Yann LeCun gave a presentation on deep learning hardware, past, present, and future. Some key points:
- Early neural networks in the 1960s-1980s were limited by hardware and algorithms. The development of backpropagation and faster floating point hardware enabled modern deep learning.
- Convolutional neural networks achieved breakthroughs in vision tasks in the 1980s-1990s but progress slowed due to limited hardware and data.
- GPUs and large datasets like ImageNet accelerated deep learning research starting in 2012, enabling very deep convolutional networks for computer vision.
- Recent work applies deep learning to new domains like natural language processing, reinforcement learning, and graph networks.
- Future challenges include memory-aug
Related topics: