Introductory Problem
DECISION THEORY
DECISION MAKING UNDER RISK
Suppose an electrical goods merchant buys, for resale purposes in a
market, electric irons in the range of 0 to 4. His resources permit him
to buy nothing or 1 or 2 or 3 or 4 units. These are his alternative
courses of action or strategies. The demand for electric irons on any
day is something beyond his control and hence is a state of nature.
Let us presume that the dealer does not know how many units will
be bought from him by the customers. The demand could be
anything from 0 to 4. The dealer can buy each unit of electric iron @
Rs.40 and sell it at Rs.45 each, his margin being Rs.5 per unit.
Assume the stock on hand is valueless. Portray in a payoff table and
opportunity loss table the quantum of total margin (loss), that he
gets in relation to various alternative strategies and states of nature.
Payoff Matrix
Courses of Action
0 1 2 3 4
States
of
Nature
0 0–0=0
1 0–0=0
2 0–0=0
3 0–0=0
4 0–0=0
Payoff Matrix
Courses of Action
0 1 2 3 4
States
of
Nature
0 0–0=0 0–40=–40
1 0–0=0 45–40=5
2 0–0=0 45–40=5
3 0–0=0 45–40=5
4 0–0=0 45–40=5
Payoff Matrix
Courses of Action
0 1 2 3 4
States
of
Nature
0 0–0=0 0–40=–40 0–2×40=–80 0–3×40=–120 0–4×40=–160
1 0–0=0 45–40=5 45–2×40=–35 45–3×40=–75 45–4×40=–115
2 0–0=0 45–40=5 2×45–2×40=10 2×45–3×40=–30 2×45–4×40=–70
3 0–0=0 45–40=5 2×45–2×40=10 3×45–3×40=15 3×45–4×40=–25
4 0–0=0 45–40=5 2×45–2×40=10 3×45–3×40=15 4×45–4×40=20
Payoff Matrix
Courses of Action
0 1 2 3 4
States
of
Nature
0 0 –40 –80 –120 –160
1 0 5 –35 –75 –115
2 0 5 10 –30 –70
3 0 5 10 15 –25
4 0 5 10 15 20
Courses of Action
Probability
0 1 2 3 4
States
of
Nature
0 0 –40 –80 –120 –160 0.04
1 0 5 –35 –75 –115 0.06
2 0 5 10 –30 –70 0.20
3 0 5 10 15 –25 0.30
4 0 5 10 15 20 0.40
EXPECTED MONETARY VALUE (EMV)
CALCULATION
0 1 2 3 4 P
0 0 –40 –80 –120 –160 0.04
1 0 5 –35 –75 –115 0.06
2 0 5 10 –30 –70 0.20
3 0 5 10 15 –25 0.30
4 0 5 10 15 20 0.40
𝑬𝑴𝑽 𝟎 = 𝟎 × 𝟎. 𝟎𝟒 + 𝟎 × 𝟎. 𝟎𝟔 + 𝟎 × 𝟎. 𝟐 + 𝟎 × 𝟎. 𝟑 + 𝟎 × 𝟎. 𝟒 = 𝟎
0 1 2 3 4 P
0 0 –40 –80 –120 –160 0.04
1 0 5 –35 –75 –115 0.06
2 0 5 10 –30 –70 0.20
3 0 5 10 15 –25 0.30
4 0 5 10 15 20 0.40
𝑬𝑴𝑽 𝟎 = 𝟎 × 𝟎. 𝟎𝟒 + 𝟎 × 𝟎. 𝟎𝟔 + 𝟎 × 𝟎. 𝟐 + 𝟎 × 𝟎. 𝟑 + 𝟎 × 𝟎. 𝟒 = 𝟎
𝑬𝑴𝑽 𝟏 = −𝟒𝟎 × 𝟎. 𝟎𝟒 + 𝟓 × 𝟎. 𝟎𝟔 + 𝟓 × 𝟎. 𝟐 + 𝟓 × 𝟎. 𝟑 + 𝟓 × 𝟎. 𝟒 = 𝟑. 𝟐
𝑬𝑴𝑽 𝟐 = −𝟖𝟎 × 𝟎. 𝟎𝟒 + −𝟑𝟓 × 𝟎. 𝟎𝟔 + 𝟏𝟎 × 𝟎. 𝟐 + 𝟏𝟎 × 𝟎. 𝟑 + 𝟏𝟎 × 𝟎. 𝟒 = 𝟑. 𝟕
𝑬𝑴𝑽 𝟑 = −𝟏𝟐𝟎 × 𝟎. 𝟎𝟒 + −𝟕𝟓 × 𝟎. 𝟎𝟔 + −𝟑𝟎 × 𝟎. 𝟐 + 𝟏𝟓 × 𝟎. 𝟑 + 𝟏𝟓 × 𝟎. 𝟒 = −𝟒. 𝟖
𝑬𝑴𝑽 𝟒 = −𝟏𝟔𝟎 × 𝟎. 𝟎𝟒 + −𝟏𝟏𝟓 × 𝟎. 𝟎𝟔 + −𝟕𝟎 × 𝟎. 𝟐 + −𝟐𝟓 × 𝟎. 𝟑 + 𝟐𝟎 × 𝟎. 𝟒 = −𝟐𝟔. 𝟖
0 1 2 3 4 P
0 0 –40 –80 –120 –160 0.04
1 0 5 –35 –75 –115 0.06
2 0 5 10 –30 –70 0.20
3 0 5 10 15 –25 0.30
4 0 5 10 15 20 0.40
EMV 0 3.2 3.7 –4.8 –26.8
0 1 2 3 4 P
0 0 –40 –80 –120 –160 0.04
1 0 5 –35 –75 –115 0.06
2 0 5 10 –30 –70 0.20
3 0 5 10 15 –25 0.30
4 0 5 10 15 20 0.40
EMV 0 3.2 3.7 –4.8 –26.8
𝑬𝑴𝑽 𝒎𝒂𝒙 = 𝑬𝑴𝑽 𝟐 = 𝟑. 𝟕
REGRET TABLE
Payoff Table
0 1 2 3 4
0 0 –40 –80 –120 –160
1 0 5 –35 –75 –115
2 0 5 10 –30 –70
3 0 5 10 15 –25
4 0 5 10 15 20
Regret/Opportunity Loss Table
Courses of Action
0 1 2 3 4
States
of
Nature
0 0–0=0
1 5–0=5
2 10–0=10
3 15–0=15
4 20–0=20
Payoff Table
0 1 2 3 4
0 0 –40 –80 –120 –160
1 0 5 –35 –75 –115
2 0 5 10 –30 –70
3 0 5 10 15 –25
4 0 5 10 15 20
Regret/Opportunity Loss Table
Courses of Action
0 1 2 3 4
States
of
Nature
0 0–0=0 0–(–40)=40
1 5–0=5 5–5=0
2 10–0=10 10–5=5
3 15–0=15 15–5=10
4 20–0=20 20–5=15
Payoff Table
0 1 2 3 4
0 0 –40 –80 –120 –160
1 0 5 –35 –75 –115
2 0 5 10 –30 –70
3 0 5 10 15 –25
4 0 5 10 15 20
Regret/Opportunity Loss Table
Courses of Action
0 1 2 3 4
States
of
Nature
0 0–0=0 0–(–40)=40 0–(–80)=80 0–(–120)=120 0–(–160)=160
1 5–0=5 5–5=0 5–(–35)=40 5–(–75)=80 5–(–115)=120
2 10–0=10 10–5=5 10–10=0 10–(–30)=40 10–(–70)=80
3 15–0=15 15–5=10 15–10=5 15–15=0 15–(–25)=40
4 20–0=20 20–5=15 20–10=10 20–15=5 20–20=0
Regret/Opportunity Loss Table
Courses of Action
0 1 2 3 4
States
of
Nature
0 0 40 80 120 160
1 5 0 40 80 120
2 10 5 0 40 80
3 15 10 5 0 40
4 20 15 10 5 0
Regret/Opportunity Loss Table
Courses of Action
P
0 1 2 3 4
States
of
Nature
0 0 40 80 120 160 0.04
1 5 0 40 80 120 0.06
2 10 5 0 40 80 0.20
3 15 10 5 0 40 0.30
4 20 15 10 5 0 0.40
EXPECTED OPPORTUNITY LOSS (EOL)
CALCULATION
Regret/Opportunity Loss Table
Courses of Action
P
0 1 2 3 4
States
of
Nature
0 0 40 80 120 160 0.04
1 5 0 40 80 120 0.06
2 10 5 0 40 80 0.20
3 15 10 5 0 40 0.30
4 20 15 10 5 0 0.40
𝑬𝑶𝑳 𝟎 = 𝟎 × 𝟎. 𝟎𝟒 + 𝟓 × 𝟎. 𝟎𝟔 + 𝟏𝟎 × 𝟎. 𝟐 + 𝟏𝟓 × 𝟎. 𝟑 + 𝟐𝟎 × 𝟎. 𝟒 = 𝟏𝟒. 𝟖
Regret/Opportunity Loss Table
Courses of Action
P
0 1 2 3 4
States
of
Nature
0 0 40 80 120 160 0.04
1 5 0 40 80 120 0.06
2 10 5 0 40 80 0.20
3 15 10 5 0 40 0.30
4 20 15 10 5 0 0.40
𝑬𝑶𝑳 𝟎 = 𝟎 × 𝟎. 𝟎𝟒 + 𝟓 × 𝟎. 𝟎𝟔 + 𝟏𝟎 × 𝟎. 𝟐 + 𝟏𝟓 × 𝟎. 𝟑 + 𝟐𝟎 × 𝟎. 𝟒 = 𝟏𝟒. 𝟖
𝑬𝑶𝑳 𝟏 = 𝟒𝟎 × 𝟎. 𝟎𝟒 + 𝟎 × 𝟎. 𝟎𝟔 + 𝟓 × 𝟎. 𝟐 + 𝟏𝟎 × 𝟎. 𝟑 + 𝟏𝟓 × 𝟎. 𝟒 = 𝟏𝟏. 𝟔
𝑬𝑶𝑳 𝟐 = 𝟖𝟎 × 𝟎. 𝟎𝟒 + 𝟒𝟎 × 𝟎. 𝟎𝟔 + 𝟎 × 𝟎. 𝟐 + 𝟓 × 𝟎. 𝟑 + 𝟏𝟎 × 𝟎. 𝟒 = 𝟏𝟏. 𝟏
𝑬𝑶𝑳 𝟑 = 𝟏𝟐𝟎 × 𝟎. 𝟎𝟒 + 𝟖𝟎 × 𝟎. 𝟎𝟔 + 𝟒𝟎 × 𝟎. 𝟐 + 𝟎 × 𝟎. 𝟑 + 𝟓 × 𝟎. 𝟒 = 𝟏𝟗. 𝟔
𝑬𝑶𝑳 𝟒 = 𝟏𝟔𝟎 × 𝟎. 𝟎𝟒 + 𝟏𝟐𝟎 × 𝟎. 𝟎𝟔 + 𝟖𝟎 × 𝟎. 𝟐 + 𝟒𝟎 × 𝟎. 𝟑 + 𝟎 × 𝟎. 𝟒 = 𝟒𝟏. 𝟔
Regret/Opportunity Loss Table
Courses of Action
P
0 1 2 3 4
States
of
Nature
0 0 40 80 120 160 0.04
1 5 0 40 80 120 0.06
2 10 5 0 40 80 0.20
3 15 10 5 0 40 0.30
4 20 15 10 5 0 0.40
EOL 14.8 11.6 11.1 19.6 41.6
Regret/Opportunity Loss Table
Courses of Action
P
0 1 2 3 4
States
of
Nature
0 0 40 80 120 160 0.04
1 5 0 40 80 120 0.06
2 10 5 0 40 80 0.20
3 15 10 5 0 40 0.30
4 20 15 10 5 0 0.40
EOL 14.8 11.6 11.1 19.6 41.6
𝑬𝑶𝑳 𝒎𝒊𝒏 = 𝑬𝑶𝑳 𝟐 = 𝟏𝟏. 𝟏
EXPECTED VALUE WITH PERFECT
INFORMATION
EV with PI
Payoff Matrix
Courses of Action
P
0 1 2 3 4
States
of
Nature
0 0 –40 –80 –120 –160 0.04
1 0 5 –35 –75 –115 0.06
2 0 5 10 –30 –70 0.20
3 0 5 10 15 –25 0.30
4 0 5 10 15 20 0.40
𝑬𝑽 𝒘𝒊𝒕𝒉 𝑷𝑰 = 𝚺 𝑴𝒂𝒙 𝑬𝑴𝑽 𝒇𝒐𝒓 𝒆𝒂𝒄𝒉 𝑺𝒕𝒂𝒕𝒆 𝒐𝒇 𝑵𝒂𝒕𝒖𝒓𝒆 × 𝑷
Payoff Matrix
Courses of Action
P
0 1 2 3 4
States
of
Nature
0 0 –40 –80 –120 –160 0.04
1 0 5 –35 –75 –115 0.06
2 0 5 10 –30 –70 0.20
3 0 5 10 15 –25 0.30
4 0 5 10 15 20 0.40
𝑬𝑽 𝒘𝒊𝒕𝒉 𝑷𝑰 = 𝚺 𝑴𝒂𝒙 𝑬𝑴𝑽 𝒇𝒐𝒓 𝒆𝒂𝒄𝒉 𝑺𝒕𝒂𝒕𝒆 𝒐𝒇 𝑵𝒂𝒕𝒖𝒓𝒆 × 𝑷
Payoff Matrix
Courses of Action
P
0 1 2 3 4
States
of
Nature
0 0 –40 –80 –120 –160 0.04
1 0 5 –35 –75 –115 0.06
2 0 5 10 –30 –70 0.20
3 0 5 10 15 –25 0.30
4 0 5 10 15 20 0.40
𝑬𝑽 𝒘𝒊𝒕𝒉 𝑷𝑰 = 𝟎 × 𝟎. 𝟎𝟒 + 𝟓 × 𝟎. 𝟎𝟔 + 𝟏𝟎 × 𝟎. 𝟐 + 𝟏𝟓 × 𝟎. 𝟑 + 𝟐𝟎 × 𝟎. 𝟒
∴ 𝑬𝑽 𝒘𝒊𝒕𝒉 𝑷𝑰 = 𝟏𝟒. 𝟖
EXPECTED VALUE OF PERFECT
INFORMATION
EVPI
𝑬𝑽𝑷𝑰 = 𝑬𝑽 𝒘𝒊𝒕𝒉 𝑷𝑰 − 𝑬𝑴𝑽 𝒎𝒂𝒙
𝒐𝒓 𝑬𝑽𝑷𝑰 = 𝟏𝟒. 𝟖 − 𝟑. 𝟕
𝒐𝒓 𝑬𝑽𝑷𝑰 = 𝟏𝟏. 𝟏
𝑬𝑽𝑷𝑰 = 𝑬𝑽 𝒘𝒊𝒕𝒉 𝑷𝑰 − 𝑬𝑴𝑽 𝒎𝒂𝒙
𝒐𝒓 𝑬𝑽𝑷𝑰 = 𝟏𝟒. 𝟖 − 𝟑. 𝟕
𝒐𝒓 𝑬𝑽𝑷𝑰 = 𝟏𝟏. 𝟏
𝑨𝒍𝒕𝒆𝒓𝒏𝒂𝒕𝒆𝒍𝒚,
𝑬𝑽𝑷𝑰 = 𝑬𝑶𝑳 𝒎𝒊𝒏 = 𝑬𝑶𝑳 𝟐 = 𝟏𝟏. 𝟏
DECISION MAKING UNDER
UNCERTAINTY
DECISION CRITERIA UNDER CONDITION OF
UNCERTAINTY
• Maximin.
• Maximax.
• Minimax Regret.
• Hurwicz Criterion.
• Baye’s/Lapalce’s Criterion.
CRITERION OF PESSIMISM (MAXIMIN)
• Also called ‘Waldian Criterion.’
• Determine the lowest outcome for each alternative.
• Choose the alternative associated with the best of these.
CRITERION OF OPTIMISM (MAXIMAX)
• Suggested by Leonid Hurwicz.
• Determine the best outcome for each alternative.
• Select the alternative associated with the best of these.
MINIMAX REGRET CRITERION
• Attributed to Leonard Savage.
• For each state, identify the most attractive alternative.
• Place a zero in those cells.
• Compute opportunity loss for other alternatives.
• Identify the maximum opportunity loss for each alternative.
• Select the alternative associated with the lowest of these.
CRITERION OF REALISM (HURWICZ CRITERION)
• A compromise between maximax and maximin criteria.
• A coefficient of optimism α (0≤α≤1) is selected.
• When α is close to 1, the decision-maker is optimistic about the
future.
• When α is close to 0, the decision-maker is pessimistic about the
future.
HURWICZ CRITERION
• Select the strategy which maximises:
LAPLACE CRITERION
• Assign equal probabilities to each state.
• Compute the expected value for each alternative.
• Select the alternative with the highest alternative.
CRITERION OF PESSIMISM (MAXIMIN)
Payoff Matrix
Courses of Action
0 1 2 3 4
States
of
Nature
0 0 –40 –80 –120 –160
1 0 5 –35 –75 –115
2 0 5 10 –30 –70
3 0 5 10 15 –25
4 0 5 10 15 20
Payoff Matrix: Maximin Criterion
Courses of Action
0 1 2 3 4
States
of
Nature
0 0 –40 –80 –120 –160
1 0 5 –35 –75 –115
2 0 5 10 –30 –70
3 0 5 10 15 –25
4 0 5 10 15 20
𝑴𝒂𝒙𝒊𝒎𝒊𝒏 𝑪𝒓𝒊𝒕𝒆𝒓𝒊𝒐𝒏:
≫ 𝑴𝒂𝒙𝒊𝒎𝒖𝒎 𝒐𝒇 𝒕𝒉𝒆 𝒄𝒐𝒍𝒖𝒎𝒏
𝒎𝒊𝒏𝒊𝒎𝒂
≫ 𝒊. 𝒆. , 𝒇𝒊𝒏𝒅 𝒕𝒉𝒆 𝒎𝒊𝒏𝒊𝒎𝒖𝒎
𝒑𝒂𝒚𝒐𝒇𝒇 𝒊𝒏 𝒆𝒂𝒄𝒉 𝒄𝒐𝒍𝒖𝒎𝒏
≫ 𝑭𝒊𝒏𝒅 𝒕𝒉𝒆 𝒎𝒂𝒙𝒊𝒎𝒖𝒎 𝒐𝒇
𝒕𝒉𝒆𝒔𝒆 𝒑𝒂𝒚𝒐𝒇𝒇𝒔
≫ 𝑻𝒉𝒆 𝒄𝒐𝒖𝒓𝒔𝒆 𝒐𝒇 𝒂𝒄𝒕𝒊𝒐𝒏
𝒄𝒐𝒓𝒓𝒆𝒔𝒑𝒐𝒏𝒅𝒊𝒏𝒈 𝒕𝒐 𝒕𝒉𝒊𝒔
𝒑𝒂𝒚𝒐𝒇𝒇 𝒊𝒔 𝒕𝒉𝒆 𝒂𝒏𝒔𝒘𝒆𝒓
Payoff Matrix: Maximin Criterion
Courses of Action
0 1 2 3 4
States
of
Nature
0 0 –40 –80 –120 –160
1 0 5 –35 –75 –115
2 0 5 10 –30 –70
3 0 5 10 15 –25
4 0 5 10 15 20
Column Minima 0 –40 –80 –120 –160
𝑴𝒂𝒙𝒊𝒎𝒊𝒏 𝑪𝒓𝒊𝒕𝒆𝒓𝒊𝒐𝒏:
≫ 𝑴𝒂𝒙𝒊𝒎𝒖𝒎 𝒐𝒇 𝒕𝒉𝒆 𝒄𝒐𝒍𝒖𝒎𝒏
𝒎𝒊𝒏𝒊𝒎𝒂
≫ 𝒊. 𝒆. , 𝒇𝒊𝒏𝒅 𝒕𝒉𝒆 𝒎𝒊𝒏𝒊𝒎𝒖𝒎
𝒑𝒂𝒚𝒐𝒇𝒇 𝒊𝒏 𝒆𝒂𝒄𝒉 𝒄𝒐𝒍𝒖𝒎𝒏
≫ 𝑭𝒊𝒏𝒅 𝒕𝒉𝒆 𝒎𝒂𝒙𝒊𝒎𝒖𝒎 𝒐𝒇
𝒕𝒉𝒆𝒔𝒆 𝒑𝒂𝒚𝒐𝒇𝒇𝒔
≫ 𝑻𝒉𝒆 𝒄𝒐𝒖𝒓𝒔𝒆 𝒐𝒇 𝒂𝒄𝒕𝒊𝒐𝒏
𝒄𝒐𝒓𝒓𝒆𝒔𝒑𝒐𝒏𝒅𝒊𝒏𝒈 𝒕𝒐 𝒕𝒉𝒊𝒔
𝒑𝒂𝒚𝒐𝒇𝒇 𝒊𝒔 𝒕𝒉𝒆 𝒂𝒏𝒔𝒘𝒆𝒓
Payoff Matrix: Maximin Criterion
Courses of Action
0 1 2 3 4
States
of
Nature
0 0 –40 –80 –120 –160
1 0 5 –35 –75 –115
2 0 5 10 –30 –70
3 0 5 10 15 –25
4 0 5 10 15 20
Column Minima 0 –40 –80 –120 –160
Maximum of the column minima=0
𝑴𝒂𝒙𝒊𝒎𝒊𝒏 𝑪𝒓𝒊𝒕𝒆𝒓𝒊𝒐𝒏:
≫ 𝑴𝒂𝒙𝒊𝒎𝒖𝒎 𝒐𝒇 𝒕𝒉𝒆 𝒄𝒐𝒍𝒖𝒎𝒏
𝒎𝒊𝒏𝒊𝒎𝒂
≫ 𝒊. 𝒆. , 𝒇𝒊𝒏𝒅 𝒕𝒉𝒆 𝒎𝒊𝒏𝒊𝒎𝒖𝒎
𝒑𝒂𝒚𝒐𝒇𝒇 𝒊𝒏 𝒆𝒂𝒄𝒉 𝒄𝒐𝒍𝒖𝒎𝒏
≫ 𝑭𝒊𝒏𝒅 𝒕𝒉𝒆 𝒎𝒂𝒙𝒊𝒎𝒖𝒎 𝒐𝒇
𝒕𝒉𝒆𝒔𝒆 𝒑𝒂𝒚𝒐𝒇𝒇𝒔
≫ 𝑻𝒉𝒆 𝒄𝒐𝒖𝒓𝒔𝒆 𝒐𝒇 𝒂𝒄𝒕𝒊𝒐𝒏
𝒄𝒐𝒓𝒓𝒆𝒔𝒑𝒐𝒏𝒅𝒊𝒏𝒈 𝒕𝒐 𝒕𝒉𝒊𝒔
𝒑𝒂𝒚𝒐𝒇𝒇 𝒊𝒔 𝒕𝒉𝒆 𝒂𝒏𝒔𝒘𝒆𝒓
Payoff Matrix: Maximin Criterion
Courses of Action
0 1 2 3 4
States
of
Nature
0 0 –40 –80 –120 –160
1 0 5 –35 –75 –115
2 0 5 10 –30 –70
3 0 5 10 15 –25
4 0 5 10 15 20
Column Minima 0 –40 –80 –120 –160
Maximum of the column minima=0
𝑴𝒂𝒙𝒊𝒎𝒊𝒏 𝑪𝒓𝒊𝒕𝒆𝒓𝒊𝒐𝒏:
≫ 𝑴𝒂𝒙𝒊𝒎𝒖𝒎 𝒐𝒇 𝒕𝒉𝒆 𝒄𝒐𝒍𝒖𝒎𝒏
𝒎𝒊𝒏𝒊𝒎𝒂
≫ 𝒊. 𝒆. , 𝒇𝒊𝒏𝒅 𝒕𝒉𝒆 𝒎𝒊𝒏𝒊𝒎𝒖𝒎
𝒑𝒂𝒚𝒐𝒇𝒇 𝒊𝒏 𝒆𝒂𝒄𝒉 𝒄𝒐𝒍𝒖𝒎𝒏
≫ 𝑭𝒊𝒏𝒅 𝒕𝒉𝒆 𝒎𝒂𝒙𝒊𝒎𝒖𝒎 𝒐𝒇
𝒕𝒉𝒆𝒔𝒆 𝒑𝒂𝒚𝒐𝒇𝒇𝒔
≫ 𝑻𝒉𝒆 𝒄𝒐𝒖𝒓𝒔𝒆 𝒐𝒇 𝒂𝒄𝒕𝒊𝒐𝒏
𝒄𝒐𝒓𝒓𝒆𝒔𝒑𝒐𝒏𝒅𝒊𝒏𝒈 𝒕𝒐 𝒕𝒉𝒊𝒔
𝒑𝒂𝒚𝒐𝒇𝒇 𝒊𝒔 𝒕𝒉𝒆 𝒂𝒏𝒔𝒘𝒆𝒓
∴ 𝒕𝒉𝒆 𝒃𝒆𝒔𝒕 𝒄𝒐𝒖𝒓𝒔𝒆 𝒐𝒇 𝒂𝒄𝒕𝒊𝒐𝒏 𝒂𝒄𝒄𝒐𝒓𝒅𝒊𝒏𝒈 𝒕𝒐 𝒕𝒉𝒆 𝒎𝒂𝒙𝒊𝒎𝒊𝒏 𝒄𝒓𝒊𝒕𝒆𝒓𝒊𝒐𝒏 = 𝟎
CRITERION OF OPTIMISM (MAXIMAX)
Payoff Matrix
Courses of Action
0 1 2 3 4
States
of
Nature
0 0 –40 –80 –120 –160
1 0 5 –35 –75 –115
2 0 5 10 –30 –70
3 0 5 10 15 –25
4 0 5 10 15 20
Payoff Matrix: Maximax Criterion
Courses of Action
0 1 2 3 4
States
of
Nature
0 0 –40 –80 –120 –160
1 0 5 –35 –75 –115
2 0 5 10 –30 –70
3 0 5 10 15 –25
4 0 5 10 15 20
𝑴𝒂𝒙𝒊𝒎𝒂𝒙 𝑪𝒓𝒊𝒕𝒆𝒓𝒊𝒐𝒏:
≫ 𝑴𝒂𝒙𝒊𝒎𝒖𝒎 𝒐𝒇 𝒕𝒉𝒆 𝒄𝒐𝒍𝒖𝒎𝒏
𝒎𝒂𝒙𝒊𝒎𝒂
≫ 𝒊. 𝒆. , 𝒇𝒊𝒏𝒅 𝒕𝒉𝒆 𝒎𝒂𝒙𝒊𝒎𝒖𝒎
𝒑𝒂𝒚𝒐𝒇𝒇 𝒊𝒏 𝒆𝒂𝒄𝒉 𝒄𝒐𝒍𝒖𝒎𝒏
≫ 𝑭𝒊𝒏𝒅 𝒕𝒉𝒆 𝒎𝒂𝒙𝒊𝒎𝒖𝒎 𝒐𝒇
𝒕𝒉𝒆𝒔𝒆 𝒑𝒂𝒚𝒐𝒇𝒇𝒔
≫ 𝑻𝒉𝒆 𝒄𝒐𝒖𝒓𝒔𝒆 𝒐𝒇 𝒂𝒄𝒕𝒊𝒐𝒏
𝒄𝒐𝒓𝒓𝒆𝒔𝒑𝒐𝒏𝒅𝒊𝒏𝒈 𝒕𝒐 𝒕𝒉𝒊𝒔
𝒑𝒂𝒚𝒐𝒇𝒇 𝒊𝒔 𝒕𝒉𝒆 𝒂𝒏𝒔𝒘𝒆𝒓
Payoff Matrix: Maximax Criterion
Courses of Action
0 1 2 3 4
States
of
Nature
0 0 –40 –80 –120 –160
1 0 5 –35 –75 –115
2 0 5 10 –30 –70
3 0 5 10 15 –25
4 0 5 10 15 20
Column Maxima 0 5 10 15 20
𝑴𝒂𝒙𝒊𝒎𝒂𝒙 𝑪𝒓𝒊𝒕𝒆𝒓𝒊𝒐𝒏:
≫ 𝑴𝒂𝒙𝒊𝒎𝒖𝒎 𝒐𝒇 𝒕𝒉𝒆 𝒄𝒐𝒍𝒖𝒎𝒏
𝒎𝒂𝒙𝒊𝒎𝒂
≫ 𝒊. 𝒆. , 𝒇𝒊𝒏𝒅 𝒕𝒉𝒆 𝒎𝒂𝒙𝒊𝒎𝒖𝒎
𝒑𝒂𝒚𝒐𝒇𝒇 𝒊𝒏 𝒆𝒂𝒄𝒉 𝒄𝒐𝒍𝒖𝒎𝒏
≫ 𝑭𝒊𝒏𝒅 𝒕𝒉𝒆 𝒎𝒂𝒙𝒊𝒎𝒖𝒎 𝒐𝒇
𝒕𝒉𝒆𝒔𝒆 𝒑𝒂𝒚𝒐𝒇𝒇𝒔
≫ 𝑻𝒉𝒆 𝒄𝒐𝒖𝒓𝒔𝒆 𝒐𝒇 𝒂𝒄𝒕𝒊𝒐𝒏
𝒄𝒐𝒓𝒓𝒆𝒔𝒑𝒐𝒏𝒅𝒊𝒏𝒈 𝒕𝒐 𝒕𝒉𝒊𝒔
𝒑𝒂𝒚𝒐𝒇𝒇 𝒊𝒔 𝒕𝒉𝒆 𝒂𝒏𝒔𝒘𝒆𝒓
Payoff Matrix: Maximax Criterion
Courses of Action
0 1 2 3 4
States
of
Nature
0 0 –40 –80 –120 –160
1 0 5 –35 –75 –115
2 0 5 10 –30 –70
3 0 5 10 15 –25
4 0 5 10 15 20
Column Maxima 0 5 10 15 20
Maximum of the column maxima=20
𝑴𝒂𝒙𝒊𝒎𝒂𝒙 𝑪𝒓𝒊𝒕𝒆𝒓𝒊𝒐𝒏:
≫ 𝑴𝒂𝒙𝒊𝒎𝒖𝒎 𝒐𝒇 𝒕𝒉𝒆 𝒄𝒐𝒍𝒖𝒎𝒏
𝒎𝒂𝒙𝒊𝒎𝒂
≫ 𝒊. 𝒆. , 𝒇𝒊𝒏𝒅 𝒕𝒉𝒆 𝒎𝒂𝒙𝒊𝒎𝒖𝒎
𝒑𝒂𝒚𝒐𝒇𝒇 𝒊𝒏 𝒆𝒂𝒄𝒉 𝒄𝒐𝒍𝒖𝒎𝒏
≫ 𝑭𝒊𝒏𝒅 𝒕𝒉𝒆 𝒎𝒂𝒙𝒊𝒎𝒖𝒎 𝒐𝒇
𝒕𝒉𝒆𝒔𝒆 𝒑𝒂𝒚𝒐𝒇𝒇𝒔
≫ 𝑻𝒉𝒆 𝒄𝒐𝒖𝒓𝒔𝒆 𝒐𝒇 𝒂𝒄𝒕𝒊𝒐𝒏
𝒄𝒐𝒓𝒓𝒆𝒔𝒑𝒐𝒏𝒅𝒊𝒏𝒈 𝒕𝒐 𝒕𝒉𝒊𝒔
𝒑𝒂𝒚𝒐𝒇𝒇 𝒊𝒔 𝒕𝒉𝒆 𝒂𝒏𝒔𝒘𝒆𝒓
Payoff Matrix: Maximax Criterion
Courses of Action
0 1 2 3 4
States
of
Nature
0 0 –40 –80 –120 –160
1 0 5 –35 –75 –115
2 0 5 10 –30 –70
3 0 5 10 15 –25
4 0 5 10 15 20
Column Maxima 0 5 10 15 20
Maximum of the column maxima=20
𝑴𝒂𝒙𝒊𝒎𝒂𝒙 𝑪𝒓𝒊𝒕𝒆𝒓𝒊𝒐𝒏:
≫ 𝑴𝒂𝒙𝒊𝒎𝒖𝒎 𝒐𝒇 𝒕𝒉𝒆 𝒄𝒐𝒍𝒖𝒎𝒏
𝒎𝒂𝒙𝒊𝒎𝒂
≫ 𝒊. 𝒆. , 𝒇𝒊𝒏𝒅 𝒕𝒉𝒆 𝒎𝒂𝒙𝒊𝒎𝒖𝒎
𝒑𝒂𝒚𝒐𝒇𝒇 𝒊𝒏 𝒆𝒂𝒄𝒉 𝒄𝒐𝒍𝒖𝒎𝒏
≫ 𝑭𝒊𝒏𝒅 𝒕𝒉𝒆 𝒎𝒂𝒙𝒊𝒎𝒖𝒎 𝒐𝒇
𝒕𝒉𝒆𝒔𝒆 𝒑𝒂𝒚𝒐𝒇𝒇𝒔
≫ 𝑻𝒉𝒆 𝒄𝒐𝒖𝒓𝒔𝒆 𝒐𝒇 𝒂𝒄𝒕𝒊𝒐𝒏
𝒄𝒐𝒓𝒓𝒆𝒔𝒑𝒐𝒏𝒅𝒊𝒏𝒈 𝒕𝒐 𝒕𝒉𝒊𝒔
𝒑𝒂𝒚𝒐𝒇𝒇 𝒊𝒔 𝒕𝒉𝒆 𝒂𝒏𝒔𝒘𝒆𝒓
∴ 𝒕𝒉𝒆 𝒃𝒆𝒔𝒕 𝒄𝒐𝒖𝒓𝒔𝒆 𝒐𝒇 𝒂𝒄𝒕𝒊𝒐𝒏 𝒂𝒄𝒄𝒐𝒓𝒅𝒊𝒏𝒈 𝒕𝒐 𝒕𝒉𝒆 𝒎𝒂𝒙𝒊𝒎𝒂𝒙 𝒄𝒓𝒊𝒕𝒆𝒓𝒊𝒐𝒏 = 𝟒
MINIMAX REGRET CRITERION
Regret/Opportunity Loss Table
Courses of Action
0 1 2 3 4
States
of
Nature
0 0 40 80 120 160
1 5 0 40 80 120
2 10 5 0 40 80
3 15 10 5 0 40
4 20 15 10 5 0
Regret Table (Minimax Regret Criterion)
Courses of Action
0 1 2 3 4
States
of
Nature
0 0 40 80 120 160
1 5 0 40 80 120
2 10 5 0 40 80
3 15 10 5 0 40
4 20 15 10 5 0
𝑴𝒊𝒏𝒊𝒎𝒂𝒙 𝑹𝒆𝒈𝒓𝒆𝒕 𝑪𝒓𝒊𝒕𝒆𝒓𝒊𝒐𝒏:
≫ 𝑴𝒊𝒏𝒊𝒎𝒖𝒎 𝒐𝒇 𝒕𝒉𝒆 𝒄𝒐𝒍𝒖𝒎𝒏
𝒎𝒂𝒙𝒊𝒎𝒂 (𝒊𝒏 𝒕𝒉𝒆 𝒓𝒆𝒈𝒓𝒆𝒕 𝒕𝒂𝒃𝒍𝒆)
≫ 𝒊. 𝒆. , 𝒇𝒊𝒏𝒅 𝒕𝒉𝒆 𝒎𝒂𝒙𝒊𝒎𝒖𝒎
𝒓𝒆𝒈𝒓𝒆𝒕 𝒊𝒏 𝒆𝒂𝒄𝒉 𝒄𝒐𝒍𝒖𝒎𝒏
≫ 𝑭𝒊𝒏𝒅 𝒕𝒉𝒆 𝒎𝒊𝒏𝒊𝒎𝒖𝒎 𝒐𝒇
𝒕𝒉𝒆𝒔𝒆 𝒓𝒆𝒈𝒓𝒆𝒕𝒔
≫ 𝑻𝒉𝒆 𝒄𝒐𝒖𝒓𝒔𝒆 𝒐𝒇 𝒂𝒄𝒕𝒊𝒐𝒏
𝒄𝒐𝒓𝒓𝒆𝒔𝒑𝒐𝒏𝒅𝒊𝒏𝒈 𝒕𝒐 𝒕𝒉𝒊𝒔
𝒓𝒆𝒈𝒓𝒆𝒕 𝒊𝒔 𝒕𝒉𝒆 𝒂𝒏𝒔𝒘𝒆𝒓
Regret Table (Minimax Regret Criterion)
Courses of Action
0 1 2 3 4
States
of
Nature
0 0 40 80 120 160
1 5 0 40 80 120
2 10 5 0 40 80
3 15 10 5 0 40
4 20 15 10 5 0
𝑴𝒊𝒏𝒊𝒎𝒂𝒙 𝑹𝒆𝒈𝒓𝒆𝒕 𝑪𝒓𝒊𝒕𝒆𝒓𝒊𝒐𝒏:
≫ 𝑴𝒊𝒏𝒊𝒎𝒖𝒎 𝒐𝒇 𝒕𝒉𝒆 𝒄𝒐𝒍𝒖𝒎𝒏
𝒎𝒂𝒙𝒊𝒎𝒂 (𝒊𝒏 𝒕𝒉𝒆 𝒓𝒆𝒈𝒓𝒆𝒕 𝒕𝒂𝒃𝒍𝒆)
≫ 𝒊. 𝒆. , 𝒇𝒊𝒏𝒅 𝒕𝒉𝒆 𝒎𝒂𝒙𝒊𝒎𝒖𝒎
𝒓𝒆𝒈𝒓𝒆𝒕 𝒊𝒏 𝒆𝒂𝒄𝒉 𝒄𝒐𝒍𝒖𝒎𝒏
≫ 𝑭𝒊𝒏𝒅 𝒕𝒉𝒆 𝒎𝒊𝒏𝒊𝒎𝒖𝒎 𝒐𝒇
𝒕𝒉𝒆𝒔𝒆 𝒓𝒆𝒈𝒓𝒆𝒕𝒔
≫ 𝑻𝒉𝒆 𝒄𝒐𝒖𝒓𝒔𝒆 𝒐𝒇 𝒂𝒄𝒕𝒊𝒐𝒏
𝒄𝒐𝒓𝒓𝒆𝒔𝒑𝒐𝒏𝒅𝒊𝒏𝒈 𝒕𝒐 𝒕𝒉𝒊𝒔
𝒓𝒆𝒈𝒓𝒆𝒕 𝒊𝒔 𝒕𝒉𝒆 𝒂𝒏𝒔𝒘𝒆𝒓
Regret Table (Minimax Regret Criterion)
Courses of Action
0 1 2 3 4
States
of
Nature
0 0 40 80 120 160
1 5 0 40 80 120
2 10 5 0 40 80
3 15 10 5 0 40
4 20 15 10 5 0
Column maxima 20 40 80 120 160
𝑴𝒊𝒏𝒊𝒎𝒂𝒙 𝑹𝒆𝒈𝒓𝒆𝒕 𝑪𝒓𝒊𝒕𝒆𝒓𝒊𝒐𝒏:
≫ 𝑴𝒊𝒏𝒊𝒎𝒖𝒎 𝒐𝒇 𝒕𝒉𝒆 𝒄𝒐𝒍𝒖𝒎𝒏
𝒎𝒂𝒙𝒊𝒎𝒂 (𝒊𝒏 𝒕𝒉𝒆 𝒓𝒆𝒈𝒓𝒆𝒕 𝒕𝒂𝒃𝒍𝒆)
≫ 𝒊. 𝒆. , 𝒇𝒊𝒏𝒅 𝒕𝒉𝒆 𝒎𝒂𝒙𝒊𝒎𝒖𝒎
𝒓𝒆𝒈𝒓𝒆𝒕 𝒊𝒏 𝒆𝒂𝒄𝒉 𝒄𝒐𝒍𝒖𝒎𝒏
≫ 𝑭𝒊𝒏𝒅 𝒕𝒉𝒆 𝒎𝒊𝒏𝒊𝒎𝒖𝒎 𝒐𝒇
𝒕𝒉𝒆𝒔𝒆 𝒓𝒆𝒈𝒓𝒆𝒕𝒔
≫ 𝑻𝒉𝒆 𝒄𝒐𝒖𝒓𝒔𝒆 𝒐𝒇 𝒂𝒄𝒕𝒊𝒐𝒏
𝒄𝒐𝒓𝒓𝒆𝒔𝒑𝒐𝒏𝒅𝒊𝒏𝒈 𝒕𝒐 𝒕𝒉𝒊𝒔
𝒓𝒆𝒈𝒓𝒆𝒕 𝒊𝒔 𝒕𝒉𝒆 𝒂𝒏𝒔𝒘𝒆𝒓
Regret Table (Minimax Regret Criterion)
Courses of Action
0 1 2 3 4
States
of
Nature
0 0 40 80 120 160
1 5 0 40 80 120
2 10 5 0 40 80
3 15 10 5 0 40
4 20 15 10 5 0
Column maxima 20 40 80 120 160
Minimum of the column maxima=20
𝑴𝒊𝒏𝒊𝒎𝒂𝒙 𝑹𝒆𝒈𝒓𝒆𝒕 𝑪𝒓𝒊𝒕𝒆𝒓𝒊𝒐𝒏:
≫ 𝑴𝒊𝒏𝒊𝒎𝒖𝒎 𝒐𝒇 𝒕𝒉𝒆 𝒄𝒐𝒍𝒖𝒎𝒏
𝒎𝒂𝒙𝒊𝒎𝒂 (𝒊𝒏 𝒕𝒉𝒆 𝒓𝒆𝒈𝒓𝒆𝒕 𝒕𝒂𝒃𝒍𝒆)
≫ 𝒊. 𝒆. , 𝒇𝒊𝒏𝒅 𝒕𝒉𝒆 𝒎𝒂𝒙𝒊𝒎𝒖𝒎
𝒓𝒆𝒈𝒓𝒆𝒕 𝒊𝒏 𝒆𝒂𝒄𝒉 𝒄𝒐𝒍𝒖𝒎𝒏
≫ 𝑭𝒊𝒏𝒅 𝒕𝒉𝒆 𝒎𝒊𝒏𝒊𝒎𝒖𝒎 𝒐𝒇
𝒕𝒉𝒆𝒔𝒆 𝒓𝒆𝒈𝒓𝒆𝒕𝒔
≫ 𝑻𝒉𝒆 𝒄𝒐𝒖𝒓𝒔𝒆 𝒐𝒇 𝒂𝒄𝒕𝒊𝒐𝒏
𝒄𝒐𝒓𝒓𝒆𝒔𝒑𝒐𝒏𝒅𝒊𝒏𝒈 𝒕𝒐 𝒕𝒉𝒊𝒔
𝒓𝒆𝒈𝒓𝒆𝒕 𝒊𝒔 𝒕𝒉𝒆 𝒂𝒏𝒔𝒘𝒆𝒓
Regret Table (Minimax Regret Criterion)
Courses of Action
0 1 2 3 4
States
of
Nature
0 0 40 80 120 160
1 5 0 40 80 120
2 10 5 0 40 80
3 15 10 5 0 40
4 20 15 10 5 0
Column maxima 20 40 80 120 160
Minimum of the column maxima=20
𝑴𝒊𝒏𝒊𝒎𝒂𝒙 𝑹𝒆𝒈𝒓𝒆𝒕 𝑪𝒓𝒊𝒕𝒆𝒓𝒊𝒐𝒏:
≫ 𝑴𝒊𝒏𝒊𝒎𝒖𝒎 𝒐𝒇 𝒕𝒉𝒆 𝒄𝒐𝒍𝒖𝒎𝒏
𝒎𝒂𝒙𝒊𝒎𝒂 (𝒊𝒏 𝒕𝒉𝒆 𝒓𝒆𝒈𝒓𝒆𝒕 𝒕𝒂𝒃𝒍𝒆)
≫ 𝒊. 𝒆. , 𝒇𝒊𝒏𝒅 𝒕𝒉𝒆 𝒎𝒂𝒙𝒊𝒎𝒖𝒎
𝒓𝒆𝒈𝒓𝒆𝒕 𝒊𝒏 𝒆𝒂𝒄𝒉 𝒄𝒐𝒍𝒖𝒎𝒏
≫ 𝑭𝒊𝒏𝒅 𝒕𝒉𝒆 𝒎𝒊𝒏𝒊𝒎𝒖𝒎 𝒐𝒇
𝒕𝒉𝒆𝒔𝒆 𝒓𝒆𝒈𝒓𝒆𝒕𝒔
≫ 𝑻𝒉𝒆 𝒄𝒐𝒖𝒓𝒔𝒆 𝒐𝒇 𝒂𝒄𝒕𝒊𝒐𝒏
𝒄𝒐𝒓𝒓𝒆𝒔𝒑𝒐𝒏𝒅𝒊𝒏𝒈 𝒕𝒐 𝒕𝒉𝒊𝒔
𝒓𝒆𝒈𝒓𝒆𝒕 𝒊𝒔 𝒕𝒉𝒆 𝒂𝒏𝒔𝒘𝒆𝒓
∴ 𝒕𝒉𝒆 𝒃𝒆𝒔𝒕 𝒄𝒐𝒖𝒓𝒔𝒆 𝒐𝒇 𝒂𝒄𝒕𝒊𝒐𝒏 = 𝟎

More Related Content

PDF
CRUDE OIL - Statistics for Business Management
PPTX
Estimating Tail Parameters
PPTX
Business statistics solved numericals
PDF
Giới thiệu lý thuyết và ứng dụng của ogic mờ
PDF
Fuzzy logic
PPT
Non-parametric statistics - a class of statistics associated with non paramet...
PPT
Non-parametric methods of data analysis for non normal data
DOCX
Ekonomikas darba lapa
CRUDE OIL - Statistics for Business Management
Estimating Tail Parameters
Business statistics solved numericals
Giới thiệu lý thuyết và ứng dụng của ogic mờ
Fuzzy logic
Non-parametric statistics - a class of statistics associated with non paramet...
Non-parametric methods of data analysis for non normal data
Ekonomikas darba lapa

Similar to Decision theory introductory problem (20)

PPT
Modeling in regression
PPTX
CrashCourse_0622
PDF
Quick sort
PPT
Histogram , drawing and frequency polygone density
PDF
Teoria y problemas de tabla de frecuencias tf420 ccesa007
PPTX
Generalized linear model
PDF
Teoria y problemas de tabla de frecuencias tf320 ccesa007
PDF
Teoria y problemas de tabla de frecuencias tf320 ccesa007
PPTX
01_SLR_final (1).pptx
PDF
Teoria y problemas de tabla de frecuencias tf520 ccesa007
PPTX
SUEC 高中 Adv Maths (Statistic).pptx
PPTX
GRADE11-STATISTICS -AND PROBABILITY.pptx
ODP
Statistics For Entrepreneurs
PPTX
Static Models of Continuous Variables
PPTX
Fisica matematica final
DOCX
PPTX
Properties of Normal Distribution
PPT
autocorrelation in statistics with example
PPTX
SIP PPT.pptx
PPTX
Chapter 3_M of Location and dispersion mean, median, mode, standard deviation
Modeling in regression
CrashCourse_0622
Quick sort
Histogram , drawing and frequency polygone density
Teoria y problemas de tabla de frecuencias tf420 ccesa007
Generalized linear model
Teoria y problemas de tabla de frecuencias tf320 ccesa007
Teoria y problemas de tabla de frecuencias tf320 ccesa007
01_SLR_final (1).pptx
Teoria y problemas de tabla de frecuencias tf520 ccesa007
SUEC 高中 Adv Maths (Statistic).pptx
GRADE11-STATISTICS -AND PROBABILITY.pptx
Statistics For Entrepreneurs
Static Models of Continuous Variables
Fisica matematica final
Properties of Normal Distribution
autocorrelation in statistics with example
SIP PPT.pptx
Chapter 3_M of Location and dispersion mean, median, mode, standard deviation
Ad

More from Anurag Srivastava (20)

PPTX
Simplex method maximisation
PPTX
Project networks
PPTX
Or flowchart
PPT
Strategic management model
PPTX
Maximisation problem
PPTX
Lpp numerical
PPTX
Lpp numerical solved
PPTX
Lpp formulation
PPTX
Lp formulation
PPTX
Graphical method
PPTX
Game theory
PPTX
Dual formulation example
PPTX
Decision tree solved
PPTX
Decision theory numerical
PPTX
PPTX
Assignment model problems
PPT
Minimisation problem
PPT
Operations research
Simplex method maximisation
Project networks
Or flowchart
Strategic management model
Maximisation problem
Lpp numerical
Lpp numerical solved
Lpp formulation
Lp formulation
Graphical method
Game theory
Dual formulation example
Decision tree solved
Decision theory numerical
Assignment model problems
Minimisation problem
Operations research
Ad

Recently uploaded (20)

DOC
TAMUK毕业证学历认证,北科罗拉多大学毕业证文凭
PPT
Risk Management What is Risk Management Risk Management Strategies Software R...
PPT
Introduction to Operations And Supply Management
PPTX
4 5 6 7 Intro to Ramayan MANAGEMENT LESSONS and Qualities.pptx
PDF
Dynamic Capabilities: A System-level Approach To New Strategic Challenges
PDF
Leading with Empathy: Building Inclusive Growth in Bangladesh
PPTX
Myers-Briggs Personality MBTI for self discovery
PDF
Personal-Professional-Development-in-Nursing-1.pdf
PPT
The Management Spectrum 4 Ps in Project Management
PPTX
Organizing and Staffing, Staffing process.pptx
PPTX
Recruitment and bshiwjwnbshshshshhshvej.ppt
PDF
The Psychology of Employee Appreciation by Meenakshi Khakat
PPTX
Time Management Techniques_All Rules.pptx
PPTX
Spotlight on road Injury in the Philippines
PPTX
Time Management 2 power point presentation
PDF
250816-Risk Evaluation & Mitigation Strategy-CQS.pdf
PPTX
Basics of Project Management for development of leadership skills in practice
PPTX
Unit 1-setting up practice arvhitectweyre
PPTX
WORLD TRADE ORAGANIZATION- INSTITUTION TO MANAGE TRADE BETWEEN NATIONS
PPTX
1.pptx Awareness course managing. safety
TAMUK毕业证学历认证,北科罗拉多大学毕业证文凭
Risk Management What is Risk Management Risk Management Strategies Software R...
Introduction to Operations And Supply Management
4 5 6 7 Intro to Ramayan MANAGEMENT LESSONS and Qualities.pptx
Dynamic Capabilities: A System-level Approach To New Strategic Challenges
Leading with Empathy: Building Inclusive Growth in Bangladesh
Myers-Briggs Personality MBTI for self discovery
Personal-Professional-Development-in-Nursing-1.pdf
The Management Spectrum 4 Ps in Project Management
Organizing and Staffing, Staffing process.pptx
Recruitment and bshiwjwnbshshshshhshvej.ppt
The Psychology of Employee Appreciation by Meenakshi Khakat
Time Management Techniques_All Rules.pptx
Spotlight on road Injury in the Philippines
Time Management 2 power point presentation
250816-Risk Evaluation & Mitigation Strategy-CQS.pdf
Basics of Project Management for development of leadership skills in practice
Unit 1-setting up practice arvhitectweyre
WORLD TRADE ORAGANIZATION- INSTITUTION TO MANAGE TRADE BETWEEN NATIONS
1.pptx Awareness course managing. safety

Decision theory introductory problem

  • 3. Suppose an electrical goods merchant buys, for resale purposes in a market, electric irons in the range of 0 to 4. His resources permit him to buy nothing or 1 or 2 or 3 or 4 units. These are his alternative courses of action or strategies. The demand for electric irons on any day is something beyond his control and hence is a state of nature. Let us presume that the dealer does not know how many units will be bought from him by the customers. The demand could be anything from 0 to 4. The dealer can buy each unit of electric iron @ Rs.40 and sell it at Rs.45 each, his margin being Rs.5 per unit. Assume the stock on hand is valueless. Portray in a payoff table and opportunity loss table the quantum of total margin (loss), that he gets in relation to various alternative strategies and states of nature.
  • 4. Payoff Matrix Courses of Action 0 1 2 3 4 States of Nature 0 0–0=0 1 0–0=0 2 0–0=0 3 0–0=0 4 0–0=0
  • 5. Payoff Matrix Courses of Action 0 1 2 3 4 States of Nature 0 0–0=0 0–40=–40 1 0–0=0 45–40=5 2 0–0=0 45–40=5 3 0–0=0 45–40=5 4 0–0=0 45–40=5
  • 6. Payoff Matrix Courses of Action 0 1 2 3 4 States of Nature 0 0–0=0 0–40=–40 0–2×40=–80 0–3×40=–120 0–4×40=–160 1 0–0=0 45–40=5 45–2×40=–35 45–3×40=–75 45–4×40=–115 2 0–0=0 45–40=5 2×45–2×40=10 2×45–3×40=–30 2×45–4×40=–70 3 0–0=0 45–40=5 2×45–2×40=10 3×45–3×40=15 3×45–4×40=–25 4 0–0=0 45–40=5 2×45–2×40=10 3×45–3×40=15 4×45–4×40=20
  • 7. Payoff Matrix Courses of Action 0 1 2 3 4 States of Nature 0 0 –40 –80 –120 –160 1 0 5 –35 –75 –115 2 0 5 10 –30 –70 3 0 5 10 15 –25 4 0 5 10 15 20
  • 8. Courses of Action Probability 0 1 2 3 4 States of Nature 0 0 –40 –80 –120 –160 0.04 1 0 5 –35 –75 –115 0.06 2 0 5 10 –30 –70 0.20 3 0 5 10 15 –25 0.30 4 0 5 10 15 20 0.40
  • 9. EXPECTED MONETARY VALUE (EMV) CALCULATION
  • 10. 0 1 2 3 4 P 0 0 –40 –80 –120 –160 0.04 1 0 5 –35 –75 –115 0.06 2 0 5 10 –30 –70 0.20 3 0 5 10 15 –25 0.30 4 0 5 10 15 20 0.40 𝑬𝑴𝑽 𝟎 = 𝟎 × 𝟎. 𝟎𝟒 + 𝟎 × 𝟎. 𝟎𝟔 + 𝟎 × 𝟎. 𝟐 + 𝟎 × 𝟎. 𝟑 + 𝟎 × 𝟎. 𝟒 = 𝟎
  • 11. 0 1 2 3 4 P 0 0 –40 –80 –120 –160 0.04 1 0 5 –35 –75 –115 0.06 2 0 5 10 –30 –70 0.20 3 0 5 10 15 –25 0.30 4 0 5 10 15 20 0.40 𝑬𝑴𝑽 𝟎 = 𝟎 × 𝟎. 𝟎𝟒 + 𝟎 × 𝟎. 𝟎𝟔 + 𝟎 × 𝟎. 𝟐 + 𝟎 × 𝟎. 𝟑 + 𝟎 × 𝟎. 𝟒 = 𝟎 𝑬𝑴𝑽 𝟏 = −𝟒𝟎 × 𝟎. 𝟎𝟒 + 𝟓 × 𝟎. 𝟎𝟔 + 𝟓 × 𝟎. 𝟐 + 𝟓 × 𝟎. 𝟑 + 𝟓 × 𝟎. 𝟒 = 𝟑. 𝟐 𝑬𝑴𝑽 𝟐 = −𝟖𝟎 × 𝟎. 𝟎𝟒 + −𝟑𝟓 × 𝟎. 𝟎𝟔 + 𝟏𝟎 × 𝟎. 𝟐 + 𝟏𝟎 × 𝟎. 𝟑 + 𝟏𝟎 × 𝟎. 𝟒 = 𝟑. 𝟕 𝑬𝑴𝑽 𝟑 = −𝟏𝟐𝟎 × 𝟎. 𝟎𝟒 + −𝟕𝟓 × 𝟎. 𝟎𝟔 + −𝟑𝟎 × 𝟎. 𝟐 + 𝟏𝟓 × 𝟎. 𝟑 + 𝟏𝟓 × 𝟎. 𝟒 = −𝟒. 𝟖 𝑬𝑴𝑽 𝟒 = −𝟏𝟔𝟎 × 𝟎. 𝟎𝟒 + −𝟏𝟏𝟓 × 𝟎. 𝟎𝟔 + −𝟕𝟎 × 𝟎. 𝟐 + −𝟐𝟓 × 𝟎. 𝟑 + 𝟐𝟎 × 𝟎. 𝟒 = −𝟐𝟔. 𝟖
  • 12. 0 1 2 3 4 P 0 0 –40 –80 –120 –160 0.04 1 0 5 –35 –75 –115 0.06 2 0 5 10 –30 –70 0.20 3 0 5 10 15 –25 0.30 4 0 5 10 15 20 0.40 EMV 0 3.2 3.7 –4.8 –26.8
  • 13. 0 1 2 3 4 P 0 0 –40 –80 –120 –160 0.04 1 0 5 –35 –75 –115 0.06 2 0 5 10 –30 –70 0.20 3 0 5 10 15 –25 0.30 4 0 5 10 15 20 0.40 EMV 0 3.2 3.7 –4.8 –26.8 𝑬𝑴𝑽 𝒎𝒂𝒙 = 𝑬𝑴𝑽 𝟐 = 𝟑. 𝟕
  • 15. Payoff Table 0 1 2 3 4 0 0 –40 –80 –120 –160 1 0 5 –35 –75 –115 2 0 5 10 –30 –70 3 0 5 10 15 –25 4 0 5 10 15 20 Regret/Opportunity Loss Table Courses of Action 0 1 2 3 4 States of Nature 0 0–0=0 1 5–0=5 2 10–0=10 3 15–0=15 4 20–0=20
  • 16. Payoff Table 0 1 2 3 4 0 0 –40 –80 –120 –160 1 0 5 –35 –75 –115 2 0 5 10 –30 –70 3 0 5 10 15 –25 4 0 5 10 15 20 Regret/Opportunity Loss Table Courses of Action 0 1 2 3 4 States of Nature 0 0–0=0 0–(–40)=40 1 5–0=5 5–5=0 2 10–0=10 10–5=5 3 15–0=15 15–5=10 4 20–0=20 20–5=15
  • 17. Payoff Table 0 1 2 3 4 0 0 –40 –80 –120 –160 1 0 5 –35 –75 –115 2 0 5 10 –30 –70 3 0 5 10 15 –25 4 0 5 10 15 20 Regret/Opportunity Loss Table Courses of Action 0 1 2 3 4 States of Nature 0 0–0=0 0–(–40)=40 0–(–80)=80 0–(–120)=120 0–(–160)=160 1 5–0=5 5–5=0 5–(–35)=40 5–(–75)=80 5–(–115)=120 2 10–0=10 10–5=5 10–10=0 10–(–30)=40 10–(–70)=80 3 15–0=15 15–5=10 15–10=5 15–15=0 15–(–25)=40 4 20–0=20 20–5=15 20–10=10 20–15=5 20–20=0
  • 18. Regret/Opportunity Loss Table Courses of Action 0 1 2 3 4 States of Nature 0 0 40 80 120 160 1 5 0 40 80 120 2 10 5 0 40 80 3 15 10 5 0 40 4 20 15 10 5 0
  • 19. Regret/Opportunity Loss Table Courses of Action P 0 1 2 3 4 States of Nature 0 0 40 80 120 160 0.04 1 5 0 40 80 120 0.06 2 10 5 0 40 80 0.20 3 15 10 5 0 40 0.30 4 20 15 10 5 0 0.40
  • 20. EXPECTED OPPORTUNITY LOSS (EOL) CALCULATION
  • 21. Regret/Opportunity Loss Table Courses of Action P 0 1 2 3 4 States of Nature 0 0 40 80 120 160 0.04 1 5 0 40 80 120 0.06 2 10 5 0 40 80 0.20 3 15 10 5 0 40 0.30 4 20 15 10 5 0 0.40 𝑬𝑶𝑳 𝟎 = 𝟎 × 𝟎. 𝟎𝟒 + 𝟓 × 𝟎. 𝟎𝟔 + 𝟏𝟎 × 𝟎. 𝟐 + 𝟏𝟓 × 𝟎. 𝟑 + 𝟐𝟎 × 𝟎. 𝟒 = 𝟏𝟒. 𝟖
  • 22. Regret/Opportunity Loss Table Courses of Action P 0 1 2 3 4 States of Nature 0 0 40 80 120 160 0.04 1 5 0 40 80 120 0.06 2 10 5 0 40 80 0.20 3 15 10 5 0 40 0.30 4 20 15 10 5 0 0.40 𝑬𝑶𝑳 𝟎 = 𝟎 × 𝟎. 𝟎𝟒 + 𝟓 × 𝟎. 𝟎𝟔 + 𝟏𝟎 × 𝟎. 𝟐 + 𝟏𝟓 × 𝟎. 𝟑 + 𝟐𝟎 × 𝟎. 𝟒 = 𝟏𝟒. 𝟖 𝑬𝑶𝑳 𝟏 = 𝟒𝟎 × 𝟎. 𝟎𝟒 + 𝟎 × 𝟎. 𝟎𝟔 + 𝟓 × 𝟎. 𝟐 + 𝟏𝟎 × 𝟎. 𝟑 + 𝟏𝟓 × 𝟎. 𝟒 = 𝟏𝟏. 𝟔 𝑬𝑶𝑳 𝟐 = 𝟖𝟎 × 𝟎. 𝟎𝟒 + 𝟒𝟎 × 𝟎. 𝟎𝟔 + 𝟎 × 𝟎. 𝟐 + 𝟓 × 𝟎. 𝟑 + 𝟏𝟎 × 𝟎. 𝟒 = 𝟏𝟏. 𝟏 𝑬𝑶𝑳 𝟑 = 𝟏𝟐𝟎 × 𝟎. 𝟎𝟒 + 𝟖𝟎 × 𝟎. 𝟎𝟔 + 𝟒𝟎 × 𝟎. 𝟐 + 𝟎 × 𝟎. 𝟑 + 𝟓 × 𝟎. 𝟒 = 𝟏𝟗. 𝟔 𝑬𝑶𝑳 𝟒 = 𝟏𝟔𝟎 × 𝟎. 𝟎𝟒 + 𝟏𝟐𝟎 × 𝟎. 𝟎𝟔 + 𝟖𝟎 × 𝟎. 𝟐 + 𝟒𝟎 × 𝟎. 𝟑 + 𝟎 × 𝟎. 𝟒 = 𝟒𝟏. 𝟔
  • 23. Regret/Opportunity Loss Table Courses of Action P 0 1 2 3 4 States of Nature 0 0 40 80 120 160 0.04 1 5 0 40 80 120 0.06 2 10 5 0 40 80 0.20 3 15 10 5 0 40 0.30 4 20 15 10 5 0 0.40 EOL 14.8 11.6 11.1 19.6 41.6
  • 24. Regret/Opportunity Loss Table Courses of Action P 0 1 2 3 4 States of Nature 0 0 40 80 120 160 0.04 1 5 0 40 80 120 0.06 2 10 5 0 40 80 0.20 3 15 10 5 0 40 0.30 4 20 15 10 5 0 0.40 EOL 14.8 11.6 11.1 19.6 41.6 𝑬𝑶𝑳 𝒎𝒊𝒏 = 𝑬𝑶𝑳 𝟐 = 𝟏𝟏. 𝟏
  • 25. EXPECTED VALUE WITH PERFECT INFORMATION EV with PI
  • 26. Payoff Matrix Courses of Action P 0 1 2 3 4 States of Nature 0 0 –40 –80 –120 –160 0.04 1 0 5 –35 –75 –115 0.06 2 0 5 10 –30 –70 0.20 3 0 5 10 15 –25 0.30 4 0 5 10 15 20 0.40 𝑬𝑽 𝒘𝒊𝒕𝒉 𝑷𝑰 = 𝚺 𝑴𝒂𝒙 𝑬𝑴𝑽 𝒇𝒐𝒓 𝒆𝒂𝒄𝒉 𝑺𝒕𝒂𝒕𝒆 𝒐𝒇 𝑵𝒂𝒕𝒖𝒓𝒆 × 𝑷
  • 27. Payoff Matrix Courses of Action P 0 1 2 3 4 States of Nature 0 0 –40 –80 –120 –160 0.04 1 0 5 –35 –75 –115 0.06 2 0 5 10 –30 –70 0.20 3 0 5 10 15 –25 0.30 4 0 5 10 15 20 0.40 𝑬𝑽 𝒘𝒊𝒕𝒉 𝑷𝑰 = 𝚺 𝑴𝒂𝒙 𝑬𝑴𝑽 𝒇𝒐𝒓 𝒆𝒂𝒄𝒉 𝑺𝒕𝒂𝒕𝒆 𝒐𝒇 𝑵𝒂𝒕𝒖𝒓𝒆 × 𝑷
  • 28. Payoff Matrix Courses of Action P 0 1 2 3 4 States of Nature 0 0 –40 –80 –120 –160 0.04 1 0 5 –35 –75 –115 0.06 2 0 5 10 –30 –70 0.20 3 0 5 10 15 –25 0.30 4 0 5 10 15 20 0.40 𝑬𝑽 𝒘𝒊𝒕𝒉 𝑷𝑰 = 𝟎 × 𝟎. 𝟎𝟒 + 𝟓 × 𝟎. 𝟎𝟔 + 𝟏𝟎 × 𝟎. 𝟐 + 𝟏𝟓 × 𝟎. 𝟑 + 𝟐𝟎 × 𝟎. 𝟒 ∴ 𝑬𝑽 𝒘𝒊𝒕𝒉 𝑷𝑰 = 𝟏𝟒. 𝟖
  • 29. EXPECTED VALUE OF PERFECT INFORMATION EVPI
  • 30. 𝑬𝑽𝑷𝑰 = 𝑬𝑽 𝒘𝒊𝒕𝒉 𝑷𝑰 − 𝑬𝑴𝑽 𝒎𝒂𝒙 𝒐𝒓 𝑬𝑽𝑷𝑰 = 𝟏𝟒. 𝟖 − 𝟑. 𝟕 𝒐𝒓 𝑬𝑽𝑷𝑰 = 𝟏𝟏. 𝟏
  • 31. 𝑬𝑽𝑷𝑰 = 𝑬𝑽 𝒘𝒊𝒕𝒉 𝑷𝑰 − 𝑬𝑴𝑽 𝒎𝒂𝒙 𝒐𝒓 𝑬𝑽𝑷𝑰 = 𝟏𝟒. 𝟖 − 𝟑. 𝟕 𝒐𝒓 𝑬𝑽𝑷𝑰 = 𝟏𝟏. 𝟏 𝑨𝒍𝒕𝒆𝒓𝒏𝒂𝒕𝒆𝒍𝒚, 𝑬𝑽𝑷𝑰 = 𝑬𝑶𝑳 𝒎𝒊𝒏 = 𝑬𝑶𝑳 𝟐 = 𝟏𝟏. 𝟏
  • 33. DECISION CRITERIA UNDER CONDITION OF UNCERTAINTY • Maximin. • Maximax. • Minimax Regret. • Hurwicz Criterion. • Baye’s/Lapalce’s Criterion.
  • 34. CRITERION OF PESSIMISM (MAXIMIN) • Also called ‘Waldian Criterion.’ • Determine the lowest outcome for each alternative. • Choose the alternative associated with the best of these.
  • 35. CRITERION OF OPTIMISM (MAXIMAX) • Suggested by Leonid Hurwicz. • Determine the best outcome for each alternative. • Select the alternative associated with the best of these.
  • 36. MINIMAX REGRET CRITERION • Attributed to Leonard Savage. • For each state, identify the most attractive alternative. • Place a zero in those cells. • Compute opportunity loss for other alternatives. • Identify the maximum opportunity loss for each alternative. • Select the alternative associated with the lowest of these.
  • 37. CRITERION OF REALISM (HURWICZ CRITERION) • A compromise between maximax and maximin criteria. • A coefficient of optimism α (0≤α≤1) is selected. • When α is close to 1, the decision-maker is optimistic about the future. • When α is close to 0, the decision-maker is pessimistic about the future.
  • 38. HURWICZ CRITERION • Select the strategy which maximises:
  • 39. LAPLACE CRITERION • Assign equal probabilities to each state. • Compute the expected value for each alternative. • Select the alternative with the highest alternative.
  • 41. Payoff Matrix Courses of Action 0 1 2 3 4 States of Nature 0 0 –40 –80 –120 –160 1 0 5 –35 –75 –115 2 0 5 10 –30 –70 3 0 5 10 15 –25 4 0 5 10 15 20
  • 42. Payoff Matrix: Maximin Criterion Courses of Action 0 1 2 3 4 States of Nature 0 0 –40 –80 –120 –160 1 0 5 –35 –75 –115 2 0 5 10 –30 –70 3 0 5 10 15 –25 4 0 5 10 15 20 𝑴𝒂𝒙𝒊𝒎𝒊𝒏 𝑪𝒓𝒊𝒕𝒆𝒓𝒊𝒐𝒏: ≫ 𝑴𝒂𝒙𝒊𝒎𝒖𝒎 𝒐𝒇 𝒕𝒉𝒆 𝒄𝒐𝒍𝒖𝒎𝒏 𝒎𝒊𝒏𝒊𝒎𝒂 ≫ 𝒊. 𝒆. , 𝒇𝒊𝒏𝒅 𝒕𝒉𝒆 𝒎𝒊𝒏𝒊𝒎𝒖𝒎 𝒑𝒂𝒚𝒐𝒇𝒇 𝒊𝒏 𝒆𝒂𝒄𝒉 𝒄𝒐𝒍𝒖𝒎𝒏 ≫ 𝑭𝒊𝒏𝒅 𝒕𝒉𝒆 𝒎𝒂𝒙𝒊𝒎𝒖𝒎 𝒐𝒇 𝒕𝒉𝒆𝒔𝒆 𝒑𝒂𝒚𝒐𝒇𝒇𝒔 ≫ 𝑻𝒉𝒆 𝒄𝒐𝒖𝒓𝒔𝒆 𝒐𝒇 𝒂𝒄𝒕𝒊𝒐𝒏 𝒄𝒐𝒓𝒓𝒆𝒔𝒑𝒐𝒏𝒅𝒊𝒏𝒈 𝒕𝒐 𝒕𝒉𝒊𝒔 𝒑𝒂𝒚𝒐𝒇𝒇 𝒊𝒔 𝒕𝒉𝒆 𝒂𝒏𝒔𝒘𝒆𝒓
  • 43. Payoff Matrix: Maximin Criterion Courses of Action 0 1 2 3 4 States of Nature 0 0 –40 –80 –120 –160 1 0 5 –35 –75 –115 2 0 5 10 –30 –70 3 0 5 10 15 –25 4 0 5 10 15 20 Column Minima 0 –40 –80 –120 –160 𝑴𝒂𝒙𝒊𝒎𝒊𝒏 𝑪𝒓𝒊𝒕𝒆𝒓𝒊𝒐𝒏: ≫ 𝑴𝒂𝒙𝒊𝒎𝒖𝒎 𝒐𝒇 𝒕𝒉𝒆 𝒄𝒐𝒍𝒖𝒎𝒏 𝒎𝒊𝒏𝒊𝒎𝒂 ≫ 𝒊. 𝒆. , 𝒇𝒊𝒏𝒅 𝒕𝒉𝒆 𝒎𝒊𝒏𝒊𝒎𝒖𝒎 𝒑𝒂𝒚𝒐𝒇𝒇 𝒊𝒏 𝒆𝒂𝒄𝒉 𝒄𝒐𝒍𝒖𝒎𝒏 ≫ 𝑭𝒊𝒏𝒅 𝒕𝒉𝒆 𝒎𝒂𝒙𝒊𝒎𝒖𝒎 𝒐𝒇 𝒕𝒉𝒆𝒔𝒆 𝒑𝒂𝒚𝒐𝒇𝒇𝒔 ≫ 𝑻𝒉𝒆 𝒄𝒐𝒖𝒓𝒔𝒆 𝒐𝒇 𝒂𝒄𝒕𝒊𝒐𝒏 𝒄𝒐𝒓𝒓𝒆𝒔𝒑𝒐𝒏𝒅𝒊𝒏𝒈 𝒕𝒐 𝒕𝒉𝒊𝒔 𝒑𝒂𝒚𝒐𝒇𝒇 𝒊𝒔 𝒕𝒉𝒆 𝒂𝒏𝒔𝒘𝒆𝒓
  • 44. Payoff Matrix: Maximin Criterion Courses of Action 0 1 2 3 4 States of Nature 0 0 –40 –80 –120 –160 1 0 5 –35 –75 –115 2 0 5 10 –30 –70 3 0 5 10 15 –25 4 0 5 10 15 20 Column Minima 0 –40 –80 –120 –160 Maximum of the column minima=0 𝑴𝒂𝒙𝒊𝒎𝒊𝒏 𝑪𝒓𝒊𝒕𝒆𝒓𝒊𝒐𝒏: ≫ 𝑴𝒂𝒙𝒊𝒎𝒖𝒎 𝒐𝒇 𝒕𝒉𝒆 𝒄𝒐𝒍𝒖𝒎𝒏 𝒎𝒊𝒏𝒊𝒎𝒂 ≫ 𝒊. 𝒆. , 𝒇𝒊𝒏𝒅 𝒕𝒉𝒆 𝒎𝒊𝒏𝒊𝒎𝒖𝒎 𝒑𝒂𝒚𝒐𝒇𝒇 𝒊𝒏 𝒆𝒂𝒄𝒉 𝒄𝒐𝒍𝒖𝒎𝒏 ≫ 𝑭𝒊𝒏𝒅 𝒕𝒉𝒆 𝒎𝒂𝒙𝒊𝒎𝒖𝒎 𝒐𝒇 𝒕𝒉𝒆𝒔𝒆 𝒑𝒂𝒚𝒐𝒇𝒇𝒔 ≫ 𝑻𝒉𝒆 𝒄𝒐𝒖𝒓𝒔𝒆 𝒐𝒇 𝒂𝒄𝒕𝒊𝒐𝒏 𝒄𝒐𝒓𝒓𝒆𝒔𝒑𝒐𝒏𝒅𝒊𝒏𝒈 𝒕𝒐 𝒕𝒉𝒊𝒔 𝒑𝒂𝒚𝒐𝒇𝒇 𝒊𝒔 𝒕𝒉𝒆 𝒂𝒏𝒔𝒘𝒆𝒓
  • 45. Payoff Matrix: Maximin Criterion Courses of Action 0 1 2 3 4 States of Nature 0 0 –40 –80 –120 –160 1 0 5 –35 –75 –115 2 0 5 10 –30 –70 3 0 5 10 15 –25 4 0 5 10 15 20 Column Minima 0 –40 –80 –120 –160 Maximum of the column minima=0 𝑴𝒂𝒙𝒊𝒎𝒊𝒏 𝑪𝒓𝒊𝒕𝒆𝒓𝒊𝒐𝒏: ≫ 𝑴𝒂𝒙𝒊𝒎𝒖𝒎 𝒐𝒇 𝒕𝒉𝒆 𝒄𝒐𝒍𝒖𝒎𝒏 𝒎𝒊𝒏𝒊𝒎𝒂 ≫ 𝒊. 𝒆. , 𝒇𝒊𝒏𝒅 𝒕𝒉𝒆 𝒎𝒊𝒏𝒊𝒎𝒖𝒎 𝒑𝒂𝒚𝒐𝒇𝒇 𝒊𝒏 𝒆𝒂𝒄𝒉 𝒄𝒐𝒍𝒖𝒎𝒏 ≫ 𝑭𝒊𝒏𝒅 𝒕𝒉𝒆 𝒎𝒂𝒙𝒊𝒎𝒖𝒎 𝒐𝒇 𝒕𝒉𝒆𝒔𝒆 𝒑𝒂𝒚𝒐𝒇𝒇𝒔 ≫ 𝑻𝒉𝒆 𝒄𝒐𝒖𝒓𝒔𝒆 𝒐𝒇 𝒂𝒄𝒕𝒊𝒐𝒏 𝒄𝒐𝒓𝒓𝒆𝒔𝒑𝒐𝒏𝒅𝒊𝒏𝒈 𝒕𝒐 𝒕𝒉𝒊𝒔 𝒑𝒂𝒚𝒐𝒇𝒇 𝒊𝒔 𝒕𝒉𝒆 𝒂𝒏𝒔𝒘𝒆𝒓 ∴ 𝒕𝒉𝒆 𝒃𝒆𝒔𝒕 𝒄𝒐𝒖𝒓𝒔𝒆 𝒐𝒇 𝒂𝒄𝒕𝒊𝒐𝒏 𝒂𝒄𝒄𝒐𝒓𝒅𝒊𝒏𝒈 𝒕𝒐 𝒕𝒉𝒆 𝒎𝒂𝒙𝒊𝒎𝒊𝒏 𝒄𝒓𝒊𝒕𝒆𝒓𝒊𝒐𝒏 = 𝟎
  • 47. Payoff Matrix Courses of Action 0 1 2 3 4 States of Nature 0 0 –40 –80 –120 –160 1 0 5 –35 –75 –115 2 0 5 10 –30 –70 3 0 5 10 15 –25 4 0 5 10 15 20
  • 48. Payoff Matrix: Maximax Criterion Courses of Action 0 1 2 3 4 States of Nature 0 0 –40 –80 –120 –160 1 0 5 –35 –75 –115 2 0 5 10 –30 –70 3 0 5 10 15 –25 4 0 5 10 15 20 𝑴𝒂𝒙𝒊𝒎𝒂𝒙 𝑪𝒓𝒊𝒕𝒆𝒓𝒊𝒐𝒏: ≫ 𝑴𝒂𝒙𝒊𝒎𝒖𝒎 𝒐𝒇 𝒕𝒉𝒆 𝒄𝒐𝒍𝒖𝒎𝒏 𝒎𝒂𝒙𝒊𝒎𝒂 ≫ 𝒊. 𝒆. , 𝒇𝒊𝒏𝒅 𝒕𝒉𝒆 𝒎𝒂𝒙𝒊𝒎𝒖𝒎 𝒑𝒂𝒚𝒐𝒇𝒇 𝒊𝒏 𝒆𝒂𝒄𝒉 𝒄𝒐𝒍𝒖𝒎𝒏 ≫ 𝑭𝒊𝒏𝒅 𝒕𝒉𝒆 𝒎𝒂𝒙𝒊𝒎𝒖𝒎 𝒐𝒇 𝒕𝒉𝒆𝒔𝒆 𝒑𝒂𝒚𝒐𝒇𝒇𝒔 ≫ 𝑻𝒉𝒆 𝒄𝒐𝒖𝒓𝒔𝒆 𝒐𝒇 𝒂𝒄𝒕𝒊𝒐𝒏 𝒄𝒐𝒓𝒓𝒆𝒔𝒑𝒐𝒏𝒅𝒊𝒏𝒈 𝒕𝒐 𝒕𝒉𝒊𝒔 𝒑𝒂𝒚𝒐𝒇𝒇 𝒊𝒔 𝒕𝒉𝒆 𝒂𝒏𝒔𝒘𝒆𝒓
  • 49. Payoff Matrix: Maximax Criterion Courses of Action 0 1 2 3 4 States of Nature 0 0 –40 –80 –120 –160 1 0 5 –35 –75 –115 2 0 5 10 –30 –70 3 0 5 10 15 –25 4 0 5 10 15 20 Column Maxima 0 5 10 15 20 𝑴𝒂𝒙𝒊𝒎𝒂𝒙 𝑪𝒓𝒊𝒕𝒆𝒓𝒊𝒐𝒏: ≫ 𝑴𝒂𝒙𝒊𝒎𝒖𝒎 𝒐𝒇 𝒕𝒉𝒆 𝒄𝒐𝒍𝒖𝒎𝒏 𝒎𝒂𝒙𝒊𝒎𝒂 ≫ 𝒊. 𝒆. , 𝒇𝒊𝒏𝒅 𝒕𝒉𝒆 𝒎𝒂𝒙𝒊𝒎𝒖𝒎 𝒑𝒂𝒚𝒐𝒇𝒇 𝒊𝒏 𝒆𝒂𝒄𝒉 𝒄𝒐𝒍𝒖𝒎𝒏 ≫ 𝑭𝒊𝒏𝒅 𝒕𝒉𝒆 𝒎𝒂𝒙𝒊𝒎𝒖𝒎 𝒐𝒇 𝒕𝒉𝒆𝒔𝒆 𝒑𝒂𝒚𝒐𝒇𝒇𝒔 ≫ 𝑻𝒉𝒆 𝒄𝒐𝒖𝒓𝒔𝒆 𝒐𝒇 𝒂𝒄𝒕𝒊𝒐𝒏 𝒄𝒐𝒓𝒓𝒆𝒔𝒑𝒐𝒏𝒅𝒊𝒏𝒈 𝒕𝒐 𝒕𝒉𝒊𝒔 𝒑𝒂𝒚𝒐𝒇𝒇 𝒊𝒔 𝒕𝒉𝒆 𝒂𝒏𝒔𝒘𝒆𝒓
  • 50. Payoff Matrix: Maximax Criterion Courses of Action 0 1 2 3 4 States of Nature 0 0 –40 –80 –120 –160 1 0 5 –35 –75 –115 2 0 5 10 –30 –70 3 0 5 10 15 –25 4 0 5 10 15 20 Column Maxima 0 5 10 15 20 Maximum of the column maxima=20 𝑴𝒂𝒙𝒊𝒎𝒂𝒙 𝑪𝒓𝒊𝒕𝒆𝒓𝒊𝒐𝒏: ≫ 𝑴𝒂𝒙𝒊𝒎𝒖𝒎 𝒐𝒇 𝒕𝒉𝒆 𝒄𝒐𝒍𝒖𝒎𝒏 𝒎𝒂𝒙𝒊𝒎𝒂 ≫ 𝒊. 𝒆. , 𝒇𝒊𝒏𝒅 𝒕𝒉𝒆 𝒎𝒂𝒙𝒊𝒎𝒖𝒎 𝒑𝒂𝒚𝒐𝒇𝒇 𝒊𝒏 𝒆𝒂𝒄𝒉 𝒄𝒐𝒍𝒖𝒎𝒏 ≫ 𝑭𝒊𝒏𝒅 𝒕𝒉𝒆 𝒎𝒂𝒙𝒊𝒎𝒖𝒎 𝒐𝒇 𝒕𝒉𝒆𝒔𝒆 𝒑𝒂𝒚𝒐𝒇𝒇𝒔 ≫ 𝑻𝒉𝒆 𝒄𝒐𝒖𝒓𝒔𝒆 𝒐𝒇 𝒂𝒄𝒕𝒊𝒐𝒏 𝒄𝒐𝒓𝒓𝒆𝒔𝒑𝒐𝒏𝒅𝒊𝒏𝒈 𝒕𝒐 𝒕𝒉𝒊𝒔 𝒑𝒂𝒚𝒐𝒇𝒇 𝒊𝒔 𝒕𝒉𝒆 𝒂𝒏𝒔𝒘𝒆𝒓
  • 51. Payoff Matrix: Maximax Criterion Courses of Action 0 1 2 3 4 States of Nature 0 0 –40 –80 –120 –160 1 0 5 –35 –75 –115 2 0 5 10 –30 –70 3 0 5 10 15 –25 4 0 5 10 15 20 Column Maxima 0 5 10 15 20 Maximum of the column maxima=20 𝑴𝒂𝒙𝒊𝒎𝒂𝒙 𝑪𝒓𝒊𝒕𝒆𝒓𝒊𝒐𝒏: ≫ 𝑴𝒂𝒙𝒊𝒎𝒖𝒎 𝒐𝒇 𝒕𝒉𝒆 𝒄𝒐𝒍𝒖𝒎𝒏 𝒎𝒂𝒙𝒊𝒎𝒂 ≫ 𝒊. 𝒆. , 𝒇𝒊𝒏𝒅 𝒕𝒉𝒆 𝒎𝒂𝒙𝒊𝒎𝒖𝒎 𝒑𝒂𝒚𝒐𝒇𝒇 𝒊𝒏 𝒆𝒂𝒄𝒉 𝒄𝒐𝒍𝒖𝒎𝒏 ≫ 𝑭𝒊𝒏𝒅 𝒕𝒉𝒆 𝒎𝒂𝒙𝒊𝒎𝒖𝒎 𝒐𝒇 𝒕𝒉𝒆𝒔𝒆 𝒑𝒂𝒚𝒐𝒇𝒇𝒔 ≫ 𝑻𝒉𝒆 𝒄𝒐𝒖𝒓𝒔𝒆 𝒐𝒇 𝒂𝒄𝒕𝒊𝒐𝒏 𝒄𝒐𝒓𝒓𝒆𝒔𝒑𝒐𝒏𝒅𝒊𝒏𝒈 𝒕𝒐 𝒕𝒉𝒊𝒔 𝒑𝒂𝒚𝒐𝒇𝒇 𝒊𝒔 𝒕𝒉𝒆 𝒂𝒏𝒔𝒘𝒆𝒓 ∴ 𝒕𝒉𝒆 𝒃𝒆𝒔𝒕 𝒄𝒐𝒖𝒓𝒔𝒆 𝒐𝒇 𝒂𝒄𝒕𝒊𝒐𝒏 𝒂𝒄𝒄𝒐𝒓𝒅𝒊𝒏𝒈 𝒕𝒐 𝒕𝒉𝒆 𝒎𝒂𝒙𝒊𝒎𝒂𝒙 𝒄𝒓𝒊𝒕𝒆𝒓𝒊𝒐𝒏 = 𝟒
  • 53. Regret/Opportunity Loss Table Courses of Action 0 1 2 3 4 States of Nature 0 0 40 80 120 160 1 5 0 40 80 120 2 10 5 0 40 80 3 15 10 5 0 40 4 20 15 10 5 0
  • 54. Regret Table (Minimax Regret Criterion) Courses of Action 0 1 2 3 4 States of Nature 0 0 40 80 120 160 1 5 0 40 80 120 2 10 5 0 40 80 3 15 10 5 0 40 4 20 15 10 5 0 𝑴𝒊𝒏𝒊𝒎𝒂𝒙 𝑹𝒆𝒈𝒓𝒆𝒕 𝑪𝒓𝒊𝒕𝒆𝒓𝒊𝒐𝒏: ≫ 𝑴𝒊𝒏𝒊𝒎𝒖𝒎 𝒐𝒇 𝒕𝒉𝒆 𝒄𝒐𝒍𝒖𝒎𝒏 𝒎𝒂𝒙𝒊𝒎𝒂 (𝒊𝒏 𝒕𝒉𝒆 𝒓𝒆𝒈𝒓𝒆𝒕 𝒕𝒂𝒃𝒍𝒆) ≫ 𝒊. 𝒆. , 𝒇𝒊𝒏𝒅 𝒕𝒉𝒆 𝒎𝒂𝒙𝒊𝒎𝒖𝒎 𝒓𝒆𝒈𝒓𝒆𝒕 𝒊𝒏 𝒆𝒂𝒄𝒉 𝒄𝒐𝒍𝒖𝒎𝒏 ≫ 𝑭𝒊𝒏𝒅 𝒕𝒉𝒆 𝒎𝒊𝒏𝒊𝒎𝒖𝒎 𝒐𝒇 𝒕𝒉𝒆𝒔𝒆 𝒓𝒆𝒈𝒓𝒆𝒕𝒔 ≫ 𝑻𝒉𝒆 𝒄𝒐𝒖𝒓𝒔𝒆 𝒐𝒇 𝒂𝒄𝒕𝒊𝒐𝒏 𝒄𝒐𝒓𝒓𝒆𝒔𝒑𝒐𝒏𝒅𝒊𝒏𝒈 𝒕𝒐 𝒕𝒉𝒊𝒔 𝒓𝒆𝒈𝒓𝒆𝒕 𝒊𝒔 𝒕𝒉𝒆 𝒂𝒏𝒔𝒘𝒆𝒓
  • 55. Regret Table (Minimax Regret Criterion) Courses of Action 0 1 2 3 4 States of Nature 0 0 40 80 120 160 1 5 0 40 80 120 2 10 5 0 40 80 3 15 10 5 0 40 4 20 15 10 5 0 𝑴𝒊𝒏𝒊𝒎𝒂𝒙 𝑹𝒆𝒈𝒓𝒆𝒕 𝑪𝒓𝒊𝒕𝒆𝒓𝒊𝒐𝒏: ≫ 𝑴𝒊𝒏𝒊𝒎𝒖𝒎 𝒐𝒇 𝒕𝒉𝒆 𝒄𝒐𝒍𝒖𝒎𝒏 𝒎𝒂𝒙𝒊𝒎𝒂 (𝒊𝒏 𝒕𝒉𝒆 𝒓𝒆𝒈𝒓𝒆𝒕 𝒕𝒂𝒃𝒍𝒆) ≫ 𝒊. 𝒆. , 𝒇𝒊𝒏𝒅 𝒕𝒉𝒆 𝒎𝒂𝒙𝒊𝒎𝒖𝒎 𝒓𝒆𝒈𝒓𝒆𝒕 𝒊𝒏 𝒆𝒂𝒄𝒉 𝒄𝒐𝒍𝒖𝒎𝒏 ≫ 𝑭𝒊𝒏𝒅 𝒕𝒉𝒆 𝒎𝒊𝒏𝒊𝒎𝒖𝒎 𝒐𝒇 𝒕𝒉𝒆𝒔𝒆 𝒓𝒆𝒈𝒓𝒆𝒕𝒔 ≫ 𝑻𝒉𝒆 𝒄𝒐𝒖𝒓𝒔𝒆 𝒐𝒇 𝒂𝒄𝒕𝒊𝒐𝒏 𝒄𝒐𝒓𝒓𝒆𝒔𝒑𝒐𝒏𝒅𝒊𝒏𝒈 𝒕𝒐 𝒕𝒉𝒊𝒔 𝒓𝒆𝒈𝒓𝒆𝒕 𝒊𝒔 𝒕𝒉𝒆 𝒂𝒏𝒔𝒘𝒆𝒓
  • 56. Regret Table (Minimax Regret Criterion) Courses of Action 0 1 2 3 4 States of Nature 0 0 40 80 120 160 1 5 0 40 80 120 2 10 5 0 40 80 3 15 10 5 0 40 4 20 15 10 5 0 Column maxima 20 40 80 120 160 𝑴𝒊𝒏𝒊𝒎𝒂𝒙 𝑹𝒆𝒈𝒓𝒆𝒕 𝑪𝒓𝒊𝒕𝒆𝒓𝒊𝒐𝒏: ≫ 𝑴𝒊𝒏𝒊𝒎𝒖𝒎 𝒐𝒇 𝒕𝒉𝒆 𝒄𝒐𝒍𝒖𝒎𝒏 𝒎𝒂𝒙𝒊𝒎𝒂 (𝒊𝒏 𝒕𝒉𝒆 𝒓𝒆𝒈𝒓𝒆𝒕 𝒕𝒂𝒃𝒍𝒆) ≫ 𝒊. 𝒆. , 𝒇𝒊𝒏𝒅 𝒕𝒉𝒆 𝒎𝒂𝒙𝒊𝒎𝒖𝒎 𝒓𝒆𝒈𝒓𝒆𝒕 𝒊𝒏 𝒆𝒂𝒄𝒉 𝒄𝒐𝒍𝒖𝒎𝒏 ≫ 𝑭𝒊𝒏𝒅 𝒕𝒉𝒆 𝒎𝒊𝒏𝒊𝒎𝒖𝒎 𝒐𝒇 𝒕𝒉𝒆𝒔𝒆 𝒓𝒆𝒈𝒓𝒆𝒕𝒔 ≫ 𝑻𝒉𝒆 𝒄𝒐𝒖𝒓𝒔𝒆 𝒐𝒇 𝒂𝒄𝒕𝒊𝒐𝒏 𝒄𝒐𝒓𝒓𝒆𝒔𝒑𝒐𝒏𝒅𝒊𝒏𝒈 𝒕𝒐 𝒕𝒉𝒊𝒔 𝒓𝒆𝒈𝒓𝒆𝒕 𝒊𝒔 𝒕𝒉𝒆 𝒂𝒏𝒔𝒘𝒆𝒓
  • 57. Regret Table (Minimax Regret Criterion) Courses of Action 0 1 2 3 4 States of Nature 0 0 40 80 120 160 1 5 0 40 80 120 2 10 5 0 40 80 3 15 10 5 0 40 4 20 15 10 5 0 Column maxima 20 40 80 120 160 Minimum of the column maxima=20 𝑴𝒊𝒏𝒊𝒎𝒂𝒙 𝑹𝒆𝒈𝒓𝒆𝒕 𝑪𝒓𝒊𝒕𝒆𝒓𝒊𝒐𝒏: ≫ 𝑴𝒊𝒏𝒊𝒎𝒖𝒎 𝒐𝒇 𝒕𝒉𝒆 𝒄𝒐𝒍𝒖𝒎𝒏 𝒎𝒂𝒙𝒊𝒎𝒂 (𝒊𝒏 𝒕𝒉𝒆 𝒓𝒆𝒈𝒓𝒆𝒕 𝒕𝒂𝒃𝒍𝒆) ≫ 𝒊. 𝒆. , 𝒇𝒊𝒏𝒅 𝒕𝒉𝒆 𝒎𝒂𝒙𝒊𝒎𝒖𝒎 𝒓𝒆𝒈𝒓𝒆𝒕 𝒊𝒏 𝒆𝒂𝒄𝒉 𝒄𝒐𝒍𝒖𝒎𝒏 ≫ 𝑭𝒊𝒏𝒅 𝒕𝒉𝒆 𝒎𝒊𝒏𝒊𝒎𝒖𝒎 𝒐𝒇 𝒕𝒉𝒆𝒔𝒆 𝒓𝒆𝒈𝒓𝒆𝒕𝒔 ≫ 𝑻𝒉𝒆 𝒄𝒐𝒖𝒓𝒔𝒆 𝒐𝒇 𝒂𝒄𝒕𝒊𝒐𝒏 𝒄𝒐𝒓𝒓𝒆𝒔𝒑𝒐𝒏𝒅𝒊𝒏𝒈 𝒕𝒐 𝒕𝒉𝒊𝒔 𝒓𝒆𝒈𝒓𝒆𝒕 𝒊𝒔 𝒕𝒉𝒆 𝒂𝒏𝒔𝒘𝒆𝒓
  • 58. Regret Table (Minimax Regret Criterion) Courses of Action 0 1 2 3 4 States of Nature 0 0 40 80 120 160 1 5 0 40 80 120 2 10 5 0 40 80 3 15 10 5 0 40 4 20 15 10 5 0 Column maxima 20 40 80 120 160 Minimum of the column maxima=20 𝑴𝒊𝒏𝒊𝒎𝒂𝒙 𝑹𝒆𝒈𝒓𝒆𝒕 𝑪𝒓𝒊𝒕𝒆𝒓𝒊𝒐𝒏: ≫ 𝑴𝒊𝒏𝒊𝒎𝒖𝒎 𝒐𝒇 𝒕𝒉𝒆 𝒄𝒐𝒍𝒖𝒎𝒏 𝒎𝒂𝒙𝒊𝒎𝒂 (𝒊𝒏 𝒕𝒉𝒆 𝒓𝒆𝒈𝒓𝒆𝒕 𝒕𝒂𝒃𝒍𝒆) ≫ 𝒊. 𝒆. , 𝒇𝒊𝒏𝒅 𝒕𝒉𝒆 𝒎𝒂𝒙𝒊𝒎𝒖𝒎 𝒓𝒆𝒈𝒓𝒆𝒕 𝒊𝒏 𝒆𝒂𝒄𝒉 𝒄𝒐𝒍𝒖𝒎𝒏 ≫ 𝑭𝒊𝒏𝒅 𝒕𝒉𝒆 𝒎𝒊𝒏𝒊𝒎𝒖𝒎 𝒐𝒇 𝒕𝒉𝒆𝒔𝒆 𝒓𝒆𝒈𝒓𝒆𝒕𝒔 ≫ 𝑻𝒉𝒆 𝒄𝒐𝒖𝒓𝒔𝒆 𝒐𝒇 𝒂𝒄𝒕𝒊𝒐𝒏 𝒄𝒐𝒓𝒓𝒆𝒔𝒑𝒐𝒏𝒅𝒊𝒏𝒈 𝒕𝒐 𝒕𝒉𝒊𝒔 𝒓𝒆𝒈𝒓𝒆𝒕 𝒊𝒔 𝒕𝒉𝒆 𝒂𝒏𝒔𝒘𝒆𝒓 ∴ 𝒕𝒉𝒆 𝒃𝒆𝒔𝒕 𝒄𝒐𝒖𝒓𝒔𝒆 𝒐𝒇 𝒂𝒄𝒕𝒊𝒐𝒏 = 𝟎