  • 11. L1 as a fixed point q q b a a lfp λ Xq Xq . { } ∪ bXq ∅ ∪ aXq ∪ aXq Xq ∅ Xq ∅ {ε} ∅ {ε} {a}
  • 12. L1 as a fixed point q q b a a lfp λ Xq Xq . { } ∪ bXq ∅ ∪ aXq ∪ aXq Lq (ba+ )∗ Lq a+ (ba+ )∗ Xq ∅ Xq ∅ {ε} ∅ {ε} {a}
  • 13. L1 as a fixed point q q b a a lfp λ Xq Xq . { } ∪ bXq ∅ ∪ aXq ∪ aXq L1 = Lq = (ba+ )∗ = lfp λX. b ∪ Fn(X) q Lq (ba+ )∗ Lq a+ (ba+ )∗ Xq ∅ Xq ∅ {ε} ∅ {ε} {a}
  • 14. L1 as a fixed point q q b a a lfp λ Xq Xq . { } ∪ bXq ∅ ∪ aXq ∪ aXq L1 = Lq = (ba+ )∗ = lfp λX. b ∪ Fn(X) q Lq (ba+ )∗ Lq a+ (ba+ )∗ Xq ∅ Xq ∅ {ε} ∅ {ε} {a} b Fn
  • 15. ρ(L1) = ρ lfp λX. b ∪ Fn(X) ρ(L1) if ρ is complete for Fn (i.e. ρ Fn ρ = ρ Fn) then ρ(L1) = lfp λX. ρ b ∪ Fn(X)
  • 16. ρ(L1) = ρ lfp λX. b ∪ Fn(X) ρ(L1) if ρ is complete for Fn (i.e. ρ Fn ρ = ρ Fn) then ρ(L1) = lfp λX. ρ b ∪ Fn(X) ρ is complete for Fn
  • 17. Wanted ρ(L2) = L2 ρ is complete for Fn
  • 18. Quasiorder induced ρ Given a quasiorder on words, define ρ (X) = {y | ∃x ∈ X : x y}
  • 19. Quasiorder induced ρ Given a quasiorder on words, define ρ (X) = {y | ∃x ∈ X : x y} ∩ (L2 × L2) = ∅ x y implies a x a y for all a
  • 20. Quasiorder induced ρ Given a quasiorder on words, define ρ (X) = {y | ∃x ∈ X : x y} ∩ (L2 × L2) = ∅ x y implies a x a y for all a ρ (L2) = L2 ρ is complete for λX. aX for all a
  • 21. Quasiorder induced ρ Given a quasiorder on words, define ρ (X) = {y | ∃x ∈ X : x y} ∩ (L2 × L2) = ∅ x y implies a x a y for all a ρ (L2) = L2 ρ is complete for λX. aX for all a is a left L2 consistent qo
  • 22. Example of quasiorder Nerode left quasiorder relative to L2 [Varricchio,deLuca’94] x l L2 y ⇔ L2 x−1 ⊆ L2 y−1
  • 23. Example of quasiorder Nerode left quasiorder relative to L2 [Varricchio,deLuca’94] x l L2 y ⇔ L2 x−1 ⊆ L2 y−1 Lx−1 = {w | wx ∈ L}
  • 24. Example of quasiorder Nerode left quasiorder relative to L2 [Varricchio,deLuca’94] x l L2 y ⇔ L2 x−1 ⊆ L2 y−1 l L2 is left L2 consistent
  • 25. Example of quasiorder Nerode left quasiorder relative to L2 [Varricchio,deLuca’94] x l L2 y ⇔ L2 x−1 ⊆ L2 y−1 l L2 is left L2 consistent l L2 is a well-quasi order if L2 is regular
  • 26. Example of quasiorder Nerode left quasiorder relative to L2 [Varricchio,deLuca’94] x l L2 y ⇔ L2 x−1 ⊆ L2 y−1 l L2 is left L2 consistent l L2 is a well-quasi order if L2 is regular l L2 is decidable if L2 is regular
  • 27. Deciding L1 ⊆ L2 using Nerode’s left qo l L2 L1 ⊆ L2 iff ρ l L2 (L1) ⊆ L2
  • 28. Deciding L1 ⊆ L2 using Nerode’s left qo l L2 L1 ⊆ L2 iff ρ l L2 (L1) ⊆ L2 ρ l L2 (L1)
  • 29. Deciding L1 ⊆ L2 using Nerode’s left qo l L2 L1 ⊆ L2 iff ρ l L2 (L1) ⊆ L2 ρ l L2 (L1) L2
  • 30. Deciding L1 ⊆ L2 using Nerode’s left qo l L2 L1 ⊆ L2 iff ρ l L2 (L1) ⊆ L2 iff min l L2 (ρ l L2 (L1)) ⊆ L2 ρ l L2 (L1) L2
  • 31. Deciding L1 ⊆ L2 using Nerode’s left qo l L2 L1 ⊆ L2 iff ρ l L2 (L1) ⊆ L2 iff min l L2 (ρ l L2 (L1)) ⊆ L2 iff ∀w ∈ min l L2 (ρ l L2 (L1)): w ∈ L2 ρ l L2 (L1) L2
  • 32. Deciding L1 ⊆ L2 using l L2 (cont’d) L1 ⊆ L2 iff ∀w ∈ min l L2 (ρ l L2 (L1)): w ∈ L2
  • 33. Deciding L1 ⊆ L2 using l L2 (cont’d) L1 ⊆ L2 iff ∀w ∈ min l L2 (ρ l L2 (L1)): w ∈ L2 iff ∀w ∈ min l L2 (lfp λX. ρ l L2 b ∪ Fn(X) : w ∈ L2
  • 34. Deciding L1 ⊆ L2 using l L2 (cont’d) L1 ⊆ L2 iff ∀w ∈ min l L2 (ρ l L2 (L1)): w ∈ L2 iff ∀w ∈ min l L2 (lfp λX. ρ l L2 b ∪ Fn(X) : w ∈ L2
  • 35. Deciding L1 ⊆ L2 using l L2 (cont’d) L1 ⊆ L2 iff ∀w ∈ min l L2 (ρ l L2 (L1)): w ∈ L2 iff ∀w ∈ min l L2 (lfp λX. ρ l L2 b ∪ Fn(X) : w ∈ L2
  • 36. Deciding L1 ⊆ L2 using l L2 (cont’d) L1 ⊆ L2 iff ∀w ∈ min l L2 (ρ l L2 (L1)): w ∈ L2 iff ∀w ∈ min l L2 (lfp λX. ρ l L2 b ∪ Fn(X) : w ∈ L2
  • 37. Deciding L1 ⊆ L2 using l L2 (cont’d) L1 ⊆ L2 iff ∀w ∈ min l L2 (ρ l L2 (L1)): w ∈ L2 iff ∀w ∈ min l L2 (lfp λX. ρ l L2 b ∪ Fn(X) : w ∈ L2
  • 38. Deciding L1 ⊆ L2 using l L2 (cont’d) L1 ⊆ L2 iff ∀w ∈ min l L2 (ρ l L2 (L1)): w ∈ L2 iff ∀w ∈ lfp λX. min l L2 b ∪ Fn(X) : w ∈ L2 iff ∀w ∈ min l L2 (lfp λX. ρ l L2 b ∪ Fn(X) : w ∈ L2
  • 39. Deciding L1 ⊆ L2 using l L2 (cont’d) L1 ⊆ L2 iff ∀w ∈ min l L2 (ρ l L2 (L1)): w ∈ L2 iff ∀w ∈ lfp λX. min l L2 b ∪ Fn(X) : w ∈ L2 iff ∀w ∈ min l L2 (lfp λX. ρ l L2 b ∪ Fn(X) : w ∈ L2
  • 40. Word-based antichain algorithm for L(A) ⊆ L2 Data: FA A = Q, δ, q0 , F Data: L2 regular 1 Yq q∈Q := ∅; 2 repeat 3 Xq q∈Q := Yq q∈Q; 4 Yq q∈Q := min l L2 b ∪ Fn( Yq q∈Q) ; 5 until ρ l L2 ( Yq q∈Q) ⊆ ρ l L2 ( Xq q∈Q); 6 forall u ∈ Yq0 do 7 if u /∈ L2 then return false; 8 return true;
  • 41. What else? Nerode left quasiorder relative to L2 [Varricchio,deLuca’94] x l L2 y ⇔ L2 x−1 ⊆ L2 y−1
  • 42. What else? State based quasiorder Let A2 = Q2, δ2, q0 2, F2 be an automaton for L2 x l A2 y ⇔ prex(F2) ⊆ prey(F2) Nerode left quasiorder relative to L2 [Varricchio,deLuca’94] x l L2 y ⇔ L2 x−1 ⊆ L2 y−1
  • 43. What else? State based quasiorder Let A2 = Q2, δ2, q0 2, F2 be an automaton for L2 x l A2 y ⇔ prex(F2) ⊆ prey(F2) Nerode left quasiorder relative to L2 [Varricchio,deLuca’94] x l L2 y ⇔ L2 x−1 ⊆ L2 y−1 1. l A2 ∩ (L2 × L2) = ∅ 2. x l A2 y implies a x l A2 a y for all a 3. l A2 is a well-quasiorder 4. l A2 is decidable
  • 44. What else? State based quasiorder Let A2 = Q2, δ2, q0 2, F2 be an automaton for L2 x l A2 y ⇔ prex(F2) ⊆ prey(F2) Nerode left quasiorder relative to L2 [Varricchio,deLuca’94] x l L2 y ⇔ L2 x−1 ⊆ L2 y−1 1. l A2 ∩ (L2 × L2) = ∅ 2. x l A2 y implies a x l A2 a y for all a 3. l A2 is a well-quasiorder 4. l A2 is decidable l A2 is left L2 consistent decidable wqo
  • 45. Word-based antichain algorithm for L(A1) ⊆ L(A2) Data: FA A1 = Q1, δ1, q0 1, F1 Data: FA A2 = Q2, δ2, q0 2, F2 1 Yq q∈Q1 := ∅; 2 repeat 3 Xq q∈Q1 := Yq q∈Q1 ; 4 Yq q∈Q1 := min l A2 b ∪ Fn( Yq q∈Q1 ) ; 5 until ρ l A2 ( Yq q∈Q1 ) ⊆ ρ l A2 ( Xq q∈Q1 ); 6 forall u ∈ Yq0 1 do 7 if u /∈ L(A2) then return false; 8 return true;
  • 46. Word-based antichain algorithm for L(A1) ⊆ L(A2) Data: FA A1 = Q1, δ1, q0 1, F1 Data: FA A2 = Q2, δ2, q0 2, F2 1 Yq q∈Q1 := ∅; 2 repeat 3 Xq q∈Q1 := Yq q∈Q1 ; 4 Yq q∈Q1 := min l A2 b ∪ Fn( Yq q∈Q1 ) ; 5 until ρ l A2 ( Yq q∈Q1 ) ⊆ ρ l A2 ( Xq q∈Q1 ); 6 forall u ∈ Yq0 1 do 7 if u /∈ L(A2) then return false; 8 return true; State based quasiorder Let A2 = Q2, δ2, q0 2, F2 be an automaton for L2 x l A2 y ⇔ prex(F2) ⊆ prey(F2)
  • 47. Ditching words altogether State-based antichain algorithm for L(A1) ⊆ L(A2) Data: FA A1 = Q1, δ1, q0 1, F1 Data: FA A2 = Q2, δ2, q0 2, F2 1 Yq q∈Q1 := ∅; 2 repeat 3 Xq q∈Q1 := Yq q∈Q1 ; 4 Yq q∈Q1 := [. . .]; 5 until Yq ⊆∀∃ Xq, for all q ∈ Q1; 6 forall s ∈ Yq0 1 do 7 if q0 2 /∈ s then return false; 8 return true; [. . .] = min⊆∀∃ {preA2 a (s) | ∃a ∈ Σ, q ∈ δ1(q, a), s ∈ Xq } ∪ F2
  • 48. • Same as antichain algo • Derived from general solution instantiated to l A2 • Variants of the antichain algorithm as instantiations • Simulation enhanced qo 2 • Nerode’s qo induce the coarsest qo based abstractions
  • 49. • Same as antichain algo • Derived from general solution instantiated to l A2 • Variants of the antichain algorithm as instantiations • Simulation enhanced qo 2 • Nerode’s qo induce the coarsest qo based abstractions l L2 and r L2 are wqo’s if L2 is regular
  • 50. L2 is a one-counter net trace set q2 q1 q3a, 1 a, 0 a, −1 b, 1 The right Nerode qo for L2 ( r L2 ) is a wqo but it’s undecidable u r O2 v is a right L2 consistent decidable wqo u r O2 v iff mu ≤ mv where mu, mv ∈ (N ∪ {⊥})3 L2 = L(O2) is the set of traces from configuration q2 0
  • 51. Decision procedure for L(A1) ⊆ L(O2) using r O2 Word-based antichain algorithm for L(A) ⊆ L(O2) Data: FA A = Q, δ, q0 , F Data: OCN O2 1 Yq q∈Q := ∅; 2 repeat 3 Xq q∈Q := Yq q∈Q; 4 Yq q∈Q := min r O2 b ∪ Gn( Yq q∈Q) ; 5 until ρ r O2 ( Yq q∈Q) ⊆ ρ r O2 ( Xq q∈Q); 6 forall u ∈ Yq0 do 7 if u /∈ L2 then return false; 8 return true;
  • 52. So far. . . L(A1) ⊆ L(A2) L(A1) ⊆ L(O2)
  • 53. ρ(L1) = ρ lfp λX. b ∪ Fn(X) = lfp λX. ρ b ∪ Fn(X) L2 ρ(L1)
  • 54. ρ(L1) = ρ lfp λX. b ∪ Fn(X) = lfp λX. ρ b ∪ Fn(X) L2 ρ(L1) ρ Fn ρ = ρ Fn
  • 55. ρ(L1) = ρ lfp λX. b ∪ Fn(X) = lfp λX. ρ b ∪ Fn(X) L2 ρ(L1) When L1 is regular, ρ is complete for λX. aX for all a ρ Fn ρ = ρ Fn lfp λ Xq Xq . { } ∪ bXq ∅ ∪ aXq ∪ aXq
  • 56. Quasiorders for the case L(G1) ⊆ L(A2) FnG1 is more general: from aX, Xa, aXb, XX
  • 57. Quasiorders for the case L(G1) ⊆ L(A2) FnG1 is more general: from aX, Xa, aXb, XX ρ(L1) = lfp λX. ρ b ∪ FnG1 (X) if ρ is complete for λX. aX and λX. Xa for all a
  • 58. Quasiorders for the case L(G1) ⊆ L(A2) FnG1 is more general: from aX, Xa, aXb, XX 1. ∩ (L2 × L2) = ∅ 2. x y implies a x a y and x a y a for all a ρ(L1) = lfp λX. ρ b ∪ FnG1 (X) if ρ is complete for λX. aX and λX. Xa for all a
  • 59. Quasiorders for the case L(G1) ⊆ L(A2) Myhill quasiorder relative to L2 [Varricchio, deLuca’94] x L2 y ⇔ {(u, v) | u x v∈L2} ⊆ {(u, v) | u y v∈L2} FnG1 is more general: from aX, Xa, aXb, XX 1. ∩ (L2 × L2) = ∅ 2. x y implies a x a y and x a y a for all a ρ(L1) = lfp λX. ρ b ∪ FnG1 (X) if ρ is complete for λX. aX and λX. Xa for all a
  • 60. Quasiorders for the case L(G1) ⊆ L(A2) Myhill quasiorder relative to L2 [Varricchio, deLuca’94] x L2 y ⇔ {(u, v) | u x v∈L2} ⊆ {(u, v) | u y v∈L2} State based quasi order [Netys’15] x A2 y ⇔ {(q, q ) | q x q } ⊆ {(q, q ) | q y q } FnG1 is more general: from aX, Xa, aXb, XX 1. ∩ (L2 × L2) = ∅ 2. x y implies a x a y and x a y a for all a ρ(L1) = lfp λX. ρ b ∪ FnG1 (X) if ρ is complete for λX. aX and λX. Xa for all a
  • 61. Greatest fixpoint based approach lfp λX. b ∪ Fn(X) ⊆ L2 iff b ⊆ gfp λX. L2 ∩ Fn(X) ∪ becomes ∩ λX. aX becomes λX. a−1 X ρ Fn ρ = ρ Fn becomes ρ Fn ρ = Fn ρ gfp λX. ρ(L2 ∩ Fn(X)) stepwise equal gfp λX. L2 ∩ Fn(X)
  • 62. Greatest fixpoint based approach lfp λX. b ∪ Fn(X) ⊆ L2 iff b ⊆ gfp λX. L2 ∩ Fn(X) ∪ becomes ∩ λX. aX becomes λX. a−1 X ρ Fn ρ = ρ Fn becomes ρ Fn ρ = Fn ρ gfp λX. ρ(L2 ∩ Fn(X)) stepwise equal gfp λX. L2 ∩ Fn(X) Does not terminate in general
  • 63. Greatest fixpoint based approach lfp λX. b ∪ Fn(X) ⊆ L2 iff b ⊆ gfp λX. L2 ∩ Fn(X) ∪ becomes ∩ λX. aX becomes λX. a−1 X ρ Fn ρ = ρ Fn becomes ρ Fn ρ = Fn ρ gfp λX. ρ(L2 ∩ Fn(X)) stepwise equal gfp λX. L2 ∩ Fn(X) Does not terminate in general Does always terminate 1
  • 65. Conclusion Promising framework for language inclusion Extension to trees, ω-languages, timed languages,. . .
  • 66. Conclusion Promising framework for language inclusion Extension to trees, ω-languages, timed languages,. . . Technical Report 1904.01388 on arxiv.org