SlideShare a Scribd company logo
Denoising Diffusion Probabilistic Models
重要 式 解説
正田 備也
masada@rikkyo.ac.jp
September 13, 2020
1 / 14
q(xt|x0) 求
2 / 14
q(x2|x0) =
∫
q(x2|x1)q(x1|x0)dx1 =
d∏
j=1
∫
q(x2,j|x1,j)q(x1,j|x0,j)dx1,j
=
d∏
j=1
∫
1
√
(2π)2β2β1
exp
(
−
(x2,j −
√
1 − β2x1,j)2
2β2
−
(x1,j −
√
1 − β1x0,j)2
2β1
)
dx1,j (1)
exp(·) 中身 注目 。
(x2,j −
√
1 − β2x1,j)2
2β2
+
(x1,j −
√
1 − β1x0,j)2
2β1
=
(β1 + β2 − β1β2)x2
1,j − 2(β1
√
1 − β2x2,j + β2
√
1 − β1x0,j)x1,j + β1x2
2,j + β2(1 − β1)x2
0,j
2β1β2
=
β1 + β2 − β1β2
2β1β2
{(
x1,j −
β1
√
1 − β2x2,j + β2
√
1 − β1x0,j
β1 + β2 − β1β2
)2
−
β2
1(1 − β2)x2
2,j + β2
2(1 − β1)x2
0,j + 2β1β2
√
(1 − β2)(1 − β1)x2,jx0,j
(β1 + β2 − β1β2)2
+
β1x2
2,j + β2x2
0,j
β1 + β2 − β1β2
}
3 / 14
=
β1 + β2 − β1β2
2β1β2
{(
x1,j −
β1
√
1 − β2x2,j + β2
√
1 − β1x0,j
β1 + β2 − β1β2
)2
+
β1β2(x2
2,j − 2
√
(1 − β2)(1 − β1)x2,jx0,j + x2
0,j)
(β1 + β2 − β1β2)2
}
=
β1 + β2 − β1β2
2β1β2
(
x1,j −
β1
√
1 − β2x2,j + β2
√
1 − β1x0,j
β1 + β2 − β1β2
)2
+
(x2
2,j − 2
√
(1 − β2)(1 − β1)x2,jx0,j + x2
0,j)
2(β1 + β2 − β1β2)
(2)
∫
exp
(
−
β1 + β2 − β1β2
2β1β2
(
x1,j −
β1
√
1 − β2x2,j + β2
√
1 − β1x0,j
β1 + β2 − β1β2
)2)
dx1,j =
√
2πβ1β2
β1 + β2 − β1β2
(3)
4 / 14
∫
q(x2,j|x1,j)q(x1,j|x0,j)dx1,j
=
1
√
(2π)2β2β1
√
2πβ1β2
β1 + β2 − β1β2
exp
(
−
(x2
2,j − 2
√
(1 − β2)(1 − β1)x2,jx0,j + x2
0,j)
2(β1 + β2 − β1β2)
)
=
1
√
2π(β1 + β2 − β1β2)
exp
(
−
(x2
2,j − 2
√
(1 − β2)(1 − β1)x2,jx0,j + x2
0,j)
2(β1 + β2 − β1β2)
)
(4)
以上 、
q(x2,j|x0,j) ∼ N(
√
(1 − β2)(1 − β1)x0,j, β1 + β2 − β1β2) (5)
分 。 、αt = 1 − βt ¯αt =
∏t
s=1 αs 、
q(x2,j|x0,j) ∼ N(
√
¯α2x0,j, 1 − ¯α2) (6)
。 j = 1, . . . , d 、
q(x2|x0) ∼ N(
√
¯α2x0, (1 − ¯α2)I) (7)
5 / 14
q(x3|x0) =
∫
q(x3|x2)q(x2|x0)dx2 =
d∏
j=1
∫
q(x3,j|x2,j)q(x2,j|x0,j)dx2,j
=
d∏
j=1
∫
1
√
(2π)2β3(1 − ¯α2)
exp
(
−
(x3,j −
√
1 − β3x2,j)2
2β3
−
(x2,j −
√
¯α2x0,j)2
2(1 − ¯α2)
)
dx2,j (8)
q(x2|x0) 求 式 、β2 β3 、β1 1 − ¯α2 置 換 。 、
q(x3,j|x0,j) ∼ N(
√
(1 − β3)¯α2x0,j, 1 − ¯α2 + β3 ¯α2) (9)
分 。(1 − β3)¯α2 = α3 ¯α2 = ¯α3 1 − ¯α2 + β3 ¯α2 = 1 − α3 ¯α2 = 1 − ¯α3 、
q(x3,j|x0,j) ∼ N(
√
¯α3x0,j, 1 − ¯α3) (10)
以下同様 考
q(xt|x0) ∼ N(
√
¯αtx0, (1 − ¯αt)I) (11)
( 、論文 式 (4) 通 。)
6 / 14
q(xt−1|xt, x0) 求
7 / 14
q(xt−1|xt, x0) ∝ q(xt|xt−1)q(xt−1|x0) =
d∏
j=1
q(xt,j|xt−1,j)q(xt−1,j|x0,j)
=
d∏
j=1
1
√
(2π)2βt(1 − ¯αt−1)
exp
(
−
(xt,j −
√
1 − βtxt−1,j)2
2βt
−
(xt−1,j −
√
¯αt−1x0,j)2
2(1 − ¯αt−1)
)
(12)
(xt,j −
√
1 − βtxt−1,j)2
2βt
+
(xt−1,j −
√
¯αt−1x0,j)2
2(1 − ¯αt−1)
=
1 − ¯αt−1 + βt − (1 − ¯αt−1)βt
2(1 − ¯αt−1)βt
(
xt−1,j −
(1 − ¯αt−1)
√
1 − βtxt,j + βt
√
¯αt−1x0,j
1 − ¯αt−1 + βt − (1 − ¯αt−1)βt
)2
+ const.
=
1 − ¯αt
2(1 − ¯αt−1)βt
(
xt−1,j −
(1 − ¯αt−1)
√
αtxt,j + βt
√
¯αt−1x0,j
1 − ¯αt
)2
+ const. (13)
8 / 14
q(xt−1,j|xt,j, x0,j) ∼ N
((1 − ¯αt−1)
√
αtxt,j + βt
√
¯αt−1x0,j
1 − ¯αt
,
(1 − ¯αt−1)βt
1 − ¯αt
)
(14)
j = 1, . . . , d 、
q(xt−1|xt, x0) ∼ N
((1 − ¯αt−1)
√
αtxt + βt
√
¯αt−1x0
1 − ¯αt
,
(1 − ¯αt−1)βt
1 − ¯αt
I
)
(15)
( 、論文 式 (6) 式 (7) 通 。)
9 / 14
ELBO 求
10 / 14
ln p(x0) = ln
∫
p(x0:T )dx1:T = ln
∫
p(xT )
T∏
t=1
p(xt−1|xt)dx1:T
= ln
∫
q(x1:T |x0)
p(xT )
∏T
t=1 p(xt−1|xt)
q(x1:T |x0)
dx1:T
≥
∫
q(x1:T |x0) ln
p(xT )
∏T
t=1 p(xt−1|xt)
q(x1:T |x0)
dx1:T
=
∫
q(x1:T |x0) ln
p(xT )
∏T
t=1 p(xt−1|xt)
∏T
t=1 q(xt|xt−1)
dx1:T
= Eq
[
ln p(xT ) +
T∑
t=1
ln
p(xt−1|xt)
q(xt|xt−1)
]
= Eq
[
ln p(xT ) +
T∑
t=2
ln
p(xt−1|xt)
q(xt|xt−1)
+ ln
p(x0|x1)
q(x1|x0)
]
(16)
11 / 14
q(xt−1|xt, x0) =
q(xt, xt−1|x0)
q(xt|x0)
=
q(xt|xt−1, x0)q(xt−1|x0)
q(xt|x0)
=
q(xt|xt−1)q(xt−1|x0)
q(xt|x0)
(17)
、最後 等号 性 仮定 、成 立 。
∴ ln p(x0) ≥ Eq
[
ln p(xT ) +
T∑
t=2
ln
p(xt−1|xt)
q(xt−1|xt, x0)
·
q(xt−1|x0)
q(xt|x0)
+ ln
p(x0|x1)
q(x1|x0)
]
= Eq
[
ln p(xT ) +
T∑
t=2
ln
p(xt−1|xt)
q(xt−1|xt, x0)
+
T∑
t=2
ln q(xt−1|x0) −
T∑
t=2
ln q(xt|x0) + ln
p(x0|x1)
q(x1|x0)
]
= Eq
[
ln p(xT ) +
T∑
t=2
ln
p(xt−1|xt)
q(xt−1|xt, x0)
+ ln q(x1|x0) − ln q(xT |x0) + ln
p(x0|x1)
q(x1|x0)
]
= Eq
[
ln
p(xT )
q(xT |x0)
+
T∑
t=2
ln
p(xt−1|xt)
q(xt−1|xt, x0)
+ ln p(x0|x1)
]
(18)
12 / 14
p(xt−1|xt) =
∏d
j=1
1√
2πσt
exp
(
−
(xt−1,j −µj (xt,t))2
2σ2
t
)
。
ln
p(xt−1|xt)
q(xt−1|xt, x0)
= −
d∑
j=1
(xt−1,j − µj(xt, t))2
2σ2
t
+
d∑
j=1
(xt−1,j −
(1−¯αt−1)
√
αtxt,j +βt
√
¯αt−1x0,j
1−¯αt
)2
2(1−¯αt−1)βt
1−¯αt
+ const. (19)
論文 σ2
t = (1−¯αt−1)βt
1−¯αt
仮定 、
ln
p(xt−1|xt)
q(xt−1|xt, x0)
=
1
2σ2
t
d∑
j=1
[
2xt−1,j
(
µj(xt, t) −
(1 − ¯αt−1)
√
αtxt,j + βt
√
¯αt−1x0,j
1 − ¯αt
)
− µj(xt, t)2
+
(
(1 − ¯αt−1)
√
αtxt,j + βt
√
¯αt−1x0,j
1 − ¯αt
)2]
+ const. (20)
13 / 14
∫
q(xt−1|xt, x0) ln
p(xt−1|xt)
q(xt−1|xt, x0)
dxt−1
=
1
2σ2
t
d∑
j=1
[
2
(1 − ¯αt−1)
√
αtxt,j + βt
√
¯αt−1x0,j
1 − ¯αt
(
µj(xt, t) −
(1 − ¯αt−1)
√
αtxt,j + βt
√
¯αt−1x0,j
1 − ¯αt
)
− µj(xt, t)2
+
(
(1 − ¯αt−1)
√
αtxt,j + βt
√
¯αt−1x0,j
1 − ¯αt
)2]
+ const.
= −
1
2σ2
t
d∑
j=1
(
µj(xt, t)2
−
(1 − ¯αt−1)
√
αtxt,j + βt
√
¯αt−1x0,j
1 − ¯αt
)2
+ const. (21)
( 、論文 式 (8) 符号 逆 。論文 negative log evidence upper
bound 求 、 解説 log evidence lower bound 求 、符号
逆 。)
14 / 14

More Related Content

PPTX
ResNetの仕組み
PDF
[DL輪読会]Recent Advances in Autoencoder-Based Representation Learning
PDF
[DL輪読会]ICLR2020の分布外検知速報
PPTX
You Only Look One-level Featureの解説と見せかけた物体検出のよもやま話
PDF
Generative Models(メタサーベイ )
PDF
強化学習の基礎的な考え方と問題の分類
PPTX
[DL輪読会]Live-Streaming Fraud Detection: A Heterogeneous Graph Neural Network A...
PDF
[DL輪読会]Learning Transferable Visual Models From Natural Language Supervision
ResNetの仕組み
[DL輪読会]Recent Advances in Autoencoder-Based Representation Learning
[DL輪読会]ICLR2020の分布外検知速報
You Only Look One-level Featureの解説と見せかけた物体検出のよもやま話
Generative Models(メタサーベイ )
強化学習の基礎的な考え方と問題の分類
[DL輪読会]Live-Streaming Fraud Detection: A Heterogeneous Graph Neural Network A...
[DL輪読会]Learning Transferable Visual Models From Natural Language Supervision

What's hot (20)

PPTX
[DL輪読会]World Models
PDF
[DL輪読会]Glow: Generative Flow with Invertible 1×1 Convolutions
PDF
Neural networks for Graph Data NeurIPS2018読み会@PFN
PDF
Iclr2016 vaeまとめ
PDF
Transformer 動向調査 in 画像認識(修正版)
PDF
強化学習その3
PDF
実装レベルで学ぶVQVAE
PPTX
[DL輪読会]Set Transformer: A Framework for Attention-based Permutation-Invariant...
PPTX
XAI (説明可能なAI) の必要性
PPTX
[DL輪読会]Life-Long Disentangled Representation Learning with Cross-Domain Laten...
PDF
[DL輪読会]Disentangling by Factorising
PDF
自己教師学習(Self-Supervised Learning)
PPTX
MASTERING ATARI WITH DISCRETE WORLD MODELS (DreamerV2)
PDF
【DL輪読会】DINOv2: Learning Robust Visual Features without Supervision
PPTX
【DL輪読会】DiffRF: Rendering-guided 3D Radiance Field Diffusion [N. Muller+ CVPR2...
PPTX
強化学習アルゴリズムPPOの解説と実験
PDF
Vision and Language(メタサーベイ )
PDF
[DL輪読会]Deep Learning 第15章 表現学習
PPTX
SSII2020SS: グラフデータでも深層学習 〜 Graph Neural Networks 入門 〜
PDF
PCAの最終形態GPLVMの解説
[DL輪読会]World Models
[DL輪読会]Glow: Generative Flow with Invertible 1×1 Convolutions
Neural networks for Graph Data NeurIPS2018読み会@PFN
Iclr2016 vaeまとめ
Transformer 動向調査 in 画像認識(修正版)
強化学習その3
実装レベルで学ぶVQVAE
[DL輪読会]Set Transformer: A Framework for Attention-based Permutation-Invariant...
XAI (説明可能なAI) の必要性
[DL輪読会]Life-Long Disentangled Representation Learning with Cross-Domain Laten...
[DL輪読会]Disentangling by Factorising
自己教師学習(Self-Supervised Learning)
MASTERING ATARI WITH DISCRETE WORLD MODELS (DreamerV2)
【DL輪読会】DINOv2: Learning Robust Visual Features without Supervision
【DL輪読会】DiffRF: Rendering-guided 3D Radiance Field Diffusion [N. Muller+ CVPR2...
強化学習アルゴリズムPPOの解説と実験
Vision and Language(メタサーベイ )
[DL輪読会]Deep Learning 第15章 表現学習
SSII2020SS: グラフデータでも深層学習 〜 Graph Neural Networks 入門 〜
PCAの最終形態GPLVMの解説
Ad

More from Tomonari Masada (20)

PDF
Learning Latent Space Energy Based Prior Modelの解説
PDF
Context-dependent Token-wise Variational Autoencoder for Topic Modeling
PDF
A note on the density of Gumbel-softmax
PPTX
トピックモデルの基礎と応用
PDF
Expectation propagation for latent Dirichlet allocation
PDF
Mini-batch Variational Inference for Time-Aware Topic Modeling
PDF
A note on variational inference for the univariate Gaussian
PDF
Document Modeling with Implicit Approximate Posterior Distributions
PDF
LDA-Based Scoring of Sequences Generated by RNN for Automatic Tanka Composition
PDF
A Note on ZINB-VAE
PDF
A Note on Latent LSTM Allocation
PDF
A Note on TopicRNN
PDF
Topic modeling with Poisson factorization (2)
PDF
Poisson factorization
PPTX
A Simple Stochastic Gradient Variational Bayes for the Correlated Topic Model
PPTX
A Simple Stochastic Gradient Variational Bayes for Latent Dirichlet Allocation
TXT
Word count in Husserliana Volumes 1 to 28
PDF
A Simple Stochastic Gradient Variational Bayes for Latent Dirichlet Allocation
PDF
FDSE2015
PDF
A derivation of the sampling formulas for An Entity-Topic Model for Entity Li...
Learning Latent Space Energy Based Prior Modelの解説
Context-dependent Token-wise Variational Autoencoder for Topic Modeling
A note on the density of Gumbel-softmax
トピックモデルの基礎と応用
Expectation propagation for latent Dirichlet allocation
Mini-batch Variational Inference for Time-Aware Topic Modeling
A note on variational inference for the univariate Gaussian
Document Modeling with Implicit Approximate Posterior Distributions
LDA-Based Scoring of Sequences Generated by RNN for Automatic Tanka Composition
A Note on ZINB-VAE
A Note on Latent LSTM Allocation
A Note on TopicRNN
Topic modeling with Poisson factorization (2)
Poisson factorization
A Simple Stochastic Gradient Variational Bayes for the Correlated Topic Model
A Simple Stochastic Gradient Variational Bayes for Latent Dirichlet Allocation
Word count in Husserliana Volumes 1 to 28
A Simple Stochastic Gradient Variational Bayes for Latent Dirichlet Allocation
FDSE2015
A derivation of the sampling formulas for An Entity-Topic Model for Entity Li...
Ad

Denoising Diffusion Probabilistic Modelsの重要な式の解説

  • 1. Denoising Diffusion Probabilistic Models 重要 式 解説 正田 備也 masada@rikkyo.ac.jp September 13, 2020 1 / 14
  • 3. q(x2|x0) = ∫ q(x2|x1)q(x1|x0)dx1 = d∏ j=1 ∫ q(x2,j|x1,j)q(x1,j|x0,j)dx1,j = d∏ j=1 ∫ 1 √ (2π)2β2β1 exp ( − (x2,j − √ 1 − β2x1,j)2 2β2 − (x1,j − √ 1 − β1x0,j)2 2β1 ) dx1,j (1) exp(·) 中身 注目 。 (x2,j − √ 1 − β2x1,j)2 2β2 + (x1,j − √ 1 − β1x0,j)2 2β1 = (β1 + β2 − β1β2)x2 1,j − 2(β1 √ 1 − β2x2,j + β2 √ 1 − β1x0,j)x1,j + β1x2 2,j + β2(1 − β1)x2 0,j 2β1β2 = β1 + β2 − β1β2 2β1β2 {( x1,j − β1 √ 1 − β2x2,j + β2 √ 1 − β1x0,j β1 + β2 − β1β2 )2 − β2 1(1 − β2)x2 2,j + β2 2(1 − β1)x2 0,j + 2β1β2 √ (1 − β2)(1 − β1)x2,jx0,j (β1 + β2 − β1β2)2 + β1x2 2,j + β2x2 0,j β1 + β2 − β1β2 } 3 / 14
  • 4. = β1 + β2 − β1β2 2β1β2 {( x1,j − β1 √ 1 − β2x2,j + β2 √ 1 − β1x0,j β1 + β2 − β1β2 )2 + β1β2(x2 2,j − 2 √ (1 − β2)(1 − β1)x2,jx0,j + x2 0,j) (β1 + β2 − β1β2)2 } = β1 + β2 − β1β2 2β1β2 ( x1,j − β1 √ 1 − β2x2,j + β2 √ 1 − β1x0,j β1 + β2 − β1β2 )2 + (x2 2,j − 2 √ (1 − β2)(1 − β1)x2,jx0,j + x2 0,j) 2(β1 + β2 − β1β2) (2) ∫ exp ( − β1 + β2 − β1β2 2β1β2 ( x1,j − β1 √ 1 − β2x2,j + β2 √ 1 − β1x0,j β1 + β2 − β1β2 )2) dx1,j = √ 2πβ1β2 β1 + β2 − β1β2 (3) 4 / 14
  • 5. ∫ q(x2,j|x1,j)q(x1,j|x0,j)dx1,j = 1 √ (2π)2β2β1 √ 2πβ1β2 β1 + β2 − β1β2 exp ( − (x2 2,j − 2 √ (1 − β2)(1 − β1)x2,jx0,j + x2 0,j) 2(β1 + β2 − β1β2) ) = 1 √ 2π(β1 + β2 − β1β2) exp ( − (x2 2,j − 2 √ (1 − β2)(1 − β1)x2,jx0,j + x2 0,j) 2(β1 + β2 − β1β2) ) (4) 以上 、 q(x2,j|x0,j) ∼ N( √ (1 − β2)(1 − β1)x0,j, β1 + β2 − β1β2) (5) 分 。 、αt = 1 − βt ¯αt = ∏t s=1 αs 、 q(x2,j|x0,j) ∼ N( √ ¯α2x0,j, 1 − ¯α2) (6) 。 j = 1, . . . , d 、 q(x2|x0) ∼ N( √ ¯α2x0, (1 − ¯α2)I) (7) 5 / 14
  • 6. q(x3|x0) = ∫ q(x3|x2)q(x2|x0)dx2 = d∏ j=1 ∫ q(x3,j|x2,j)q(x2,j|x0,j)dx2,j = d∏ j=1 ∫ 1 √ (2π)2β3(1 − ¯α2) exp ( − (x3,j − √ 1 − β3x2,j)2 2β3 − (x2,j − √ ¯α2x0,j)2 2(1 − ¯α2) ) dx2,j (8) q(x2|x0) 求 式 、β2 β3 、β1 1 − ¯α2 置 換 。 、 q(x3,j|x0,j) ∼ N( √ (1 − β3)¯α2x0,j, 1 − ¯α2 + β3 ¯α2) (9) 分 。(1 − β3)¯α2 = α3 ¯α2 = ¯α3 1 − ¯α2 + β3 ¯α2 = 1 − α3 ¯α2 = 1 − ¯α3 、 q(x3,j|x0,j) ∼ N( √ ¯α3x0,j, 1 − ¯α3) (10) 以下同様 考 q(xt|x0) ∼ N( √ ¯αtx0, (1 − ¯αt)I) (11) ( 、論文 式 (4) 通 。) 6 / 14
  • 8. q(xt−1|xt, x0) ∝ q(xt|xt−1)q(xt−1|x0) = d∏ j=1 q(xt,j|xt−1,j)q(xt−1,j|x0,j) = d∏ j=1 1 √ (2π)2βt(1 − ¯αt−1) exp ( − (xt,j − √ 1 − βtxt−1,j)2 2βt − (xt−1,j − √ ¯αt−1x0,j)2 2(1 − ¯αt−1) ) (12) (xt,j − √ 1 − βtxt−1,j)2 2βt + (xt−1,j − √ ¯αt−1x0,j)2 2(1 − ¯αt−1) = 1 − ¯αt−1 + βt − (1 − ¯αt−1)βt 2(1 − ¯αt−1)βt ( xt−1,j − (1 − ¯αt−1) √ 1 − βtxt,j + βt √ ¯αt−1x0,j 1 − ¯αt−1 + βt − (1 − ¯αt−1)βt )2 + const. = 1 − ¯αt 2(1 − ¯αt−1)βt ( xt−1,j − (1 − ¯αt−1) √ αtxt,j + βt √ ¯αt−1x0,j 1 − ¯αt )2 + const. (13) 8 / 14
  • 9. q(xt−1,j|xt,j, x0,j) ∼ N ((1 − ¯αt−1) √ αtxt,j + βt √ ¯αt−1x0,j 1 − ¯αt , (1 − ¯αt−1)βt 1 − ¯αt ) (14) j = 1, . . . , d 、 q(xt−1|xt, x0) ∼ N ((1 − ¯αt−1) √ αtxt + βt √ ¯αt−1x0 1 − ¯αt , (1 − ¯αt−1)βt 1 − ¯αt I ) (15) ( 、論文 式 (6) 式 (7) 通 。) 9 / 14
  • 11. ln p(x0) = ln ∫ p(x0:T )dx1:T = ln ∫ p(xT ) T∏ t=1 p(xt−1|xt)dx1:T = ln ∫ q(x1:T |x0) p(xT ) ∏T t=1 p(xt−1|xt) q(x1:T |x0) dx1:T ≥ ∫ q(x1:T |x0) ln p(xT ) ∏T t=1 p(xt−1|xt) q(x1:T |x0) dx1:T = ∫ q(x1:T |x0) ln p(xT ) ∏T t=1 p(xt−1|xt) ∏T t=1 q(xt|xt−1) dx1:T = Eq [ ln p(xT ) + T∑ t=1 ln p(xt−1|xt) q(xt|xt−1) ] = Eq [ ln p(xT ) + T∑ t=2 ln p(xt−1|xt) q(xt|xt−1) + ln p(x0|x1) q(x1|x0) ] (16) 11 / 14
  • 12. q(xt−1|xt, x0) = q(xt, xt−1|x0) q(xt|x0) = q(xt|xt−1, x0)q(xt−1|x0) q(xt|x0) = q(xt|xt−1)q(xt−1|x0) q(xt|x0) (17) 、最後 等号 性 仮定 、成 立 。 ∴ ln p(x0) ≥ Eq [ ln p(xT ) + T∑ t=2 ln p(xt−1|xt) q(xt−1|xt, x0) · q(xt−1|x0) q(xt|x0) + ln p(x0|x1) q(x1|x0) ] = Eq [ ln p(xT ) + T∑ t=2 ln p(xt−1|xt) q(xt−1|xt, x0) + T∑ t=2 ln q(xt−1|x0) − T∑ t=2 ln q(xt|x0) + ln p(x0|x1) q(x1|x0) ] = Eq [ ln p(xT ) + T∑ t=2 ln p(xt−1|xt) q(xt−1|xt, x0) + ln q(x1|x0) − ln q(xT |x0) + ln p(x0|x1) q(x1|x0) ] = Eq [ ln p(xT ) q(xT |x0) + T∑ t=2 ln p(xt−1|xt) q(xt−1|xt, x0) + ln p(x0|x1) ] (18) 12 / 14
  • 13. p(xt−1|xt) = ∏d j=1 1√ 2πσt exp ( − (xt−1,j −µj (xt,t))2 2σ2 t ) 。 ln p(xt−1|xt) q(xt−1|xt, x0) = − d∑ j=1 (xt−1,j − µj(xt, t))2 2σ2 t + d∑ j=1 (xt−1,j − (1−¯αt−1) √ αtxt,j +βt √ ¯αt−1x0,j 1−¯αt )2 2(1−¯αt−1)βt 1−¯αt + const. (19) 論文 σ2 t = (1−¯αt−1)βt 1−¯αt 仮定 、 ln p(xt−1|xt) q(xt−1|xt, x0) = 1 2σ2 t d∑ j=1 [ 2xt−1,j ( µj(xt, t) − (1 − ¯αt−1) √ αtxt,j + βt √ ¯αt−1x0,j 1 − ¯αt ) − µj(xt, t)2 + ( (1 − ¯αt−1) √ αtxt,j + βt √ ¯αt−1x0,j 1 − ¯αt )2] + const. (20) 13 / 14
  • 14. ∫ q(xt−1|xt, x0) ln p(xt−1|xt) q(xt−1|xt, x0) dxt−1 = 1 2σ2 t d∑ j=1 [ 2 (1 − ¯αt−1) √ αtxt,j + βt √ ¯αt−1x0,j 1 − ¯αt ( µj(xt, t) − (1 − ¯αt−1) √ αtxt,j + βt √ ¯αt−1x0,j 1 − ¯αt ) − µj(xt, t)2 + ( (1 − ¯αt−1) √ αtxt,j + βt √ ¯αt−1x0,j 1 − ¯αt )2] + const. = − 1 2σ2 t d∑ j=1 ( µj(xt, t)2 − (1 − ¯αt−1) √ αtxt,j + βt √ ¯αt−1x0,j 1 − ¯αt )2 + const. (21) ( 、論文 式 (8) 符号 逆 。論文 negative log evidence upper bound 求 、 解説 log evidence lower bound 求 、符号 逆 。) 14 / 14