SlideShare a Scribd company logo
Design and Analysis of PID and Fuzzy-PID Controller for
Voltage Control of DC Microgrid
Presented By : Dr. Francisco M. Gonzalez-Longatt
Deptt. Of Electrical Engg.
University of Loughborough, Loughborough, UK
Co-Author:
R. K. Chauhan and Dr. B. S. Rajpurohit
School of Computing & Electrical Engg
Indian Institute of Technology Mandi,
India
Dr. R. E. Hebner
Center for Electromechanics
University of Texas Austin,
USA
Dr. S. N. Singh
Deptt. of Electrical Engineering
Indian Institute of Technology Kanpur,
India
Stability issues are more prevalent in microgrids than in a
large electric grid because power and energy ratings are
much lower.
In dc systems there is no reactive power interactions,
which seems to suggest that there are no frequency stability
issues.
System control seems to be oriented to voltage stability.
There is a change in the power and load due to demand
variations. This change leads to create fluctuations in the
voltage level.
2
The objective is to keep the DC microgrid voltage at the
reference DC level (i.e. at 124V here).
A PID controller is designed for the DC microgrid voltage
control.
A fuzzy PID controller also designed which is taking the
advantage of PID experiences and Fuzzy knowledge.
Both the controllers is compared based on the performance
parameters.
3
4
Public
Utility
SDT
Load
Home-2
PV Plant
+
-
Voltage
Sensor
Load
Home-4
PV Plant
Load
Home-1
PV Plant Load
Home-3
PV Plant
PWM
Controller
Filter
Vg
Vd
+
-
5
00:00 12:00 24:00
0
5
10
Time (Hour)
Power(kW)
Home 1
00:00 12:00 24:00
0
5
10
15
Time (Hour)
Power(kW)
Home 2
00:00 12:00 24:00
0
2
4
6
Time (Hour)
Power(kW)
Home 3
Consumed Power
Solar Power
00:00 12:00 24:00
0
2
4
6
Time (Hour)
Power(kW)
Home 4
6
00:00 5:00 10:00 15:00 20:00 24:00
-10
-5
0
5
10
15
20
25
Time (Hour)
Power(kW) Consumed Power
Solar Power
Grid Power
• The output of the PID controller can be expressed as
(1)
• Transfer function can be expressed as:
7
PID
Controller
e
Vg(s)
u(s)
+ -
Vo(s)Vd(s) Fuzzy PID Controller
e(s)
Vg(s)
uf(s)
+
-
Vo(s)Vd(s)
Fuzzification Inference Defuzzification
Fuzzy
Knowledge Based Rule Based
PID
1
( ) ( ) ( ) ( )p i du s K e s K e s K Se s
S
  
(2)
where
( ) 1
( )
( )
p i d
u s
G s K K K s
e s s
   
( ) de s V Vg 
( ) d oe s V V 
8
System fuzzy-pid: 2 inputs, 3 outputs, 49 rules
e (7)
ec (7)
Kp (7)
Ki (7)
Kd (7)
Fuzzy-PID
(Mamdani)
49 rules
-3 -2 -1 0 1 2 3
0
0.5
1
e, ec
Degreeofmembership
NB NM NS Z PS PM PB
Membership function for FL-PID inputs error and change in error
-0.2 -0.1 0 0.1 0.2 0.3
0
0.5
1
Kp
NB NM NS Z PS PM PB
-0.06 -0.04 -0.02 0 0.02 0.04 0.06
0
0.5
1
Ki
Degreeofmembership
NB NM NS Z PS PM PB
-3 -2 -1 0 1 2 3
0
0.5
1
Kd
NB NM NS Z PS PM PB
Membership function for FL-PID outputs Kp, Ki, and Kd
9
e
ec
NB NM NS Z PS PM PB
NB NB NB NB NM NM Z Z
NM NB NB NM NM NS Z Z
NS NM NM NS NS Z PS PS
Z NM NS NS Z PS PS PM
PS NS NS Z PS PS NM PM
PM Z Z PS PM PM PB PB
PB Z Z PS PM PB PB PB
e
ec
NB NM NS Z PS PM PB
NB PB PB PM PM PS PS Z
NM PB PB PM PM PS Z Z
NS PM PM PM PS Z NS NM
Z PM PS PS Z NS NM NM
PS PS PS Z NS NS NM NM
PM Z Z NS NM NM NM NB
PB Z NS NS NM NM NB NB
e
ec
NB NM NS Z PS PM PB
NB PS PS Z Z Z PB PB
NM NS NS NS NS Z PS PM
NS NB NB NM NS Z PS PM
Z NB NM NM NS Z PS PM
PS NB NM NS NS Z PS PS
PM NM NS NS NS Z PS PS
PB PS Z Z Z Z PB PS
Fuzzy Rules For Kd
Fuzzy Rules For Kp Fuzzy Rules For Ki
10
0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
0
20
40
60
80
100
120
140
160
180
Time (Sec)
Voltage(Volt)
Simulated Grid Voltage
Measured Grid Voltage
Desired Grid Voltage
00:00 02:30 05:00 07:30 10:00 12:30 15:00 17:30 20:00 22:30 25:00
110
120
130
140
150
160
170
Time (Hour)
PID Controller
Voltage(Volt)
Solid Line is the Measured Voltage
Dotted Line is the Desired Voltage
Dashed line is the Simulated Voltage
11
00:00 02:30 05:00 07:30 10:00 12:30 15:00 17:30 20:00 22:30 25:00
110
115
120
125
130
135
140
145
Time (Sec)
Fuzzy PID Controller
Voltage(Volt)
Solid Line is the Measured Voltage
Dotted Line is the Desired Voltage
Dashed line is the Simulated Voltage
0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
0
20
40
60
80
100
120
140
160
Time (Sec)
Voltage(Volt)
Measured Grid Voltage
Simulated Grid Voltage
Desired Grid Voltage
12
Controller
Type Time Response Parameters
Rise
time
(Sec)
Settling
time
(Sec)
Over-
shoot
(%)
Peak time
(Sec)
Steady
state
error (%)
PID 0.0148 1.6091 0.326 0.47 0.9231
FL-PID 0.0264 1.3609 0.132 0.41 0.2325
The FL-PID leaves a good impact in the sense of
performance parameters.
FL-PID is superior and better for DC microgrid voltage
controlling.
The intelligent controlling of the DC microgrid voltage which
has been done by the fuzzy method.
The paper has been able to demonstrate the potential of
fuzzy control over other conventional control.
A stable and efficient DC system can be obtained by using the
controlled voltage obtained from the proposed controllers (PID
and FL-PID).
13
• N. D. Hatziargyriou, H. Asano, H. R. Iravani, and C. Marnay, “Microgrids,” IEEE Power Energy Mag., vol.5, no.4,
pp.78–94, Jul. 2007.
• N. Pogaku, M. Prodanovic, and T. C. Green, “Modeling, analysis and testing of autonomous operation of an inverter-
based microgrid,” IEEE Trans. Power Electron, vol.22, no.2, pp.613–625, Mar. 2007.
• J. M. Carrasco, L. G. Franquelo, J. T. Bialasiewiez, E. Galvan, E Guisado, M. M. Prats, J. I. Leon, and N. M. Alfonso,
“Power-electronic systems for the grid integration of renewable energy sources: A survey,” IEEE Trans. Power
Electron, vol.53, no.4, pp.1002–1016, Jun. 2006.
• R. K. Chauhan, B. S. Rajpurohit, “DC Distribution System for energy efficient buildings,” in proc. 2014 IEEE 18th
National Power System Conference, India, Dec. 18-20, 2014, pp.1-6.
• J. C. Choi, H. Y. Jeong, D. J. Won, S. J. Ahn and S. I. Moon, “Cooperative voltage control of distributed generation and
grid connected converter in dc microgrid,” Renewable Energy and Power Quality Journal, no.2, Mar. 2013.
• Y. Ito, Y. Zhongqing, and H Akagi, “DC microgrid based distribution power generation system,” in proc. 2004 IEEE 4th
International Conference on Power Electronics and Motion Control, vol. 3, pp. 1740-1745.
• H. Kakigano, A. Nishino, and T. Ise, “Distribution voltage control for dc microgrid with fuzzy control and gain-
scheduling control,” in proc. 2011 IEEE 8th International Conference on Power Electronics and ECCE Asia, pp. 254-
263.
• B. Singh, A. Chandra, and K. Al-Haddad, “Computer-aided modeling and simulation of active power filters,” Elect.
Mach. and Power Syst., vol.27, no.11, pp.1227–1241, 1999.
• K. Chatterjee, B. G. Fernandes, and G. K. Dubey, “An instantaneous reactive volt-ampere compensator and harmonic
suppressor system,” IEEE Trans. Power Electron., vol. 14, no. 2, pp. 381–392, Mar. 1999.
• S. Jain, P. Agarwal, and H. O. Gupta, “Design simulation and experimental investigations on a shunt active power filter
for harmonics and reactive power compensation,” Elect. Power Compon. and Syst., vol. 32, no. 7, pp. 671–692, Jul.
2003.
• F. Blaabjerg, R. Teodorescu, M. Liserre, and A.V. Timbus, “Overview of control and grid synchronization for
distributed power generation systems,” IEEE Trans. Ind. Electron., vol. 55, no.3, pp. 1398–1411, Oct. 2006.
14
• S. Buso, L. Malesani, and P. Mattavelli, “Comparison of current control techniques for active power filter
applications”, IEEE Trans. Ind. Electron., vol.45, no.5, pp.722-729, Oct. 1998.
• M. Ho, and C. Lin, “PID controller design for robust performance,” IEEE Trans. Automatic Control, vol. 48, no. 8,
pp. 1404–1409, Aug. 2003.
• G. K. I. Mann, B. G. Hu, and R. G. Gosine, “Analysis of direct action fuzzy PID controllers structures,” IEEE
Trans. Syst. Man Cybern., vol. 29, no.3, pp.371–388, Jun. 1999.
• B. K. Bose, “Expert systems, fuzzy logic and neural network, applications in power electronics and motion
control,” in proc.1994 IEEE Piscataway, NJ: IEEE Press, ch. 11, pp. 1303 - 1323.
• V. S. C. Raviraj and P. C. Sen, “Comparative study of proportional integral, sliding mode, and fuzzy logic
controllers for power converters,” IEEE Trans. Ind. Appl., vol.33, no.2, pp. 518–524, Mar./Apr. 1997.
• C. C. Lee, “Fuzzy logic in control systems: fuzzy logic controller-part I”, IEEE Trans. Syst. Man. Cybern., vol.20,
no. 2, pp. 404-418, Mar/Apr 1990.
• K. Rajani and R. Pal Nikhil R., “A robust self-tuning scheme for PI and PD-type fuzzy controllers,” IEEE Trans.
Fuzzy Syst., vol.7, no.1, pp. 2-16, Feb. 1999.
• H. Baogang, G. K. I. Mann and R. G. Gosine, “New methodology for analytical and optimal design of fuzzy PID
controllers”, IEEE Trans. Fuzzy Syst., vol.7, no.5, pp.521-539, Oct. 1999.
• Z. W. Woo, H. Y. Chung and J. J. Lin, “A PID type fuzzy controller with self-tuning scaling factors,” Fuzzy Sets and
Syst., vol.115, no.2, pp. 321-326, Oct.2000.
• I. Pan, S. Das and A. Gupta, “Tuning of an optimal fuzzy PID controller with stochastic algorithms for networked
control systems with random time delay,” ISA Trans., vol.50, no.1, pp.28-36, Jan. 2011.
• D. Chen and L. Xu, “Autonomous dc voltage control of a dc microgrid with multiple slack terminals,” IEEE Trans.
power syst., vol.27, no.4, pp.1897-1905, Nov.2012.
15
Acknowledgement
The authors would like to acknowledge the financial
support received by
DST-UKIERI
16
Thanks!
17

More Related Content

PPTX
PPT
Chapter 7 1
PPTX
PID Controller and its design
PPTX
Unit commitment
PPTX
Flexible ac transmission system
PPTX
Harmonics and mitigation techniques
PPTX
FACT devices
PPT
Flexible AC Transmission (FACTS)
Chapter 7 1
PID Controller and its design
Unit commitment
Flexible ac transmission system
Harmonics and mitigation techniques
FACT devices
Flexible AC Transmission (FACTS)

What's hot (20)

PDF
Newton raphson method
PDF
control engineering revision
PDF
Optical Current Transformer (OCT)
PPTX
Neutral grounding
PPTX
PPT on INDUSTRIAL AUTOMATION, PLC, SCADA
PDF
Structure of power system
PPTX
Reactive power compensation using STATCOM
PPTX
Protection and control of Microgrid
PPTX
Methods of Voltage Control
PPTX
Lag lead compensator design in frequency domain 7th lecture
PPTX
Interconnection issue in microgrid
DOCX
Thyristor switched capacitor
PPTX
Hydrothermal scheduling
PPTX
INTERLINE FLOW CONTROLLER
PPTX
Proportional integral and derivative PID controller
PPT
FACTS
PPT
Islanding
PPTX
Pid control by Adarsh singh
PPTX
Speed Control of DC Motor Using PSO tuned PID Controller
Newton raphson method
control engineering revision
Optical Current Transformer (OCT)
Neutral grounding
PPT on INDUSTRIAL AUTOMATION, PLC, SCADA
Structure of power system
Reactive power compensation using STATCOM
Protection and control of Microgrid
Methods of Voltage Control
Lag lead compensator design in frequency domain 7th lecture
Interconnection issue in microgrid
Thyristor switched capacitor
Hydrothermal scheduling
INTERLINE FLOW CONTROLLER
Proportional integral and derivative PID controller
FACTS
Islanding
Pid control by Adarsh singh
Speed Control of DC Motor Using PSO tuned PID Controller
Ad

Viewers also liked (20)

PPT
Fuzzy
PPTX
PID Controller
PDF
FinalYearReport_Angel_Francos-2_PDF-2
PPT
Thompson tchobanian ni_li)
PDF
Project_Report_Debargha
PPTX
Maglev sys modelling using FLC and PID controller
PPT
Control Systems Design- PID Tuning
PPTX
EES-UETP Microgrid course
PPTX
Design of fuzzzy pid controller for bldc motor
PPSX
MicroGrid and Energy Storage System COMPLETE DETAILS NEW PPT
PPTX
Speed control of dc motor by fuzzy controller
PPTX
Pid controller tuning using fuzzy logic
PDF
HYBRID FUZZY LOGIC AND PID CONTROLLER FOR PH NEUTRALIZATION PILOT PLANT
PDF
Fuzzy imp in part
PDF
Design of Fractional Order PID controller using Soft computing methods for a ...
PDF
Future Energy Systems: Challenges on Modelling and Control Uncertainties + Bi...
PDF
Redes Inteligentes Sustentables (Macro/Micro): Retos y Oportunidades, Caracas...
PDF
Capitulo 2. Tecnologías empleadas en la Generación Distribuida - Sistemas de ...
PDF
Capitulo 2.3: Microturbina - Sistemas de Generacion Distribuida
Fuzzy
PID Controller
FinalYearReport_Angel_Francos-2_PDF-2
Thompson tchobanian ni_li)
Project_Report_Debargha
Maglev sys modelling using FLC and PID controller
Control Systems Design- PID Tuning
EES-UETP Microgrid course
Design of fuzzzy pid controller for bldc motor
MicroGrid and Energy Storage System COMPLETE DETAILS NEW PPT
Speed control of dc motor by fuzzy controller
Pid controller tuning using fuzzy logic
HYBRID FUZZY LOGIC AND PID CONTROLLER FOR PH NEUTRALIZATION PILOT PLANT
Fuzzy imp in part
Design of Fractional Order PID controller using Soft computing methods for a ...
Future Energy Systems: Challenges on Modelling and Control Uncertainties + Bi...
Redes Inteligentes Sustentables (Macro/Micro): Retos y Oportunidades, Caracas...
Capitulo 2. Tecnologías empleadas en la Generación Distribuida - Sistemas de ...
Capitulo 2.3: Microturbina - Sistemas de Generacion Distribuida
Ad

Similar to Design and Analysis of PID and Fuzzy-PID Controller for Voltage Control of DC Microgrid , IGST Asia 2015 (20)

PPTX
Final Viva Presenation 1309136702 ppt (7-05-2016)
PPTX
1309136702_PPT_(7-05-2016)
PDF
“INVESTIGATIONS ON LCL-T FILTER BASED TWO STAGE SINGLE PHASE GRID CONNECTED M...
PDF
Bn044398401
PDF
Intelligent controlled UPQC for power quality improvement of grid supply conn...
PDF
Design and implementation of active power filter for harmonic elimination and...
PPTX
CONTROLLING FREQUENCY DEVIATIONS IN INTERCONNECTED POWER SYSTEM USING SMART ...
PPTX
Stability of IBR Dominated Grids - IEEE PEDG 2025 - short.pptx
PDF
PSO based Direct Power Control for a Multifunctional Grid Connected Photovolt...
PDF
A novel efficient adaptive-neuro fuzzy inference system control based smart ...
PDF
A0710113
PPTX
Internship_phase1_ZCS.pptx zero current switching
PPTX
Presentation1
PPTX
IEEE International Conference Presentation
PPTX
PID 3gfdgffffffffffffffffffffffff57.pptx
PDF
Improvement of Power System Oscillation by using Coordinated Control Plan for...
PDF
REDUCTION IN THE TRANSIENT TIME OF SHUNT ACTIVE FILTERS USING INTELLIGENT CON...
PDF
Application and Comparison Between the Conventional Methods and PSO Method fo...
PDF
Control of Grid Connected PV Inverter using LMF Adaptive Method
PDF
Data Transmission Through Inductive Coupled System
Final Viva Presenation 1309136702 ppt (7-05-2016)
1309136702_PPT_(7-05-2016)
“INVESTIGATIONS ON LCL-T FILTER BASED TWO STAGE SINGLE PHASE GRID CONNECTED M...
Bn044398401
Intelligent controlled UPQC for power quality improvement of grid supply conn...
Design and implementation of active power filter for harmonic elimination and...
CONTROLLING FREQUENCY DEVIATIONS IN INTERCONNECTED POWER SYSTEM USING SMART ...
Stability of IBR Dominated Grids - IEEE PEDG 2025 - short.pptx
PSO based Direct Power Control for a Multifunctional Grid Connected Photovolt...
A novel efficient adaptive-neuro fuzzy inference system control based smart ...
A0710113
Internship_phase1_ZCS.pptx zero current switching
Presentation1
IEEE International Conference Presentation
PID 3gfdgffffffffffffffffffffffff57.pptx
Improvement of Power System Oscillation by using Coordinated Control Plan for...
REDUCTION IN THE TRANSIENT TIME OF SHUNT ACTIVE FILTERS USING INTELLIGENT CON...
Application and Comparison Between the Conventional Methods and PSO Method fo...
Control of Grid Connected PV Inverter using LMF Adaptive Method
Data Transmission Through Inductive Coupled System

More from Francisco Gonzalez-Longatt (20)

PDF
I. Section 4. Frequency control and Low Inertia Systems
PDF
I. Section. 3. System Frequency Response (SFR)
PDF
I. Section 2. Frequency control in power system
PDF
I. Section 1 Introduction to Frequency Conntrol
PDF
0. Introduction to future energy systems
PDF
Challenges in the Future Power Network
PPTX
Frequency Control and Inertia Response schemes for the future power networks
PDF
Future Smart-er Grid: Challenges
PDF
Capitulo 2.6: Sistemas Eólicos - Sistemas de Generacion Distribuida
PDF
Capitulo 2.5: Sistemas Fotovoltaicos, Sistemas de Generacion Distribuida
PDF
Capitulo 2.4: Celdas de Combustible - Sistemas de Generacion Distribuida
PDF
Capitulo 2.2: Turbinas a gas - Sistemas de Generacion Distribuida
PDF
Capitulo 2.1: Maquinas Térmicas - Sistemas de Generacion Distribuida
PDF
Capitulo 1. Conceptualización de la Generación Distribuida. Sistemas de Gener...
PDF
Capitulo 1. Historia de la Electricidad. Sistemas de Generacion Distribuida
PDF
Planificación y Descripción General del Curso. Sistemas de Generacion Distrib...
PDF
Modelling Renewables Resources and Storage in PowerFactory V15.2, 9 June 2...
PDF
Modelación y Simulación de Sistemas de Potencia Empleando DIgSILENT PowerFact...
PDF
Exploring Beyond the Frontiers to Build a Smarter Grid. UK-India Seminar 2013
PDF
PowerFactory Applications for Power System Analysis, 26th October 2015, Por...
I. Section 4. Frequency control and Low Inertia Systems
I. Section. 3. System Frequency Response (SFR)
I. Section 2. Frequency control in power system
I. Section 1 Introduction to Frequency Conntrol
0. Introduction to future energy systems
Challenges in the Future Power Network
Frequency Control and Inertia Response schemes for the future power networks
Future Smart-er Grid: Challenges
Capitulo 2.6: Sistemas Eólicos - Sistemas de Generacion Distribuida
Capitulo 2.5: Sistemas Fotovoltaicos, Sistemas de Generacion Distribuida
Capitulo 2.4: Celdas de Combustible - Sistemas de Generacion Distribuida
Capitulo 2.2: Turbinas a gas - Sistemas de Generacion Distribuida
Capitulo 2.1: Maquinas Térmicas - Sistemas de Generacion Distribuida
Capitulo 1. Conceptualización de la Generación Distribuida. Sistemas de Gener...
Capitulo 1. Historia de la Electricidad. Sistemas de Generacion Distribuida
Planificación y Descripción General del Curso. Sistemas de Generacion Distrib...
Modelling Renewables Resources and Storage in PowerFactory V15.2, 9 June 2...
Modelación y Simulación de Sistemas de Potencia Empleando DIgSILENT PowerFact...
Exploring Beyond the Frontiers to Build a Smarter Grid. UK-India Seminar 2013
PowerFactory Applications for Power System Analysis, 26th October 2015, Por...

Recently uploaded (20)

PPTX
MCN 401 KTU-2019-PPE KITS-MODULE 2.pptx
PPTX
Foundation to blockchain - A guide to Blockchain Tech
PDF
PRIZ Academy - 9 Windows Thinking Where to Invest Today to Win Tomorrow.pdf
PPTX
Engineering Ethics, Safety and Environment [Autosaved] (1).pptx
DOCX
ASol_English-Language-Literature-Set-1-27-02-2023-converted.docx
PDF
composite construction of structures.pdf
PPTX
Internet of Things (IOT) - A guide to understanding
PPTX
CARTOGRAPHY AND GEOINFORMATION VISUALIZATION chapter1 NPTE (2).pptx
PPTX
OOP with Java - Java Introduction (Basics)
PPTX
additive manufacturing of ss316l using mig welding
PDF
Mitigating Risks through Effective Management for Enhancing Organizational Pe...
PPTX
bas. eng. economics group 4 presentation 1.pptx
PDF
The CXO Playbook 2025 – Future-Ready Strategies for C-Suite Leaders Cerebrai...
PPTX
UNIT 4 Total Quality Management .pptx
PDF
July 2025 - Top 10 Read Articles in International Journal of Software Enginee...
PPTX
Welding lecture in detail for understanding
PDF
Digital Logic Computer Design lecture notes
PDF
PPT on Performance Review to get promotions
PPTX
Recipes for Real Time Voice AI WebRTC, SLMs and Open Source Software.pptx
PPTX
UNIT-1 - COAL BASED THERMAL POWER PLANTS
MCN 401 KTU-2019-PPE KITS-MODULE 2.pptx
Foundation to blockchain - A guide to Blockchain Tech
PRIZ Academy - 9 Windows Thinking Where to Invest Today to Win Tomorrow.pdf
Engineering Ethics, Safety and Environment [Autosaved] (1).pptx
ASol_English-Language-Literature-Set-1-27-02-2023-converted.docx
composite construction of structures.pdf
Internet of Things (IOT) - A guide to understanding
CARTOGRAPHY AND GEOINFORMATION VISUALIZATION chapter1 NPTE (2).pptx
OOP with Java - Java Introduction (Basics)
additive manufacturing of ss316l using mig welding
Mitigating Risks through Effective Management for Enhancing Organizational Pe...
bas. eng. economics group 4 presentation 1.pptx
The CXO Playbook 2025 – Future-Ready Strategies for C-Suite Leaders Cerebrai...
UNIT 4 Total Quality Management .pptx
July 2025 - Top 10 Read Articles in International Journal of Software Enginee...
Welding lecture in detail for understanding
Digital Logic Computer Design lecture notes
PPT on Performance Review to get promotions
Recipes for Real Time Voice AI WebRTC, SLMs and Open Source Software.pptx
UNIT-1 - COAL BASED THERMAL POWER PLANTS

Design and Analysis of PID and Fuzzy-PID Controller for Voltage Control of DC Microgrid , IGST Asia 2015

  • 1. Design and Analysis of PID and Fuzzy-PID Controller for Voltage Control of DC Microgrid Presented By : Dr. Francisco M. Gonzalez-Longatt Deptt. Of Electrical Engg. University of Loughborough, Loughborough, UK Co-Author: R. K. Chauhan and Dr. B. S. Rajpurohit School of Computing & Electrical Engg Indian Institute of Technology Mandi, India Dr. R. E. Hebner Center for Electromechanics University of Texas Austin, USA Dr. S. N. Singh Deptt. of Electrical Engineering Indian Institute of Technology Kanpur, India
  • 2. Stability issues are more prevalent in microgrids than in a large electric grid because power and energy ratings are much lower. In dc systems there is no reactive power interactions, which seems to suggest that there are no frequency stability issues. System control seems to be oriented to voltage stability. There is a change in the power and load due to demand variations. This change leads to create fluctuations in the voltage level. 2
  • 3. The objective is to keep the DC microgrid voltage at the reference DC level (i.e. at 124V here). A PID controller is designed for the DC microgrid voltage control. A fuzzy PID controller also designed which is taking the advantage of PID experiences and Fuzzy knowledge. Both the controllers is compared based on the performance parameters. 3
  • 5. 5 00:00 12:00 24:00 0 5 10 Time (Hour) Power(kW) Home 1 00:00 12:00 24:00 0 5 10 15 Time (Hour) Power(kW) Home 2 00:00 12:00 24:00 0 2 4 6 Time (Hour) Power(kW) Home 3 Consumed Power Solar Power 00:00 12:00 24:00 0 2 4 6 Time (Hour) Power(kW) Home 4
  • 6. 6 00:00 5:00 10:00 15:00 20:00 24:00 -10 -5 0 5 10 15 20 25 Time (Hour) Power(kW) Consumed Power Solar Power Grid Power
  • 7. • The output of the PID controller can be expressed as (1) • Transfer function can be expressed as: 7 PID Controller e Vg(s) u(s) + - Vo(s)Vd(s) Fuzzy PID Controller e(s) Vg(s) uf(s) + - Vo(s)Vd(s) Fuzzification Inference Defuzzification Fuzzy Knowledge Based Rule Based PID 1 ( ) ( ) ( ) ( )p i du s K e s K e s K Se s S    (2) where ( ) 1 ( ) ( ) p i d u s G s K K K s e s s     ( ) de s V Vg  ( ) d oe s V V 
  • 8. 8 System fuzzy-pid: 2 inputs, 3 outputs, 49 rules e (7) ec (7) Kp (7) Ki (7) Kd (7) Fuzzy-PID (Mamdani) 49 rules -3 -2 -1 0 1 2 3 0 0.5 1 e, ec Degreeofmembership NB NM NS Z PS PM PB Membership function for FL-PID inputs error and change in error -0.2 -0.1 0 0.1 0.2 0.3 0 0.5 1 Kp NB NM NS Z PS PM PB -0.06 -0.04 -0.02 0 0.02 0.04 0.06 0 0.5 1 Ki Degreeofmembership NB NM NS Z PS PM PB -3 -2 -1 0 1 2 3 0 0.5 1 Kd NB NM NS Z PS PM PB Membership function for FL-PID outputs Kp, Ki, and Kd
  • 9. 9 e ec NB NM NS Z PS PM PB NB NB NB NB NM NM Z Z NM NB NB NM NM NS Z Z NS NM NM NS NS Z PS PS Z NM NS NS Z PS PS PM PS NS NS Z PS PS NM PM PM Z Z PS PM PM PB PB PB Z Z PS PM PB PB PB e ec NB NM NS Z PS PM PB NB PB PB PM PM PS PS Z NM PB PB PM PM PS Z Z NS PM PM PM PS Z NS NM Z PM PS PS Z NS NM NM PS PS PS Z NS NS NM NM PM Z Z NS NM NM NM NB PB Z NS NS NM NM NB NB e ec NB NM NS Z PS PM PB NB PS PS Z Z Z PB PB NM NS NS NS NS Z PS PM NS NB NB NM NS Z PS PM Z NB NM NM NS Z PS PM PS NB NM NS NS Z PS PS PM NM NS NS NS Z PS PS PB PS Z Z Z Z PB PS Fuzzy Rules For Kd Fuzzy Rules For Kp Fuzzy Rules For Ki
  • 10. 10 0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2 0 20 40 60 80 100 120 140 160 180 Time (Sec) Voltage(Volt) Simulated Grid Voltage Measured Grid Voltage Desired Grid Voltage 00:00 02:30 05:00 07:30 10:00 12:30 15:00 17:30 20:00 22:30 25:00 110 120 130 140 150 160 170 Time (Hour) PID Controller Voltage(Volt) Solid Line is the Measured Voltage Dotted Line is the Desired Voltage Dashed line is the Simulated Voltage
  • 11. 11 00:00 02:30 05:00 07:30 10:00 12:30 15:00 17:30 20:00 22:30 25:00 110 115 120 125 130 135 140 145 Time (Sec) Fuzzy PID Controller Voltage(Volt) Solid Line is the Measured Voltage Dotted Line is the Desired Voltage Dashed line is the Simulated Voltage 0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2 0 20 40 60 80 100 120 140 160 Time (Sec) Voltage(Volt) Measured Grid Voltage Simulated Grid Voltage Desired Grid Voltage
  • 12. 12 Controller Type Time Response Parameters Rise time (Sec) Settling time (Sec) Over- shoot (%) Peak time (Sec) Steady state error (%) PID 0.0148 1.6091 0.326 0.47 0.9231 FL-PID 0.0264 1.3609 0.132 0.41 0.2325
  • 13. The FL-PID leaves a good impact in the sense of performance parameters. FL-PID is superior and better for DC microgrid voltage controlling. The intelligent controlling of the DC microgrid voltage which has been done by the fuzzy method. The paper has been able to demonstrate the potential of fuzzy control over other conventional control. A stable and efficient DC system can be obtained by using the controlled voltage obtained from the proposed controllers (PID and FL-PID). 13
  • 14. • N. D. Hatziargyriou, H. Asano, H. R. Iravani, and C. Marnay, “Microgrids,” IEEE Power Energy Mag., vol.5, no.4, pp.78–94, Jul. 2007. • N. Pogaku, M. Prodanovic, and T. C. Green, “Modeling, analysis and testing of autonomous operation of an inverter- based microgrid,” IEEE Trans. Power Electron, vol.22, no.2, pp.613–625, Mar. 2007. • J. M. Carrasco, L. G. Franquelo, J. T. Bialasiewiez, E. Galvan, E Guisado, M. M. Prats, J. I. Leon, and N. M. Alfonso, “Power-electronic systems for the grid integration of renewable energy sources: A survey,” IEEE Trans. Power Electron, vol.53, no.4, pp.1002–1016, Jun. 2006. • R. K. Chauhan, B. S. Rajpurohit, “DC Distribution System for energy efficient buildings,” in proc. 2014 IEEE 18th National Power System Conference, India, Dec. 18-20, 2014, pp.1-6. • J. C. Choi, H. Y. Jeong, D. J. Won, S. J. Ahn and S. I. Moon, “Cooperative voltage control of distributed generation and grid connected converter in dc microgrid,” Renewable Energy and Power Quality Journal, no.2, Mar. 2013. • Y. Ito, Y. Zhongqing, and H Akagi, “DC microgrid based distribution power generation system,” in proc. 2004 IEEE 4th International Conference on Power Electronics and Motion Control, vol. 3, pp. 1740-1745. • H. Kakigano, A. Nishino, and T. Ise, “Distribution voltage control for dc microgrid with fuzzy control and gain- scheduling control,” in proc. 2011 IEEE 8th International Conference on Power Electronics and ECCE Asia, pp. 254- 263. • B. Singh, A. Chandra, and K. Al-Haddad, “Computer-aided modeling and simulation of active power filters,” Elect. Mach. and Power Syst., vol.27, no.11, pp.1227–1241, 1999. • K. Chatterjee, B. G. Fernandes, and G. K. Dubey, “An instantaneous reactive volt-ampere compensator and harmonic suppressor system,” IEEE Trans. Power Electron., vol. 14, no. 2, pp. 381–392, Mar. 1999. • S. Jain, P. Agarwal, and H. O. Gupta, “Design simulation and experimental investigations on a shunt active power filter for harmonics and reactive power compensation,” Elect. Power Compon. and Syst., vol. 32, no. 7, pp. 671–692, Jul. 2003. • F. Blaabjerg, R. Teodorescu, M. Liserre, and A.V. Timbus, “Overview of control and grid synchronization for distributed power generation systems,” IEEE Trans. Ind. Electron., vol. 55, no.3, pp. 1398–1411, Oct. 2006. 14
  • 15. • S. Buso, L. Malesani, and P. Mattavelli, “Comparison of current control techniques for active power filter applications”, IEEE Trans. Ind. Electron., vol.45, no.5, pp.722-729, Oct. 1998. • M. Ho, and C. Lin, “PID controller design for robust performance,” IEEE Trans. Automatic Control, vol. 48, no. 8, pp. 1404–1409, Aug. 2003. • G. K. I. Mann, B. G. Hu, and R. G. Gosine, “Analysis of direct action fuzzy PID controllers structures,” IEEE Trans. Syst. Man Cybern., vol. 29, no.3, pp.371–388, Jun. 1999. • B. K. Bose, “Expert systems, fuzzy logic and neural network, applications in power electronics and motion control,” in proc.1994 IEEE Piscataway, NJ: IEEE Press, ch. 11, pp. 1303 - 1323. • V. S. C. Raviraj and P. C. Sen, “Comparative study of proportional integral, sliding mode, and fuzzy logic controllers for power converters,” IEEE Trans. Ind. Appl., vol.33, no.2, pp. 518–524, Mar./Apr. 1997. • C. C. Lee, “Fuzzy logic in control systems: fuzzy logic controller-part I”, IEEE Trans. Syst. Man. Cybern., vol.20, no. 2, pp. 404-418, Mar/Apr 1990. • K. Rajani and R. Pal Nikhil R., “A robust self-tuning scheme for PI and PD-type fuzzy controllers,” IEEE Trans. Fuzzy Syst., vol.7, no.1, pp. 2-16, Feb. 1999. • H. Baogang, G. K. I. Mann and R. G. Gosine, “New methodology for analytical and optimal design of fuzzy PID controllers”, IEEE Trans. Fuzzy Syst., vol.7, no.5, pp.521-539, Oct. 1999. • Z. W. Woo, H. Y. Chung and J. J. Lin, “A PID type fuzzy controller with self-tuning scaling factors,” Fuzzy Sets and Syst., vol.115, no.2, pp. 321-326, Oct.2000. • I. Pan, S. Das and A. Gupta, “Tuning of an optimal fuzzy PID controller with stochastic algorithms for networked control systems with random time delay,” ISA Trans., vol.50, no.1, pp.28-36, Jan. 2011. • D. Chen and L. Xu, “Autonomous dc voltage control of a dc microgrid with multiple slack terminals,” IEEE Trans. power syst., vol.27, no.4, pp.1897-1905, Nov.2012. 15
  • 16. Acknowledgement The authors would like to acknowledge the financial support received by DST-UKIERI 16