SlideShare a Scribd company logo
Design, Modeling and Control of Modular
Multilevel Converter Based HVDC Systems
Ghazal Falahi
December 2014
Outline
2
Background
3
Udc/2
Udc/2
Vconv
2
	
  n
	
  (n+1)
(n+2)
1
(2n)
Ud Uac
Desired voltage Achieved voltage
Achieved voltageDesired voltage
V.S.
ü  Modular arrangement
with identical power
modules
ü  Low level of
harmonics
ü  Lower switching
losses compared with
2level converters
ü  low component count
and compact size
X  More complex control algorithmsX  High losses
X  High harmonics
X  No redundancy
ü  Simple control
State of the Art
4
[1] M. Davies, M. Dommaschk, J. Dorn, J. Lang, D. Retzmann, D. Soerangr , „HVDC PLUS –Basics and Principle of Operation, Siemens Technical Article”
Majority of HVDC manufacturers use IGBT
2. high losses
Switching
Frequency
(modulation)
Semiconductor
Devices
1. Low power capacity
Issues:
MMC-HVDC loss (state of the art)
5
•  Candidate devices for high power levels
IGCT ETO
•  MMC-HVDC systems are operated at
much lower switching frequencies
[1] Buschendorf, Martin, Jens Weber, and Steffen Bernet. "Comparison of IGCT and IGBT for the use in the modular multilevel converter for HVDC applications." Systems, Signals and Devices
(SSD), 2012 9th International Multi-Conference on. IEEE, 2012.
[2] M. Davies, M. Dommaschk, J. Dorn, J. Lang, D. Retzmann, D. Soerangr , „HVDC PLUS –Basics and Principle of Operation, Siemens Technical Article”
Station losses close to 1%
(designs with IGBT)
•  Losses are still higher than thryistor based HVDC systems
•  Power rating is still lower
1.  Possible power
2.  Losses
Lower losses than IGBT
4% less losses compared
to IGBT [1] = 0.96% per station
Design procedure
6
1
•  Analyze ETO based MMC losses and potential power
2
•  MMC operation and control
3
•  Modulation
4
•  Thermal analysis
5
•  Design of MMC sub-module with ETO
Modular Multilevel Converter (MMC)
7
State S1 S2 Vsm
1 ON OFF Vc
2 OFF ON 0
q  MMC mathematical model:
q  MMC grid connection dynamic:
icirc =
ip +in
2
varm = vSM
i=0
n
∑ + Larm
diarm
dt
+ Rarmiarm
SM	
  2
SM	
  n
SM	
  (n+1)
SM	
  (n+2)
SM	
  1
SM	
  (2n)
DC	
  
link
va
vb
vc
u0
ipa
Udc/2
Udc/2
ia
ib
ic
Larm
La
Lb
Lc
ipb ipc
ua
ub
uc
Rarm
D1
D2
S1
S2
ipa Vc
incinbina
Larm Larm
Rarm
Rarm
Larm
Rarm
Larm Larm
Rarm
Rarm
uk − u0 = varm
uk − (vk + u0 ) = varm K= a, b, c	

uk (t) =
Udc
2
mk (t)
8
va
vb
vc
u0
ia-­‐up
ia-­‐low
Udc/2
Udc/2
ia
ib
ic
Larm
La
Lb
Lc
ib-­‐up ic-­‐up
ib-­‐low ic-­‐low
ua
ub
uc
Rar
m
Larm Larm
Larm Larm Larm
Rar
m
Rarm
Rarm Rarm Rarm
Inner
voltage
Inner
voltage
Inner
voltage
Inner
voltage
Inner
voltage
Inner
voltage
Required number of sub-modules
in each arm
N ≥
320KV
2.5KV
=128
§  Number of sub-modules
MMC sub-module devices used in power
stage design :
•  Switches (S1 & S2): 4.5KV,4KA Gen-4 ETO
•  Antiparallel diodes (D1 & D2): ABB fast
recovery diode 5SDF 16L4503
§  Semiconductor device
VAC 138KV
VDC-link 320KV
Nominal frequency 60HZ
Modular Multilevel Converter operation
iarm>0 S1 or D2
S1
D2
iarm<0 S2 or D1
D1
S2
Sub-module operation principal in MMC
9
•  Operation principal of MMC
Varm,ref
iarm
)cos(
22
)(,_ t
V
m
V
tV dcdc
refkarm ω−=
)cos(
23
)( ϕω −+= t
II
ti adc
arm
•  Logic of operation
Upper arm reference voltage
Arm current
The arm current flowing out of the sub-module is considered as positive (a) and the current flowing into sub-module is
considered as negative
D1
D2
S1
S2
ipa
Vc
D1
D2
S1
S2
ipa
Vc
D1
D2
S1
S2
ipa
Vc
D1
D2
S1
S2
ipa
Vc
(a) iarm>0
(b) iarm<0
0
,
>
dt
dV refarm
0
,
<
dt
dV refarm
0
,
>
dt
dV refarm
0
,
<
dt
dV refarm
Modular Multilevel Converter Control [1]
10
1.  An individual capacitor voltage controller
2.  The averaging controller
3.  The system controller
4.  Modulation reference generation
PI PI
1/2
Vc*
Vcu
Ik-­‐low
Ik-­‐up
Icir*
Icir
VAu*
Total DC voltage controller
PI
Vc*
Vcju	
  
(j=1-­‐2n)
±
-1 :-Ik-up , Ik-low ≥ 0
+1 :-Ik-up , Ik-low ≤ 0
VBju*
Individual DC voltage controller
Vmk(k=a,b,c)
PI
i*dref
Vod
iod
PI
i*qref
ω0Leq
ω0Leq
ioq
Voq
3dq/abc
System controller !
[1] Hagiwara, Makoto, and Hirofumi Akagi. "Control and experiment of pulsewidth-modulated modular multilevel
converters." Power electronics, IEEE Transactions on 24.7 (2009): 1737-1746.
VAu*
VBju* Vi/n E/(2n)
Vju*	
  (j=1-­‐n)
dAneg
VAu*
VBju* Vi/n E/(2n)
Vju*	
  (j=n+1-­‐2n)
dAneg
Modulation reference generation
Multilevel
Modulation
Fundamental switching
frequency
High switching
frequency
Space vector
PWM
Sinusoidal
PWM
Level shifted
PWM
Phase shifted
PWM
Space vector
control SHENLM
Modified NLM
MMC modulation methods
11
[1] Wang, Jun, Rolando Burgos, and Dushan Boroyevich. "A survey on the modular multilevel converters—Modeling,
modulation and controls." Energy Conversion Congress and Exposition (ECCE), 2013 IEEE. IEEE, 2013.
Choosing modulation method for the proposed structure
Advantages
ü  Fundamental frequency switching
ü  Lower losses
ü  Online calculation of switching angles
Issues
× High losses
× Complex vector calculation and selection
× Relying on look up tables (offline calculation
of switching angles
Proposed 60Hz modulation for MMC-HVDC
12
Vdc
N
2
Vdc
N
3
Vdc
N
0
ta
tb
Varm_k,ref (t)
Varm_ AV (t)
Switching angle calculation in each discrete step:
(ωt +φarm_k ) = arccos
n.
Vdc
N
−
Vdc
2
m
Vdc
2
"
#
$
$
$
%
&
'
'
'
Varm_k,ref (t) =
Vdc
2
+ m
Vdc
2
cos(ωt +φarm_k )
Varm_k,High =Varm_k,Low +
Vdc
n
n = round(
Varm_k,ref
USM _ave
)
N : number of sub-modules in arm	

n : number of active sub-modules	

USM_ave: average SM voltage
A piece of MMC reference arm voltage 	

Each level is Vdc/n more than the previous level
Switching instants
ωti = arccos
n.
Vdc
N
−
Vdc
2
m
Vdc
2
"
#
"
"
"
$
%
$
$
$
−φarm_k
ωti+1 = arccos
n.
Vdc
N
−
Vdc
2
m
Vdc
2
"
#
#
#
#
$
%
%
%
%
−φarm_k
Implementation of 60Hz modulation
13
0 0.5 1 1.5 2 2.5
0.2
0.25
0.3
0.35
0.4
0.45
0.5
0.55
time (secs)
Submodulecapacitorvoltages(pu)
Capacitor Voltage balancing
Nearest level modulation
MMC system controller
1.  Active/reactive power
2.  Individual capacitor voltage
3.  Circulating current
4.  Negative/zero sequence and LVRT, etc.
Vmodulation_arm three phases a, b, c
Switching angles θ1, θ2,.., θi
Switching pulses P1, P2,.., Pi
Switching pulses
Switching index
?
Sub-module capacitor voltages are unbalanced
Capacitor voltage sorting and balancing
14
D1
D2
S1
S2
ipa
Vc
D1
D2
S1
S2
ipa
Vc
D1
D2
S1
S2
ipa
Vc
D1
D2
S1
S2
ipa
Vc
iarm>0
iarm<0
Capacitor bypassed
Capacitor bypassed
Capacitor discharge
Capacitor charge
Modifications:
1.  Only remaining Sub-modules are considered to reduce equivalent switching frequency
2.  Circulating current error is added to the modulation reference to make balancing faster
3.  Number of active sub-modules calculated by using average measured capacitor voltages to
increase accuracy
Iarm>0 Iarm<0
Sub-modules with
maximum
capacitor voltages
turn on first
Sub-modules with
minimum
capacitor voltages
turn on first
Vdc1
Vdcn
Sorting
Vdc_sorted = Vdc_max • • • Vdc_max
!
"#
$
%&
Vdc_index = ni_vdc_max • • • ni_vdc_max
!
"#
$
%&
Semiconductor loss calculation for a
500MW MMC-HVDC system
15
Gen-4 ETO power loss characteristics
ETO :
EOFF (I) = a × I + b = 0.0041× I + 0.21
VON(I) = c× I + d = 0.0014× I +1.1
Diode:
Eswitching(I)=e× I + f=0.00018×I+0.8
Von(I)=g × I + h=0.79×10-3×I+1.9
[1] Li, J., A.Q. Huang, and W. Jing. 7MVA ETO Light NPC converter for multi-MW direct-driven wind turbine application. in Power
Electronics and Machines in Wind Applications, 2009. PEMWA 2009. IEEE. 2009. IEEE.
Ploss−Switch = (PcondS1 + PcondS2 + PSwitchingS1 + PSwitchingS2 )
Ploss−Diode = (PcondD1 + PcondD2 + PSwitchingD1 + PSwitchingD2 )
EOFF (reverse recovery loss)
EOFF+EON (snubber loss)
1. Switch losses
2. Switch losses
Proposed loss estimation method for 60Hz
modulation
16
Diode D2 Switch S1 Diode D1 Switch S2
t1t2t3
0
Varm
iarm
m=1
φ=0
!
	
  	
  
Losses=[0 0 0 0 0 0 0 0]
Losses=[0 X 0 0 0 0 0 0]
Losses=[0 X 0 0 0 X 0 0]
Losses=[0 X 0 X 0 X 0 0]
Losses=[X X X X X X X X]
ti! ti+1!
!
Pcond =
1
T
nPD_cond (−ipa )+(N − n)PSwitch_cond (−ipa )"# $%t2
t1
∫ dt + nPSwitch_cond (ipa )+(N − n)PD_cond (ipa )"# $%t3
t2
∫ dt
Number of small intervals
(sampling rate)
ni =
Varm,ref
Vsm_ave
!
"
!
#
$
#
t=tup
−
Varm,ref
Vsm_ave
!
"
!
#
$
#
t=tlow
Loss calculations
17
n× PD_cond (−ipa )( )dt + PD_cond (−ipa )( )dt + PD_cond (−ipa )( )dt +...+ PD_cond (−ipa )( )dt
tk+i
t1
∫
tk+1
tk+2
∫
tk
t k+1
∫
t2
tk
∫
$
%
&&
'
(
))
+(N − n) PSwitch_cond (−ipa )( )
t2
tk
∫ dt + PSwitch_cond (−ipa )( )
tk
tk+1
∫ dt +...+ PSwitch_cond (−ipa )( )
tk+i
t1
∫ dt
$
%
&&
'
(
))
Esw (i) = Esw (θi )
tlow<t<tup
∑
n.PD_cond (−ipa )+(N − n)PSwitch_cond (−ipa )( )dt
t2
t1
∫
#
$
%%
&
'
((
n
n≤N
∑ = n. PD_cond (−ipa )( )dt
t2
t1
∫ +(N − n) PSwitch_cond (−ipa )( )
t2
t1
∫ dt
Esw_total = ESW (i)× fsw
System
Controller
1. Number of ON sub-modules 1. Sub-module capacitor
voltage sorting
2. Sub-module selection
based on sorted Vdc vector
Vdc1
Vdcn
nactive P1
Pn
P2
2. Switching angle calculation
Vmod,ref
nactive = round(
Varm,ref
Vsm
)
θi =
2Varm
Vdc
−1
m
−φarm
Loss
calculations
Individual
device
losses
iarm
PS11
PS18
PD11
PD18
Proposed modulation and loss calculation diagram
Individual device losses – S1 in sub-modules (1- 4)
18
0 10 20 30 40 50 60 70 80 90 100 110
-1000
0
1000
2000
3000
4000
5000
6000
0 10 20 30 40 50 60 70 80 90 100 110
-1000
0
1000
2000
3000
4000
5000
6000
0 10 20 30 40 50 60 70 80 90 100 110
-1000
0
1000
2000
3000
4000
5000
6000
0 10 20 30 40 50 60 70 80 90 100 110
-1000
0
1000
2000
3000
4000
5000
6000
Is loss balancing an issue?
19
0 10 20 30 40 50 60 70 80 90 100 110
-1000
0
1000
2000
3000
4000
5000
6000
0 10 20 30 40 50 60 70 80 90 100 110
-1000
0
1000
2000
3000
4000
5000
6000
0 10 20 30 40 50 60 70 80 90 100 110
-1000
0
1000
2000
3000
4000
5000
6000
0 10 20 30 40 50 60 70 80 90 100 110
-1000
0
1000
2000
3000
4000
5000
6000
Individual device losses – S1 in sub-modules (5- 8)
Sorting and swapping sub-modules eventually makes device losses balanced
Averaged device losses over 200 cycles
20
Device Loss (PF= -0.95) Loss (PF= 1) Loss(PF=+0.95)
D1 799 812 839
D2 1598 1587 1366
S1 1975 1960 2219
S2 1259 1156 1184
Each sub-module losses 5631 5515 5608
Total MMC loss (per station) 4.32 MW 4.2 MW 4.3 MW
Total MMC losses per station in design with IGBT [1] 4.6 MW
0
2000
4000
6000
D1 D2 S1 S2 SM loss
PF=-0.95
PF=+0.95
PF=1
[1] Yang, Liu, Chengyong Zhao, and Xiaodong Yang. "Loss calculation method of modular multilevel HVDC converters." Electrical
Power and Energy Conference (EPEC), 2011 IEEE. IEEE, 2011.
9% lower losses
compared to design
in [1]
Conventional MMC-HVDC
system semiconductor loss
per station = more than 1%
ETO based MMC-HVDC
semiconductor loss per
station = 0.84 %
16% less losses
Around 1%
efficiency
improvement
Thermal Analysis of ETO based sub-module
21
Heat pipe based cooling
Junction temperature of ETOs and diodes much lower than 110°
Device Junction temperature (°C)
D2 61.9
S2 67.4
S1 81.6
D1 54.4
ETO can be used for higher power ratings
Power capacity of ETO based MMC-HVDC system can reach more than 1000MW
Device Junction temperature (°C)
D2 82.9
S2 90.6
S1 109.2
D1 70.1
500MW
operation
Potential power =1000MW
Device temperature for designed ETO based MMC-HVDC
[1] Li, Yuxin, Alex Q. Huang, and Kevin Motto. "Experimental and numerical study of the emitter turn-off thyristor (ETO)." Power Electronics,
IEEE Transactions on 15.3 (2000): 561-574.
[2] Li, Jun, et al. "ETO light multilevel converters for large electric vehicle and hybrid electric vehicle drives." Vehicle Power and Propulsion
Conference, 2009. VPPC'09. IEEE. IEEE, 2009.
Proposed ETO based MMC-HVDC
22
Characteristic ETO IGCT IGBT GTO
Conduction loss Low Low High Low
Switching time Fast Fast Medium Slow
Turn-off capability High High Low Low
Self-power function Yes No No No
Built-in sensor Yes No No No
Positive temperature
Coefficient
Best Poor Good Poor
Semiconductor device selection [1]
[1] Li, Yuxin, Alex Q. Huang, and Kevin Motto. "Experimental and numerical study of the emitter turn-off thyristor (ETO)." Power
Electronics, IEEE Transactions on 15.3 (2000): 561-574.
0.1 0.11 0.12 0.13 0.14 0.15 0.16 0.17 0.18 0.19 0.2
0
0.05
0.1
0.15
0.2
0.25
0.3
time (secs)
Circuatingcurrent(pu)
Cdc
S1
S2
iaarm
VSM
D1
Rclamp
Cclamp
Lclamp
Cdc
RclampS1
S2 Cclamp
iaarm
D1
Lclamp
cc
A
cc
c
B
Cdc
L
R D S1
S2
C
𝑑𝑖
𝑑𝑡
=
𝑉𝐷𝐶 − 𝑉𝐶𝑐𝑙𝑎𝑚𝑝
𝐿
𝑃𝑐𝑙𝑎𝑚𝑝 =
1
2
𝐿𝑖 𝑝𝑒𝑎𝑘
2
.
𝑉𝐶𝑐𝑙𝑎𝑚𝑝
𝑉𝐷𝐶 − 𝑉𝐶𝑐𝑙𝑎𝑚𝑝
. 𝑓𝑠
𝐶𝑐𝑙𝑎𝑚𝑝 =
𝑉𝐶𝑐𝑙𝑎𝑚𝑝
∆𝑉𝐶𝑐𝑙𝑎𝑚𝑝 . 𝑅. 𝑓𝑠
𝑅 =
𝑣 𝑐𝑙𝑎𝑚𝑝
2
𝑃𝑐𝑙𝑎𝑚𝑝
Leq = nactive.Lclamp ≥128× Lclamp
Outline
23
24
Simulated MMC-HVDC system
System is controlled in two different
scenarios
(1)
(2) Side 1: DC link voltage control, AC voltage control
Side 2: active and reactive power control
Side 1: DC link voltage control, reactive power control
Side 2: active and reactive power control
VAC 138KV
VDC-link 320KV
Fundamental frequency 60HZ
Number of SMs 16
Fsw 60Hz
MMC equations under fault operating condition
25
The system mathematical equations can be decomposed to positive, negative and zero components[1]:
!
!!!"#
!
(!)
!"
+ !!!"#
!
(!) = !!"#
!
(!) − !!"#
!
(!)
!
!!!"#
!
(!)
!"
+ !!!"#
!
(!) = !!"#
!
(!) − !!"#
!
(!)
!
!"!
(!)
!"
+ !!!
! = !!
! − (!!
! + !!(!))
!!! + !!! + !!!
3
= !!
Zero-sequence component extraction
!!!
!
(!)
!"
= −
!
!
!!
!
+ !!!
!
+
1
!
!!
!
−
1
!
!!
!
!!!
!
(!)
!"
= −
!
!
!!
!
− !!!
!
+
1
!
!!
!
−
1
!
!!
!
!!!
!
(!)
!"
= −
!
!
!!
!
− !!!
!
+
1
!
!!
!
−
1
!
!!
!
!!!
!
(!)
!"
= −
!
!
!!
!
+ !!!
!
+
1
!
!!
!
−
1
!
!!
!
Active and reactive powers at PCC
Three-phase positive and negative sequence
subsystems in synchronous reference frame
! = !! + !!! sin 2!" + !!! cos 2!" + 3!!!!
! = !! + !!! sin 2!" + !!! cos 2!"
!!
!!
!!!
!!!
!!!
!!!
=
3
2
!!
!
!!
!
!!
!
−!!
!
!!
!
−!!
!
!!
!
!!
!
!!
!
−!!
!
−!!
!
!!
!
!!
!
!!
!
−!!
!
−!!
!
!!
!
−!!
!
!!
!
!!
!
!!
!
!!
!
!!
!
−!!
!
!!
!
!!
!
!!
!
!!
!
! = 1.5!!
!
!!
!
! = −1.5!!
!
!!
!
Cell	
  2
Cell	
  n
Cell	
  (n+1)
Cell	
  (n+2)
Cell	
  1
Cell	
  (2n)
DC	
  
link
va
vb
vc
DC	
  
link
u0
ia-­‐up
ia-­‐low
Udc/2
Udc/2
ia
ib
ic
2L
2L
2L 2L
2L 2L
La
Lb
Lc
ib-­‐up ic-­‐up
ib-­‐low ic-­‐low
ua
ub
uc
S1
S2
VS
M
Vc
2R 2R 2R
2R2R2R
[1] Guan, Minyuan, and Zheng Xu. "Modeling and control of a modular multilevel converter-based HVDC system under
unbalanced grid conditions." Power Electronics, IEEE Transactions on 27.12 (2012): 4858-4867.
Operation of the simulated MMC-HVDC system
26
Dynamic response of the system to step
change in active power
PSCAD simulation results
0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
-3
-2
-1
0
1
2
3
time (sec)
P1&P2(pu)
p1
p2
0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
-1
-0.5
0
0.5
1
time (sec)
Q1&Q2(pu)
Q1
Q2
0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
-1
-0.5
0
0.5
1
time (sec)
Q1&Q2(pu)
Q1
Q2
Dynamic response of the system to step
change in reactive power
0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
-3
-2
-1
0
1
2
3
time (sec)
P1&P2(pu)
P1
P2
0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5 0.55 0.6
2
2.5
3
3.5
4
time (sec)
Vdc(pu)
Vdc
Operation of the simulated MMC-HVDC system
27
0 0.1 0.2 0.3 0.4 0.5 0.6
-0.4
-0.3
-0.2
-0.1
0
0.1
0.2
0.3
0.4
0.5
time (sec)
Q1&Q2(pu)
Q1
Q2
Dynamic response of the system to
active and reactive power reversal
at t=0.3sec and t=0.5sec
respectively
Dynamic response of the system to
AC voltage change from 1pu to 1.1
PSCAD simulation results
0.2 0.25 0.3 0.35 0.4 0.45 0.5
-1
-0.5
0
0.5
time (sec)
Q1&Q2(pu)
Q1
Q2
0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
-2.5
-2
-1.5
-1
-0.5
0
0.5
1
1.5
2
2.5
Time (sec)
Activeandreactivepower
reversalside1&2(pu)
0.2 0.25 0.3 0.35 0.4 0.45 0.5
-3
-2
-1
0
1
2
3
time (sec)
P1&P2(pu)
P1
P2
0.2 0.25 0.3 0.35 0.4 0.45 0.5
-1.5
-1
-0.5
0
0.5
1
1.5
time (secs)
Vabc(pu)
28
Operation of the simulated MMC-HVDC system
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
-1
0
1
2
3
4
5
Time (secs)
Vdc(pu)
Vdc ref
Vdc
Dynamic response of the step change in DC voltage
0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5
-2
-1.5
-1
-0.5
0
0.5
1
1.5
2
3Phasecurrentsside2(pu)
ia
ib
ic
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
-3
-2
-1
0
1
2
3
time (sec)
Iabcside1(pu)
ia
ib
ic
Single line to ground (SLG) fault on AC line
side 2
29
Issues:
1. Negative and zero sequence terms are present in currents
2. Active and reactive powers oscillate at double fundamental frequency
3. DC link has ripples with double fundamental frequency
0.2 0.25 0.3 0.35 0.4 0.45 0.5 0.55 0.6
-3
-2
-1
0
1
2
3
time (sec)
P1&P2(pu)
P1
P2
0.2 0.25 0.3 0.35 0.4 0.45 0.5 0.55 0.6
-2
-1
0
1
2
time (sec)
Iabcside2(pu)
ia
ib
ic
0.2 0.25 0.3 0.35 0.4 0.45 0.5 0.55 0.6
-2
-1
0
1
2
time (sec)
Iabcside1(pu)
ia
ib
ic
Fault
0.2 0.25 0.3 0.35 0.4 0.45 0.5 0.55 0.6
-0.5
0
0.5
1
time (sec)
Idqneg(pu)
id neg
iq neg
0.2 0.25 0.3 0.35 0.4 0.45 0.5 0.55 0.6
-0.4
-0.2
0
0.2
0.4
time (sec)
Zerosequencecurrent(pu)
i zero
0.2 0.25 0.3 0.35 0.4 0.45 0.5 0.55
2.5
3
3.5
time (sec)
Vdc(pu)
Vdc
Fault
State of the art
1.  Calculation of reference positive and negative sequences
2.  Using additional PI and PR
controllers to eliminate positive,
negative and zero sequences
3. Using both positive and negative phase locked loop (PLL)
30
[1] Timofejevs, Artjoms, et al. "Control of transformerless MMC-HVDC during asymmetric grid faults." Industrial
Electronics Society, IECON 2013-39th Annual Conference of the IEEE. IEEE, 2013.
Issues:
Makes the MMC control more complicated
Slow response time (50ms)
Proposed control structure
31
dazero
Zero	
  sequence	
  
calculation dbzero
dczero
n
n
n
Ea
Eb
Ec
Ea0
Eb0
Ec0
daneg
Vcju
Eliminating	
  
zero	
  
sequence
Eliminating	
  
positive	
  
sequence
Vcjv
Vcjw
dbneg
dcneg
n
n
n
Step1. Real-time calculation of zero and negative sequence
components based on Analytical Equations
!!!
!!!
!!!
= !!
!!
!!
!!
!!"
!!"
!!"
=
!!
!!
!!
− !!!!
!!
!!
!!
!!=
!
!
2 −1 −1
−1 2 −1
−1 −1 2
!!=
!
!
!!
!! !
!
!! !
−1 0 −1
!!
!! !
!
!! !
!
!
Negative and zero sequence voltage components calculated
from PCC voltages –controller references
32
Step2. Updating the modulation to eliminate the effect of
zero and negative sequence components in the system
VAu*
VBju* Vi/n E/(2n)
Vju*	
  (j=1-­‐n)
dAneg dAzero
VAu*
VBju* Vi/n E/(2n)
Vju*	
  (j=n+1-­‐2n)
dAneg dAzero
0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5
-0.8
-0.6
-0.4
-0.2
0
0.2
0.4
0.6
0.8
Negativesequencevoltages(pu)
Ea
Eb
Ec
0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5
-2
-1.5
-1
-0.5
0
0.5
1
1.5
2
Zerosequencevoltages(pu)
E0a
E0b
E0c
MMC-HVDC system response to SLG fault with
proposed controller
33
Negative sequence currents in dq frame when SLG fault is applied
Zero sequence currents when SLG fault is applied
Fault with conventional controller
Suppressed negative and zero components
with proposed controller
0.1 0.2 0.3 0.4 0.5 0.6
-0.1
0
0.1
0.2
0.3
0.4
0.5
time (sec)
Idqneg(pu)
id neg
iq neg
0.1 0.2 0.3 0.4 0.5 0.6
-0.05
-0.025
0
0.025
0.05
Id&Iqnegativesequence(pu)
Idneg ref
Idneg
0.1 0.2 0.3 0.4 0.5 0.6
-0.4
-0.3
-0.2
-0.1
0
0.1
0.2
0.3
0.4
time (sec)
Zerosequencecurrent(pu)
i zero
0.1 0.2 0.3 0.4 0.5 0.6
-0.05
-0.025
0
0.025
0.05
Zero-sequencecurrent(pu)
izero
Fault Fault
34
MMC-HVDC system response to SLG fault with proposed
controller- arm circulating current
Conventional controller
Proposed controller
Before fault Fault
0.2 0.25 0.3 0.35 0.4 0.45 0.5
0
0.2
0.4
0.6
0.8
1
time(secs)
icirc(pu)
0.2 0.25 0.3 0.35 0.4 0.45 0.5
-0.2
0
0.2
0.4
0.6
0.8
time (secs)
icirc(pu)
35
MMC-HVDC system response to SLG fault with proposed
controller- sub-module capacitor voltages
Conventional controller
Proposed controller
0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0.34
0.35
0.36
0.37
0.38
0.39
0.4
time (secs)
Sub-modulecapacitorvoltages(pu)
0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0.34
0.35
0.36
0.37
0.38
0.39
0.4
time (secs)
Sub-modulecapacitorvoltages(pu)
Before fault Fault
36
MMC-HVDC system response to unbalance condition
with proposed controller
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
-1.5
-1
-0.5
0
0.5
1
1.5
time (secs)
3phasevoltagse(pu)
Va
Vb
Vc
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
-2
-1.5
-1
-0.5
0
0.5
1
1.5
2
time (secs)
3phasecurrents(pu)
ia
ib
ic
0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
-2
-1.5
-1
-0.5
0
0.5
1
1.5
2
time (secs)
DCcurrent(pu)
idc
Before fault Fault Fault with proposed controller
MMC-HVDC system dynamic response to three phase
fault at inverter side- constant power control
37
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
-2
-1.5
-1
-0.5
0
0.5
1
1.5
2
time (sec)
Vabcside2(pu)
ia
ib
ic
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
-3
-2
-1
0
1
2
3
time (sec)
Iabcside1(pu)
ia
ib
ic
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
-3
-2
-1
0
1
2
3
time (sec)
Iabcside2(pu)
ia
ib
ic
Fault at converter 2
side at t=0.3-0.4sec
Fault
MMC-HVDC system dynamic response to
three phase fault at inverter side
38
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
0
0.5
1
1.5
2
2.5
3
3.5
4
4.5
5
Time (sec)
Vdc(pu)
Vdc
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
-3
-2
-1
0
1
2
3
time (sec)
P1&P2(pu)
P1
P2
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
-1
-0.5
0
0.5
1
time (sec)
Q1&Q2(pu)
Q1
Q2
Fault
MMC-HVDC system response to 50% voltage
sag on both sides
39
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
-2.5
-2
-1.5
-1
-0.5
0
0.5
1
1.5
2
2.5
time (sec)
Iabcside2(pu)
ia
ib
ic
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
-3
-2
-1
0
1
2
3
time (sec)
Iabcside1(pu)
ia
ib
ic
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
-4
-3
-2
-1
0
1
2
3
4
time (sec)
P1&P2(pu)
P1
P2
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
-0.8
-0.6
-0.4
-0.2
0
0.2
0.4
0.6
0.8
time (sec)
Q1&Q2(pu)
Q1
Q2
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
0.8
0.85
0.9
0.95
1
1.05
1.1
1.15
time (sec)
Sub-modulecapacitorvoltages(pu)
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
0
1
2
3
4
5
time (sec)
Vdc(pu)
Vdc
Dynamic response of the system to 50% for 0.1 sec
(t=0.3-0.4) voltage sag on both rectifier and inverter sides
Issues:
1. AC currents increase
2. DC link voltage oscillates
Proposed LVRT control
40
V*ac
Vmk(k=a,b,c)
PI
i*odref
Vod
iod
PI
i*qref
ω0Leq
ω0Leq
ioq
Voq
3dq/abc
System controller
Normal	
  operation
LVRT
Pref
Pref-­‐LVRT
PI
V*dc
Vdc
Q*ref
PI
Vac Qref-­‐LVRT
!!"#$% = 0 vac >0.85 pu
!!"#$% = −2
!!"
!!"#$%&
+ 2 0.5< vac ≤0.85pu
!!"#$% = 0 vac ≤0.5 pu
!!"#$% = 1 − !!"#$%
2
3
4
Time
Voltage
Vmin
tmin t1 t20
V1
V2
Vnom
1
Low voltage ride through curve defined by grid code
Ireactive/Irated(%)
Voltage(%)
0.2pu
50 90
1pu
110
Normal	
  operationFault	
  operation
The required percentage of reactive current during LVRT
Changes in the system controller
[1] R.P.S. Leão1, J.B. Almada1, P.A. Souza2, R.J. Cardoso1, R.F. Sampaio1, F.K.A. Lima1, J.G. Silveira2 and L.E.P. Formiga , “The
Implementation of the Low Voltage Ride-Through Curve on the Protection System of a Wind Power Plant” , International Conference
on Renewable Energies and Power Quality (ICREPQ’11) Las Palmas de Gran Canaria (Spain), 13th to 15th April, 2010
Fault performance with the proposed
LVRT control
41
1. AC currents stay constant
2. Less increase in DC link voltage
3. Simple implementation
Solution
advantages:
With proposed controller
Applying LVRT profile
42
1. Active power reference
decreased to avoid instability
2. Reactive power is injected to
maintain voltage
Solution:
2
3
4
Time
Voltage
Vmin
tmin t1 t20
V1
V2
Vnom
1
MMC-HVDC operation under DC fault
43
SMs
SMs
SMs SMs
SMs SMs
DC	
  
link
ia-­‐up
ia-­‐low
Udc
ia
ib
ic
Larm
Larm
Larm Larm
Larm Larm
La
Lb
Lc
ib-­‐up ic-­‐up
ib-­‐low ic-­‐low
ua
ub
uc
idcLcableRcable
ic
CB
CB
CB
D1
D2
S1
S2
ipa Vc
Stage1. MMC operational and AC circuit breakers still closed
Stage2. MMC not operating (blocked), AC side CB still closed
Stage3. MMC not operating, AC circuit breaker closed
Stage1:
§  sub-module capacitors
discharge through S1 for a very
short time until MMC pulses are
blocked
§  The sub-module capacitor
discharge time is very short so
sum of sub-module voltages
stays close to Vdc
0.19 0.195 0.2 0.205 0.21 0.215 0.22
0
2
4
6
8
10
12
time (secs)
Idc(KA)
MMC-HVDC operation under DC fault
44
LcableRcable
2Larm/3
idc
ic
icable
Vsub-­‐module	
  
caps	
  ~	
  Udc
Equivalent circuit during stage1
The Vdc oscillation frequency at each stage is found by
eqeqCL
1
0 =ω
3/2..
3/22
0
armcable
armcable
LLC
LL +
=ω
0.19 0.195 0.2 0.205 0.21 0.215 0.22
100
150
200
250
300
350
time (secs)
Vdc(KV)
FaultNormal operation
stage 2 : MMC PWM blocked, AC circuit breaker closed
45
Stage2. MMC blocked (pulses off) AC side circuit breakers closed,
D2 conducts and passes AC current to the fault side
ü  Some of the diodes turn off as the arm current reaches the
zero crossing point
eqeqCL
1
0 =ω
The Vdc oscillation frequency
Leq depends on number of
conducting diodes
Equivalent circuit during stage2
DC	
  
link
ia-­‐up
ia-­‐low
Udc
ia
ib
ic
Larm
Larm
Larm Larm
Larm Larm
La
Lb
Lc
ib-­‐up ic-­‐up
ib-­‐low ic-­‐low
ua
ub
uc
idcLcableRcable
ic
CB
CB
CB
Fast AC breaker required!
Design consideration:
D2 has to withstand 2pu current
for around 5 cycles
ABB fast recovery diode 5SDF 16L4503
0.2 0.25 0.3 0.35 0.4 0.45 0.5
-3
-2
-1
0
1
2
3
time (secs)
Idc(pu)
stage 3 : MMC blocked, AC circuit breaker tripped
46
Stage3. MMC blocked (pulses off) and AC side circuit breakers open
Equivalent circuit during this stage3
LcableRcable
2Larm
idc
2Larm 2Larm
LcableRcable
2Larm/3
idc
t
LL
R
dcdc
cable
cable
eIi
)
3/2
(
0
0+
−
=
Fault current
Fault applied AC CB
tripped5cycles
0.2 0.25 0.3 0.35 0.4 0.45 0.5
0
0.5
1
1.5
2
2.5
3
3.5
time (secs)
Vdc(pu)
MMC blocked
MMC controller blocks pulses when Idc>2pu
Solutions to DC fault
47
2. ABB hybrid DC circuit breaker (operates in 5msec)
3. Alstom ultrafast mechatronic HVDC DC
circuit breaker (operates in 5msec)
4. Alstom hybrid MMC structure uses FB sub-
modules to suppress DC faults
1. A lot of designs use AC circuit breakers to suppress DC side faults
If the fast DC breaker is used fault current
is suppressed in 5ms
Proposed MMC with unequal DC values
48
time	
  (sec)	

0.1 0.11 0.12 0.13 0.14 0.15 0.16 0.17 0.18
-400
-300
-200
-100
0
100
200
300
400
time (sec)
Outputvoltage(volts)
Vo
Vdc/2S	

3Vdc/2S	

2Vdc/2S	

time	
  (sec)	

Vdc/2S	

3Vdc/2S	

2Vdc/2S	

0.1 0.11 0.12 0.13 0.14 0.15 0.16 0.17 0.18
-400
-300
-200
-100
0
100
200
300
400
time (sec)
Outputvoltage(volts)
Vo
Conventional
MMC using
CSPWM
Conventional
MMC using
minimal THD
Modulation
MMC with
unequal DC
sources using
minimal THD
modulation
15.4%
11.3%
7.3%
System
Controller
Minimal THD
modulation
(calculation of
switching
angles)
m
ωt
θ1
θs
θ2
Target
waveform
generation
(Determine
the number of
required SM
and
generation of
firing pulses)
S1
S2
S2s
SM1
SM2
SMs
SM(s+1)
SM5
SM2s
Vdc/2s
2Vdc/2s
3Vdc/2s
Advantages of the proposed
configuration
ü  Lower THD
ü  60HZ modulation with small
number of sub-modules
References
[1] Falahi, Ghazal. "Design, Modeling and Control of Modular Multilevel Converter based HVDC
Systems." PhD Dissertation NCSU (2014).
[2] Falahi, Ghazal, and Alex Q. Huang. "Design consideration of an MMC-HVDC system based on
4500V/4000A emitter turn-off (ETO) thyristor." Energy Conversion Congress and Exposition (ECCE),
2015 IEEE. IEEE, 2015.
[3] Falahi, Ghazal, and Alex Huang. "Control of modular multilevel converter based HVDC systems
during asymmetrical grid faults." Industrial Electronics Society, IECON 2014-40th Annual Conference
of the IEEE. IEEE, 2014.
[4] Falahi, Ghazal, Wensong Yu, and Alex Q. Huang. "THD minimization of modular multilevel
converter with unequal DC values." Energy Conversion Congress and Exposition (ECCE), 2014 IEEE.
IEEE, 2014.
[5] Falahi, Ghazal, and Alex Huang. "Low voltage ride through control of modular multilevel converter
based HVDC systems." Industrial Electronics Society, IECON 2014-40th Annual Conference of the
IEEE. IEEE, 2014.
49

More Related Content

PDF
Modular Multilevel Converter MMC tutorial
PPTX
Modular Multilevel Inverter
PPTX
Voltage Source Inverter
PPTX
Multilevel inverter
PPTX
Multi level inverter
DOCX
Report On diode clamp three level inverter
PPTX
MTDC Systems: Control & Protection of MTDC Systems
PDF
01 introduction to multilevel inverters
Modular Multilevel Converter MMC tutorial
Modular Multilevel Inverter
Voltage Source Inverter
Multilevel inverter
Multi level inverter
Report On diode clamp three level inverter
MTDC Systems: Control & Protection of MTDC Systems
01 introduction to multilevel inverters

What's hot (20)

DOCX
RGPV EX7102 unit I
PPSX
Instantaneous Reactive Power Theory And Its Applications
PPTX
Speed Control of Synchronous Motor
PPTX
Protection schemes and zones
PPTX
Design planning & layout of high voltage laboratory
PPTX
Simplified analysis of graetz circuit copy - copy
PPTX
Economic load dispatch
PPT
Microgrid
PPTX
Three level inverter
PPTX
Saturated Reactor(SR) & Thyristor Controlled Reactor(TCR)
PPTX
measurement of high voltage and high currents
PPTX
Micro computer control of dc drive
PPTX
Three Phase to Three phase Cycloconverter
PDF
Electrical drives lectures
PPTX
Swing equation
PPTX
Three phase voltage source inverter
PPTX
Reactive power and voltage control
PPTX
Braking methods of induction motor
PPTX
maximum power point tracking (mppt)
RGPV EX7102 unit I
Instantaneous Reactive Power Theory And Its Applications
Speed Control of Synchronous Motor
Protection schemes and zones
Design planning & layout of high voltage laboratory
Simplified analysis of graetz circuit copy - copy
Economic load dispatch
Microgrid
Three level inverter
Saturated Reactor(SR) & Thyristor Controlled Reactor(TCR)
measurement of high voltage and high currents
Micro computer control of dc drive
Three Phase to Three phase Cycloconverter
Electrical drives lectures
Swing equation
Three phase voltage source inverter
Reactive power and voltage control
Braking methods of induction motor
maximum power point tracking (mppt)
Ad

Similar to Design, Modeling and control of modular multilevel converters (MMC) based hvdc systems ghazal falahi (20)

PDF
Design consideration of an mmc hvdc system based on 4500 v:4000a emitter turn...
PDF
Thd minimization of modular multilevel converter with unequal dc values
PDF
Total Harmonic Distortion Analysis of Multilevel Inverter Fed To Induction Mo...
PDF
Circulating current suppression and natural voltage balancing using phase-shi...
PDF
AMD11.pdf ffwef faff fqefwef wefewfwef wfw by fklnsflknsdfklsnf
PDF
Hardware-in-the-loop setup for enhanced modular multi-level converter with re...
PDF
IRJET - Analysis of Carrier based PWM Controlled Modular Multilevel Conve...
PDF
IRJET- Modular Multilevel Converter for Power Quality Improvement
PDF
Active power and current control for a modular multilevel converter (mmc) bas...
PDF
[1_CV] Model Predictive Control Method for Modular Multilevel Converter Appli...
PDF
Level Shifted Discontinuous PWM Algorithms to Minimize Common Mode Voltage fo...
PDF
COMPREHENSIVE ANALYSIS AND SIMULATION OF MULTILEVEL POWER CONVERTERS TO CURTA...
PDF
COMPREHENSIVE ANALYSIS AND SIMULATION OF MULTILEVEL POWER CONVERTERS TO CURTA...
PDF
A Review of Matrix Converter and Novel Control Method of DC-AC Matrix Converter
PDF
Cn3210001005
PDF
Comparative performance of modular with cascaded H-bridge three level inverters
PDF
A Survey and Experimental Verification of Modular Multilevel Converters
PDF
Capacitor voltages balancing method for buck modular DC/DC converter
PDF
Multi Carrier based Multilevel Inverter with Minimal Harmonic Distortion
PDF
Multilevel Inverter using SPWM Technique for AC Power Supply
Design consideration of an mmc hvdc system based on 4500 v:4000a emitter turn...
Thd minimization of modular multilevel converter with unequal dc values
Total Harmonic Distortion Analysis of Multilevel Inverter Fed To Induction Mo...
Circulating current suppression and natural voltage balancing using phase-shi...
AMD11.pdf ffwef faff fqefwef wefewfwef wfw by fklnsflknsdfklsnf
Hardware-in-the-loop setup for enhanced modular multi-level converter with re...
IRJET - Analysis of Carrier based PWM Controlled Modular Multilevel Conve...
IRJET- Modular Multilevel Converter for Power Quality Improvement
Active power and current control for a modular multilevel converter (mmc) bas...
[1_CV] Model Predictive Control Method for Modular Multilevel Converter Appli...
Level Shifted Discontinuous PWM Algorithms to Minimize Common Mode Voltage fo...
COMPREHENSIVE ANALYSIS AND SIMULATION OF MULTILEVEL POWER CONVERTERS TO CURTA...
COMPREHENSIVE ANALYSIS AND SIMULATION OF MULTILEVEL POWER CONVERTERS TO CURTA...
A Review of Matrix Converter and Novel Control Method of DC-AC Matrix Converter
Cn3210001005
Comparative performance of modular with cascaded H-bridge three level inverters
A Survey and Experimental Verification of Modular Multilevel Converters
Capacitor voltages balancing method for buck modular DC/DC converter
Multi Carrier based Multilevel Inverter with Minimal Harmonic Distortion
Multilevel Inverter using SPWM Technique for AC Power Supply
Ad

Recently uploaded (20)

PDF
PRIZ Academy - 9 Windows Thinking Where to Invest Today to Win Tomorrow.pdf
PPTX
Strings in CPP - Strings in C++ are sequences of characters used to store and...
PPTX
M Tech Sem 1 Civil Engineering Environmental Sciences.pptx
PPTX
Construction Project Organization Group 2.pptx
PDF
SM_6th-Sem__Cse_Internet-of-Things.pdf IOT
PDF
Model Code of Practice - Construction Work - 21102022 .pdf
PDF
PPT on Performance Review to get promotions
PDF
Well-logging-methods_new................
PPTX
Infosys Presentation by1.Riyan Bagwan 2.Samadhan Naiknavare 3.Gaurav Shinde 4...
PPT
Mechanical Engineering MATERIALS Selection
DOCX
ASol_English-Language-Literature-Set-1-27-02-2023-converted.docx
PPTX
Sustainable Sites - Green Building Construction
PPTX
MET 305 2019 SCHEME MODULE 2 COMPLETE.pptx
PDF
BMEC211 - INTRODUCTION TO MECHATRONICS-1.pdf
PDF
keyrequirementskkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkk
PPTX
KTU 2019 -S7-MCN 401 MODULE 2-VINAY.pptx
PPTX
Welding lecture in detail for understanding
PDF
Digital Logic Computer Design lecture notes
PPTX
Lesson 3_Tessellation.pptx finite Mathematics
PDF
Arduino robotics embedded978-1-4302-3184-4.pdf
PRIZ Academy - 9 Windows Thinking Where to Invest Today to Win Tomorrow.pdf
Strings in CPP - Strings in C++ are sequences of characters used to store and...
M Tech Sem 1 Civil Engineering Environmental Sciences.pptx
Construction Project Organization Group 2.pptx
SM_6th-Sem__Cse_Internet-of-Things.pdf IOT
Model Code of Practice - Construction Work - 21102022 .pdf
PPT on Performance Review to get promotions
Well-logging-methods_new................
Infosys Presentation by1.Riyan Bagwan 2.Samadhan Naiknavare 3.Gaurav Shinde 4...
Mechanical Engineering MATERIALS Selection
ASol_English-Language-Literature-Set-1-27-02-2023-converted.docx
Sustainable Sites - Green Building Construction
MET 305 2019 SCHEME MODULE 2 COMPLETE.pptx
BMEC211 - INTRODUCTION TO MECHATRONICS-1.pdf
keyrequirementskkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkk
KTU 2019 -S7-MCN 401 MODULE 2-VINAY.pptx
Welding lecture in detail for understanding
Digital Logic Computer Design lecture notes
Lesson 3_Tessellation.pptx finite Mathematics
Arduino robotics embedded978-1-4302-3184-4.pdf

Design, Modeling and control of modular multilevel converters (MMC) based hvdc systems ghazal falahi

  • 1. Design, Modeling and Control of Modular Multilevel Converter Based HVDC Systems Ghazal Falahi December 2014
  • 3. Background 3 Udc/2 Udc/2 Vconv 2  n  (n+1) (n+2) 1 (2n) Ud Uac Desired voltage Achieved voltage Achieved voltageDesired voltage V.S. ü  Modular arrangement with identical power modules ü  Low level of harmonics ü  Lower switching losses compared with 2level converters ü  low component count and compact size X  More complex control algorithmsX  High losses X  High harmonics X  No redundancy ü  Simple control
  • 4. State of the Art 4 [1] M. Davies, M. Dommaschk, J. Dorn, J. Lang, D. Retzmann, D. Soerangr , „HVDC PLUS –Basics and Principle of Operation, Siemens Technical Article” Majority of HVDC manufacturers use IGBT 2. high losses Switching Frequency (modulation) Semiconductor Devices 1. Low power capacity Issues:
  • 5. MMC-HVDC loss (state of the art) 5 •  Candidate devices for high power levels IGCT ETO •  MMC-HVDC systems are operated at much lower switching frequencies [1] Buschendorf, Martin, Jens Weber, and Steffen Bernet. "Comparison of IGCT and IGBT for the use in the modular multilevel converter for HVDC applications." Systems, Signals and Devices (SSD), 2012 9th International Multi-Conference on. IEEE, 2012. [2] M. Davies, M. Dommaschk, J. Dorn, J. Lang, D. Retzmann, D. Soerangr , „HVDC PLUS –Basics and Principle of Operation, Siemens Technical Article” Station losses close to 1% (designs with IGBT) •  Losses are still higher than thryistor based HVDC systems •  Power rating is still lower 1.  Possible power 2.  Losses Lower losses than IGBT 4% less losses compared to IGBT [1] = 0.96% per station
  • 6. Design procedure 6 1 •  Analyze ETO based MMC losses and potential power 2 •  MMC operation and control 3 •  Modulation 4 •  Thermal analysis 5 •  Design of MMC sub-module with ETO
  • 7. Modular Multilevel Converter (MMC) 7 State S1 S2 Vsm 1 ON OFF Vc 2 OFF ON 0 q  MMC mathematical model: q  MMC grid connection dynamic: icirc = ip +in 2 varm = vSM i=0 n ∑ + Larm diarm dt + Rarmiarm SM  2 SM  n SM  (n+1) SM  (n+2) SM  1 SM  (2n) DC   link va vb vc u0 ipa Udc/2 Udc/2 ia ib ic Larm La Lb Lc ipb ipc ua ub uc Rarm D1 D2 S1 S2 ipa Vc incinbina Larm Larm Rarm Rarm Larm Rarm Larm Larm Rarm Rarm uk − u0 = varm uk − (vk + u0 ) = varm K= a, b, c uk (t) = Udc 2 mk (t)
  • 8. 8 va vb vc u0 ia-­‐up ia-­‐low Udc/2 Udc/2 ia ib ic Larm La Lb Lc ib-­‐up ic-­‐up ib-­‐low ic-­‐low ua ub uc Rar m Larm Larm Larm Larm Larm Rar m Rarm Rarm Rarm Rarm Inner voltage Inner voltage Inner voltage Inner voltage Inner voltage Inner voltage Required number of sub-modules in each arm N ≥ 320KV 2.5KV =128 §  Number of sub-modules MMC sub-module devices used in power stage design : •  Switches (S1 & S2): 4.5KV,4KA Gen-4 ETO •  Antiparallel diodes (D1 & D2): ABB fast recovery diode 5SDF 16L4503 §  Semiconductor device VAC 138KV VDC-link 320KV Nominal frequency 60HZ Modular Multilevel Converter operation
  • 9. iarm>0 S1 or D2 S1 D2 iarm<0 S2 or D1 D1 S2 Sub-module operation principal in MMC 9 •  Operation principal of MMC Varm,ref iarm )cos( 22 )(,_ t V m V tV dcdc refkarm ω−= )cos( 23 )( ϕω −+= t II ti adc arm •  Logic of operation Upper arm reference voltage Arm current The arm current flowing out of the sub-module is considered as positive (a) and the current flowing into sub-module is considered as negative D1 D2 S1 S2 ipa Vc D1 D2 S1 S2 ipa Vc D1 D2 S1 S2 ipa Vc D1 D2 S1 S2 ipa Vc (a) iarm>0 (b) iarm<0 0 , > dt dV refarm 0 , < dt dV refarm 0 , > dt dV refarm 0 , < dt dV refarm
  • 10. Modular Multilevel Converter Control [1] 10 1.  An individual capacitor voltage controller 2.  The averaging controller 3.  The system controller 4.  Modulation reference generation PI PI 1/2 Vc* Vcu Ik-­‐low Ik-­‐up Icir* Icir VAu* Total DC voltage controller PI Vc* Vcju   (j=1-­‐2n) ± -1 :-Ik-up , Ik-low ≥ 0 +1 :-Ik-up , Ik-low ≤ 0 VBju* Individual DC voltage controller Vmk(k=a,b,c) PI i*dref Vod iod PI i*qref ω0Leq ω0Leq ioq Voq 3dq/abc System controller ! [1] Hagiwara, Makoto, and Hirofumi Akagi. "Control and experiment of pulsewidth-modulated modular multilevel converters." Power electronics, IEEE Transactions on 24.7 (2009): 1737-1746. VAu* VBju* Vi/n E/(2n) Vju*  (j=1-­‐n) dAneg VAu* VBju* Vi/n E/(2n) Vju*  (j=n+1-­‐2n) dAneg Modulation reference generation
  • 11. Multilevel Modulation Fundamental switching frequency High switching frequency Space vector PWM Sinusoidal PWM Level shifted PWM Phase shifted PWM Space vector control SHENLM Modified NLM MMC modulation methods 11 [1] Wang, Jun, Rolando Burgos, and Dushan Boroyevich. "A survey on the modular multilevel converters—Modeling, modulation and controls." Energy Conversion Congress and Exposition (ECCE), 2013 IEEE. IEEE, 2013. Choosing modulation method for the proposed structure Advantages ü  Fundamental frequency switching ü  Lower losses ü  Online calculation of switching angles Issues × High losses × Complex vector calculation and selection × Relying on look up tables (offline calculation of switching angles
  • 12. Proposed 60Hz modulation for MMC-HVDC 12 Vdc N 2 Vdc N 3 Vdc N 0 ta tb Varm_k,ref (t) Varm_ AV (t) Switching angle calculation in each discrete step: (ωt +φarm_k ) = arccos n. Vdc N − Vdc 2 m Vdc 2 " # $ $ $ % & ' ' ' Varm_k,ref (t) = Vdc 2 + m Vdc 2 cos(ωt +φarm_k ) Varm_k,High =Varm_k,Low + Vdc n n = round( Varm_k,ref USM _ave ) N : number of sub-modules in arm n : number of active sub-modules USM_ave: average SM voltage A piece of MMC reference arm voltage Each level is Vdc/n more than the previous level Switching instants ωti = arccos n. Vdc N − Vdc 2 m Vdc 2 " # " " " $ % $ $ $ −φarm_k ωti+1 = arccos n. Vdc N − Vdc 2 m Vdc 2 " # # # # $ % % % % −φarm_k
  • 13. Implementation of 60Hz modulation 13 0 0.5 1 1.5 2 2.5 0.2 0.25 0.3 0.35 0.4 0.45 0.5 0.55 time (secs) Submodulecapacitorvoltages(pu) Capacitor Voltage balancing Nearest level modulation MMC system controller 1.  Active/reactive power 2.  Individual capacitor voltage 3.  Circulating current 4.  Negative/zero sequence and LVRT, etc. Vmodulation_arm three phases a, b, c Switching angles θ1, θ2,.., θi Switching pulses P1, P2,.., Pi Switching pulses Switching index ? Sub-module capacitor voltages are unbalanced
  • 14. Capacitor voltage sorting and balancing 14 D1 D2 S1 S2 ipa Vc D1 D2 S1 S2 ipa Vc D1 D2 S1 S2 ipa Vc D1 D2 S1 S2 ipa Vc iarm>0 iarm<0 Capacitor bypassed Capacitor bypassed Capacitor discharge Capacitor charge Modifications: 1.  Only remaining Sub-modules are considered to reduce equivalent switching frequency 2.  Circulating current error is added to the modulation reference to make balancing faster 3.  Number of active sub-modules calculated by using average measured capacitor voltages to increase accuracy Iarm>0 Iarm<0 Sub-modules with maximum capacitor voltages turn on first Sub-modules with minimum capacitor voltages turn on first Vdc1 Vdcn Sorting Vdc_sorted = Vdc_max • • • Vdc_max ! "# $ %& Vdc_index = ni_vdc_max • • • ni_vdc_max ! "# $ %&
  • 15. Semiconductor loss calculation for a 500MW MMC-HVDC system 15 Gen-4 ETO power loss characteristics ETO : EOFF (I) = a × I + b = 0.0041× I + 0.21 VON(I) = c× I + d = 0.0014× I +1.1 Diode: Eswitching(I)=e× I + f=0.00018×I+0.8 Von(I)=g × I + h=0.79×10-3×I+1.9 [1] Li, J., A.Q. Huang, and W. Jing. 7MVA ETO Light NPC converter for multi-MW direct-driven wind turbine application. in Power Electronics and Machines in Wind Applications, 2009. PEMWA 2009. IEEE. 2009. IEEE. Ploss−Switch = (PcondS1 + PcondS2 + PSwitchingS1 + PSwitchingS2 ) Ploss−Diode = (PcondD1 + PcondD2 + PSwitchingD1 + PSwitchingD2 ) EOFF (reverse recovery loss) EOFF+EON (snubber loss) 1. Switch losses 2. Switch losses
  • 16. Proposed loss estimation method for 60Hz modulation 16 Diode D2 Switch S1 Diode D1 Switch S2 t1t2t3 0 Varm iarm m=1 φ=0 !     Losses=[0 0 0 0 0 0 0 0] Losses=[0 X 0 0 0 0 0 0] Losses=[0 X 0 0 0 X 0 0] Losses=[0 X 0 X 0 X 0 0] Losses=[X X X X X X X X] ti! ti+1! ! Pcond = 1 T nPD_cond (−ipa )+(N − n)PSwitch_cond (−ipa )"# $%t2 t1 ∫ dt + nPSwitch_cond (ipa )+(N − n)PD_cond (ipa )"# $%t3 t2 ∫ dt Number of small intervals (sampling rate) ni = Varm,ref Vsm_ave ! " ! # $ # t=tup − Varm,ref Vsm_ave ! " ! # $ # t=tlow
  • 17. Loss calculations 17 n× PD_cond (−ipa )( )dt + PD_cond (−ipa )( )dt + PD_cond (−ipa )( )dt +...+ PD_cond (−ipa )( )dt tk+i t1 ∫ tk+1 tk+2 ∫ tk t k+1 ∫ t2 tk ∫ $ % && ' ( )) +(N − n) PSwitch_cond (−ipa )( ) t2 tk ∫ dt + PSwitch_cond (−ipa )( ) tk tk+1 ∫ dt +...+ PSwitch_cond (−ipa )( ) tk+i t1 ∫ dt $ % && ' ( )) Esw (i) = Esw (θi ) tlow<t<tup ∑ n.PD_cond (−ipa )+(N − n)PSwitch_cond (−ipa )( )dt t2 t1 ∫ # $ %% & ' (( n n≤N ∑ = n. PD_cond (−ipa )( )dt t2 t1 ∫ +(N − n) PSwitch_cond (−ipa )( ) t2 t1 ∫ dt Esw_total = ESW (i)× fsw System Controller 1. Number of ON sub-modules 1. Sub-module capacitor voltage sorting 2. Sub-module selection based on sorted Vdc vector Vdc1 Vdcn nactive P1 Pn P2 2. Switching angle calculation Vmod,ref nactive = round( Varm,ref Vsm ) θi = 2Varm Vdc −1 m −φarm Loss calculations Individual device losses iarm PS11 PS18 PD11 PD18 Proposed modulation and loss calculation diagram
  • 18. Individual device losses – S1 in sub-modules (1- 4) 18 0 10 20 30 40 50 60 70 80 90 100 110 -1000 0 1000 2000 3000 4000 5000 6000 0 10 20 30 40 50 60 70 80 90 100 110 -1000 0 1000 2000 3000 4000 5000 6000 0 10 20 30 40 50 60 70 80 90 100 110 -1000 0 1000 2000 3000 4000 5000 6000 0 10 20 30 40 50 60 70 80 90 100 110 -1000 0 1000 2000 3000 4000 5000 6000 Is loss balancing an issue?
  • 19. 19 0 10 20 30 40 50 60 70 80 90 100 110 -1000 0 1000 2000 3000 4000 5000 6000 0 10 20 30 40 50 60 70 80 90 100 110 -1000 0 1000 2000 3000 4000 5000 6000 0 10 20 30 40 50 60 70 80 90 100 110 -1000 0 1000 2000 3000 4000 5000 6000 0 10 20 30 40 50 60 70 80 90 100 110 -1000 0 1000 2000 3000 4000 5000 6000 Individual device losses – S1 in sub-modules (5- 8) Sorting and swapping sub-modules eventually makes device losses balanced
  • 20. Averaged device losses over 200 cycles 20 Device Loss (PF= -0.95) Loss (PF= 1) Loss(PF=+0.95) D1 799 812 839 D2 1598 1587 1366 S1 1975 1960 2219 S2 1259 1156 1184 Each sub-module losses 5631 5515 5608 Total MMC loss (per station) 4.32 MW 4.2 MW 4.3 MW Total MMC losses per station in design with IGBT [1] 4.6 MW 0 2000 4000 6000 D1 D2 S1 S2 SM loss PF=-0.95 PF=+0.95 PF=1 [1] Yang, Liu, Chengyong Zhao, and Xiaodong Yang. "Loss calculation method of modular multilevel HVDC converters." Electrical Power and Energy Conference (EPEC), 2011 IEEE. IEEE, 2011. 9% lower losses compared to design in [1] Conventional MMC-HVDC system semiconductor loss per station = more than 1% ETO based MMC-HVDC semiconductor loss per station = 0.84 % 16% less losses Around 1% efficiency improvement
  • 21. Thermal Analysis of ETO based sub-module 21 Heat pipe based cooling Junction temperature of ETOs and diodes much lower than 110° Device Junction temperature (°C) D2 61.9 S2 67.4 S1 81.6 D1 54.4 ETO can be used for higher power ratings Power capacity of ETO based MMC-HVDC system can reach more than 1000MW Device Junction temperature (°C) D2 82.9 S2 90.6 S1 109.2 D1 70.1 500MW operation Potential power =1000MW Device temperature for designed ETO based MMC-HVDC [1] Li, Yuxin, Alex Q. Huang, and Kevin Motto. "Experimental and numerical study of the emitter turn-off thyristor (ETO)." Power Electronics, IEEE Transactions on 15.3 (2000): 561-574. [2] Li, Jun, et al. "ETO light multilevel converters for large electric vehicle and hybrid electric vehicle drives." Vehicle Power and Propulsion Conference, 2009. VPPC'09. IEEE. IEEE, 2009.
  • 22. Proposed ETO based MMC-HVDC 22 Characteristic ETO IGCT IGBT GTO Conduction loss Low Low High Low Switching time Fast Fast Medium Slow Turn-off capability High High Low Low Self-power function Yes No No No Built-in sensor Yes No No No Positive temperature Coefficient Best Poor Good Poor Semiconductor device selection [1] [1] Li, Yuxin, Alex Q. Huang, and Kevin Motto. "Experimental and numerical study of the emitter turn-off thyristor (ETO)." Power Electronics, IEEE Transactions on 15.3 (2000): 561-574. 0.1 0.11 0.12 0.13 0.14 0.15 0.16 0.17 0.18 0.19 0.2 0 0.05 0.1 0.15 0.2 0.25 0.3 time (secs) Circuatingcurrent(pu) Cdc S1 S2 iaarm VSM D1 Rclamp Cclamp Lclamp Cdc RclampS1 S2 Cclamp iaarm D1 Lclamp cc A cc c B Cdc L R D S1 S2 C 𝑑𝑖 𝑑𝑡 = 𝑉𝐷𝐶 − 𝑉𝐶𝑐𝑙𝑎𝑚𝑝 𝐿 𝑃𝑐𝑙𝑎𝑚𝑝 = 1 2 𝐿𝑖 𝑝𝑒𝑎𝑘 2 . 𝑉𝐶𝑐𝑙𝑎𝑚𝑝 𝑉𝐷𝐶 − 𝑉𝐶𝑐𝑙𝑎𝑚𝑝 . 𝑓𝑠 𝐶𝑐𝑙𝑎𝑚𝑝 = 𝑉𝐶𝑐𝑙𝑎𝑚𝑝 ∆𝑉𝐶𝑐𝑙𝑎𝑚𝑝 . 𝑅. 𝑓𝑠 𝑅 = 𝑣 𝑐𝑙𝑎𝑚𝑝 2 𝑃𝑐𝑙𝑎𝑚𝑝 Leq = nactive.Lclamp ≥128× Lclamp
  • 24. 24 Simulated MMC-HVDC system System is controlled in two different scenarios (1) (2) Side 1: DC link voltage control, AC voltage control Side 2: active and reactive power control Side 1: DC link voltage control, reactive power control Side 2: active and reactive power control VAC 138KV VDC-link 320KV Fundamental frequency 60HZ Number of SMs 16 Fsw 60Hz
  • 25. MMC equations under fault operating condition 25 The system mathematical equations can be decomposed to positive, negative and zero components[1]: ! !!!"# ! (!) !" + !!!"# ! (!) = !!"# ! (!) − !!"# ! (!) ! !!!"# ! (!) !" + !!!"# ! (!) = !!"# ! (!) − !!"# ! (!) ! !"! (!) !" + !!! ! = !! ! − (!! ! + !!(!)) !!! + !!! + !!! 3 = !! Zero-sequence component extraction !!! ! (!) !" = − ! ! !! ! + !!! ! + 1 ! !! ! − 1 ! !! ! !!! ! (!) !" = − ! ! !! ! − !!! ! + 1 ! !! ! − 1 ! !! ! !!! ! (!) !" = − ! ! !! ! − !!! ! + 1 ! !! ! − 1 ! !! ! !!! ! (!) !" = − ! ! !! ! + !!! ! + 1 ! !! ! − 1 ! !! ! Active and reactive powers at PCC Three-phase positive and negative sequence subsystems in synchronous reference frame ! = !! + !!! sin 2!" + !!! cos 2!" + 3!!!! ! = !! + !!! sin 2!" + !!! cos 2!" !! !! !!! !!! !!! !!! = 3 2 !! ! !! ! !! ! −!! ! !! ! −!! ! !! ! !! ! !! ! −!! ! −!! ! !! ! !! ! !! ! −!! ! −!! ! !! ! −!! ! !! ! !! ! !! ! !! ! !! ! −!! ! !! ! !! ! !! ! !! ! ! = 1.5!! ! !! ! ! = −1.5!! ! !! ! Cell  2 Cell  n Cell  (n+1) Cell  (n+2) Cell  1 Cell  (2n) DC   link va vb vc DC   link u0 ia-­‐up ia-­‐low Udc/2 Udc/2 ia ib ic 2L 2L 2L 2L 2L 2L La Lb Lc ib-­‐up ic-­‐up ib-­‐low ic-­‐low ua ub uc S1 S2 VS M Vc 2R 2R 2R 2R2R2R [1] Guan, Minyuan, and Zheng Xu. "Modeling and control of a modular multilevel converter-based HVDC system under unbalanced grid conditions." Power Electronics, IEEE Transactions on 27.12 (2012): 4858-4867.
  • 26. Operation of the simulated MMC-HVDC system 26 Dynamic response of the system to step change in active power PSCAD simulation results 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 -3 -2 -1 0 1 2 3 time (sec) P1&P2(pu) p1 p2 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 -1 -0.5 0 0.5 1 time (sec) Q1&Q2(pu) Q1 Q2 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 -1 -0.5 0 0.5 1 time (sec) Q1&Q2(pu) Q1 Q2 Dynamic response of the system to step change in reactive power 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 -3 -2 -1 0 1 2 3 time (sec) P1&P2(pu) P1 P2 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5 0.55 0.6 2 2.5 3 3.5 4 time (sec) Vdc(pu) Vdc
  • 27. Operation of the simulated MMC-HVDC system 27 0 0.1 0.2 0.3 0.4 0.5 0.6 -0.4 -0.3 -0.2 -0.1 0 0.1 0.2 0.3 0.4 0.5 time (sec) Q1&Q2(pu) Q1 Q2 Dynamic response of the system to active and reactive power reversal at t=0.3sec and t=0.5sec respectively Dynamic response of the system to AC voltage change from 1pu to 1.1 PSCAD simulation results 0.2 0.25 0.3 0.35 0.4 0.45 0.5 -1 -0.5 0 0.5 time (sec) Q1&Q2(pu) Q1 Q2 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 -2.5 -2 -1.5 -1 -0.5 0 0.5 1 1.5 2 2.5 Time (sec) Activeandreactivepower reversalside1&2(pu) 0.2 0.25 0.3 0.35 0.4 0.45 0.5 -3 -2 -1 0 1 2 3 time (sec) P1&P2(pu) P1 P2 0.2 0.25 0.3 0.35 0.4 0.45 0.5 -1.5 -1 -0.5 0 0.5 1 1.5 time (secs) Vabc(pu)
  • 28. 28 Operation of the simulated MMC-HVDC system 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 -1 0 1 2 3 4 5 Time (secs) Vdc(pu) Vdc ref Vdc Dynamic response of the step change in DC voltage 0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5 -2 -1.5 -1 -0.5 0 0.5 1 1.5 2 3Phasecurrentsside2(pu) ia ib ic 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 -3 -2 -1 0 1 2 3 time (sec) Iabcside1(pu) ia ib ic
  • 29. Single line to ground (SLG) fault on AC line side 2 29 Issues: 1. Negative and zero sequence terms are present in currents 2. Active and reactive powers oscillate at double fundamental frequency 3. DC link has ripples with double fundamental frequency 0.2 0.25 0.3 0.35 0.4 0.45 0.5 0.55 0.6 -3 -2 -1 0 1 2 3 time (sec) P1&P2(pu) P1 P2 0.2 0.25 0.3 0.35 0.4 0.45 0.5 0.55 0.6 -2 -1 0 1 2 time (sec) Iabcside2(pu) ia ib ic 0.2 0.25 0.3 0.35 0.4 0.45 0.5 0.55 0.6 -2 -1 0 1 2 time (sec) Iabcside1(pu) ia ib ic Fault 0.2 0.25 0.3 0.35 0.4 0.45 0.5 0.55 0.6 -0.5 0 0.5 1 time (sec) Idqneg(pu) id neg iq neg 0.2 0.25 0.3 0.35 0.4 0.45 0.5 0.55 0.6 -0.4 -0.2 0 0.2 0.4 time (sec) Zerosequencecurrent(pu) i zero 0.2 0.25 0.3 0.35 0.4 0.45 0.5 0.55 2.5 3 3.5 time (sec) Vdc(pu) Vdc Fault
  • 30. State of the art 1.  Calculation of reference positive and negative sequences 2.  Using additional PI and PR controllers to eliminate positive, negative and zero sequences 3. Using both positive and negative phase locked loop (PLL) 30 [1] Timofejevs, Artjoms, et al. "Control of transformerless MMC-HVDC during asymmetric grid faults." Industrial Electronics Society, IECON 2013-39th Annual Conference of the IEEE. IEEE, 2013. Issues: Makes the MMC control more complicated Slow response time (50ms)
  • 31. Proposed control structure 31 dazero Zero  sequence   calculation dbzero dczero n n n Ea Eb Ec Ea0 Eb0 Ec0 daneg Vcju Eliminating   zero   sequence Eliminating   positive   sequence Vcjv Vcjw dbneg dcneg n n n Step1. Real-time calculation of zero and negative sequence components based on Analytical Equations !!! !!! !!! = !! !! !! !! !!" !!" !!" = !! !! !! − !!!! !! !! !! !!= ! ! 2 −1 −1 −1 2 −1 −1 −1 2 !!= ! ! !! !! ! ! !! ! −1 0 −1 !! !! ! ! !! ! ! !
  • 32. Negative and zero sequence voltage components calculated from PCC voltages –controller references 32 Step2. Updating the modulation to eliminate the effect of zero and negative sequence components in the system VAu* VBju* Vi/n E/(2n) Vju*  (j=1-­‐n) dAneg dAzero VAu* VBju* Vi/n E/(2n) Vju*  (j=n+1-­‐2n) dAneg dAzero 0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 Negativesequencevoltages(pu) Ea Eb Ec 0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5 -2 -1.5 -1 -0.5 0 0.5 1 1.5 2 Zerosequencevoltages(pu) E0a E0b E0c
  • 33. MMC-HVDC system response to SLG fault with proposed controller 33 Negative sequence currents in dq frame when SLG fault is applied Zero sequence currents when SLG fault is applied Fault with conventional controller Suppressed negative and zero components with proposed controller 0.1 0.2 0.3 0.4 0.5 0.6 -0.1 0 0.1 0.2 0.3 0.4 0.5 time (sec) Idqneg(pu) id neg iq neg 0.1 0.2 0.3 0.4 0.5 0.6 -0.05 -0.025 0 0.025 0.05 Id&Iqnegativesequence(pu) Idneg ref Idneg 0.1 0.2 0.3 0.4 0.5 0.6 -0.4 -0.3 -0.2 -0.1 0 0.1 0.2 0.3 0.4 time (sec) Zerosequencecurrent(pu) i zero 0.1 0.2 0.3 0.4 0.5 0.6 -0.05 -0.025 0 0.025 0.05 Zero-sequencecurrent(pu) izero Fault Fault
  • 34. 34 MMC-HVDC system response to SLG fault with proposed controller- arm circulating current Conventional controller Proposed controller Before fault Fault 0.2 0.25 0.3 0.35 0.4 0.45 0.5 0 0.2 0.4 0.6 0.8 1 time(secs) icirc(pu) 0.2 0.25 0.3 0.35 0.4 0.45 0.5 -0.2 0 0.2 0.4 0.6 0.8 time (secs) icirc(pu)
  • 35. 35 MMC-HVDC system response to SLG fault with proposed controller- sub-module capacitor voltages Conventional controller Proposed controller 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 0.34 0.35 0.36 0.37 0.38 0.39 0.4 time (secs) Sub-modulecapacitorvoltages(pu) 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 0.34 0.35 0.36 0.37 0.38 0.39 0.4 time (secs) Sub-modulecapacitorvoltages(pu) Before fault Fault
  • 36. 36 MMC-HVDC system response to unbalance condition with proposed controller 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 -1.5 -1 -0.5 0 0.5 1 1.5 time (secs) 3phasevoltagse(pu) Va Vb Vc 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 -2 -1.5 -1 -0.5 0 0.5 1 1.5 2 time (secs) 3phasecurrents(pu) ia ib ic 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 -2 -1.5 -1 -0.5 0 0.5 1 1.5 2 time (secs) DCcurrent(pu) idc Before fault Fault Fault with proposed controller
  • 37. MMC-HVDC system dynamic response to three phase fault at inverter side- constant power control 37 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 -2 -1.5 -1 -0.5 0 0.5 1 1.5 2 time (sec) Vabcside2(pu) ia ib ic 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 -3 -2 -1 0 1 2 3 time (sec) Iabcside1(pu) ia ib ic 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 -3 -2 -1 0 1 2 3 time (sec) Iabcside2(pu) ia ib ic Fault at converter 2 side at t=0.3-0.4sec Fault
  • 38. MMC-HVDC system dynamic response to three phase fault at inverter side 38 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5 Time (sec) Vdc(pu) Vdc 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 -3 -2 -1 0 1 2 3 time (sec) P1&P2(pu) P1 P2 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 -1 -0.5 0 0.5 1 time (sec) Q1&Q2(pu) Q1 Q2 Fault
  • 39. MMC-HVDC system response to 50% voltage sag on both sides 39 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 -2.5 -2 -1.5 -1 -0.5 0 0.5 1 1.5 2 2.5 time (sec) Iabcside2(pu) ia ib ic 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 -3 -2 -1 0 1 2 3 time (sec) Iabcside1(pu) ia ib ic 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 -4 -3 -2 -1 0 1 2 3 4 time (sec) P1&P2(pu) P1 P2 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 time (sec) Q1&Q2(pu) Q1 Q2 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.8 0.85 0.9 0.95 1 1.05 1.1 1.15 time (sec) Sub-modulecapacitorvoltages(pu) 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0 1 2 3 4 5 time (sec) Vdc(pu) Vdc Dynamic response of the system to 50% for 0.1 sec (t=0.3-0.4) voltage sag on both rectifier and inverter sides Issues: 1. AC currents increase 2. DC link voltage oscillates
  • 40. Proposed LVRT control 40 V*ac Vmk(k=a,b,c) PI i*odref Vod iod PI i*qref ω0Leq ω0Leq ioq Voq 3dq/abc System controller Normal  operation LVRT Pref Pref-­‐LVRT PI V*dc Vdc Q*ref PI Vac Qref-­‐LVRT !!"#$% = 0 vac >0.85 pu !!"#$% = −2 !!" !!"#$%& + 2 0.5< vac ≤0.85pu !!"#$% = 0 vac ≤0.5 pu !!"#$% = 1 − !!"#$% 2 3 4 Time Voltage Vmin tmin t1 t20 V1 V2 Vnom 1 Low voltage ride through curve defined by grid code Ireactive/Irated(%) Voltage(%) 0.2pu 50 90 1pu 110 Normal  operationFault  operation The required percentage of reactive current during LVRT Changes in the system controller [1] R.P.S. Leão1, J.B. Almada1, P.A. Souza2, R.J. Cardoso1, R.F. Sampaio1, F.K.A. Lima1, J.G. Silveira2 and L.E.P. Formiga , “The Implementation of the Low Voltage Ride-Through Curve on the Protection System of a Wind Power Plant” , International Conference on Renewable Energies and Power Quality (ICREPQ’11) Las Palmas de Gran Canaria (Spain), 13th to 15th April, 2010
  • 41. Fault performance with the proposed LVRT control 41 1. AC currents stay constant 2. Less increase in DC link voltage 3. Simple implementation Solution advantages: With proposed controller
  • 42. Applying LVRT profile 42 1. Active power reference decreased to avoid instability 2. Reactive power is injected to maintain voltage Solution: 2 3 4 Time Voltage Vmin tmin t1 t20 V1 V2 Vnom 1
  • 43. MMC-HVDC operation under DC fault 43 SMs SMs SMs SMs SMs SMs DC   link ia-­‐up ia-­‐low Udc ia ib ic Larm Larm Larm Larm Larm Larm La Lb Lc ib-­‐up ic-­‐up ib-­‐low ic-­‐low ua ub uc idcLcableRcable ic CB CB CB D1 D2 S1 S2 ipa Vc Stage1. MMC operational and AC circuit breakers still closed Stage2. MMC not operating (blocked), AC side CB still closed Stage3. MMC not operating, AC circuit breaker closed Stage1: §  sub-module capacitors discharge through S1 for a very short time until MMC pulses are blocked §  The sub-module capacitor discharge time is very short so sum of sub-module voltages stays close to Vdc
  • 44. 0.19 0.195 0.2 0.205 0.21 0.215 0.22 0 2 4 6 8 10 12 time (secs) Idc(KA) MMC-HVDC operation under DC fault 44 LcableRcable 2Larm/3 idc ic icable Vsub-­‐module   caps  ~  Udc Equivalent circuit during stage1 The Vdc oscillation frequency at each stage is found by eqeqCL 1 0 =ω 3/2.. 3/22 0 armcable armcable LLC LL + =ω 0.19 0.195 0.2 0.205 0.21 0.215 0.22 100 150 200 250 300 350 time (secs) Vdc(KV) FaultNormal operation
  • 45. stage 2 : MMC PWM blocked, AC circuit breaker closed 45 Stage2. MMC blocked (pulses off) AC side circuit breakers closed, D2 conducts and passes AC current to the fault side ü  Some of the diodes turn off as the arm current reaches the zero crossing point eqeqCL 1 0 =ω The Vdc oscillation frequency Leq depends on number of conducting diodes Equivalent circuit during stage2 DC   link ia-­‐up ia-­‐low Udc ia ib ic Larm Larm Larm Larm Larm Larm La Lb Lc ib-­‐up ic-­‐up ib-­‐low ic-­‐low ua ub uc idcLcableRcable ic CB CB CB Fast AC breaker required! Design consideration: D2 has to withstand 2pu current for around 5 cycles ABB fast recovery diode 5SDF 16L4503
  • 46. 0.2 0.25 0.3 0.35 0.4 0.45 0.5 -3 -2 -1 0 1 2 3 time (secs) Idc(pu) stage 3 : MMC blocked, AC circuit breaker tripped 46 Stage3. MMC blocked (pulses off) and AC side circuit breakers open Equivalent circuit during this stage3 LcableRcable 2Larm idc 2Larm 2Larm LcableRcable 2Larm/3 idc t LL R dcdc cable cable eIi ) 3/2 ( 0 0+ − = Fault current Fault applied AC CB tripped5cycles 0.2 0.25 0.3 0.35 0.4 0.45 0.5 0 0.5 1 1.5 2 2.5 3 3.5 time (secs) Vdc(pu) MMC blocked MMC controller blocks pulses when Idc>2pu
  • 47. Solutions to DC fault 47 2. ABB hybrid DC circuit breaker (operates in 5msec) 3. Alstom ultrafast mechatronic HVDC DC circuit breaker (operates in 5msec) 4. Alstom hybrid MMC structure uses FB sub- modules to suppress DC faults 1. A lot of designs use AC circuit breakers to suppress DC side faults If the fast DC breaker is used fault current is suppressed in 5ms
  • 48. Proposed MMC with unequal DC values 48 time  (sec) 0.1 0.11 0.12 0.13 0.14 0.15 0.16 0.17 0.18 -400 -300 -200 -100 0 100 200 300 400 time (sec) Outputvoltage(volts) Vo Vdc/2S 3Vdc/2S 2Vdc/2S time  (sec) Vdc/2S 3Vdc/2S 2Vdc/2S 0.1 0.11 0.12 0.13 0.14 0.15 0.16 0.17 0.18 -400 -300 -200 -100 0 100 200 300 400 time (sec) Outputvoltage(volts) Vo Conventional MMC using CSPWM Conventional MMC using minimal THD Modulation MMC with unequal DC sources using minimal THD modulation 15.4% 11.3% 7.3% System Controller Minimal THD modulation (calculation of switching angles) m ωt θ1 θs θ2 Target waveform generation (Determine the number of required SM and generation of firing pulses) S1 S2 S2s SM1 SM2 SMs SM(s+1) SM5 SM2s Vdc/2s 2Vdc/2s 3Vdc/2s Advantages of the proposed configuration ü  Lower THD ü  60HZ modulation with small number of sub-modules
  • 49. References [1] Falahi, Ghazal. "Design, Modeling and Control of Modular Multilevel Converter based HVDC Systems." PhD Dissertation NCSU (2014). [2] Falahi, Ghazal, and Alex Q. Huang. "Design consideration of an MMC-HVDC system based on 4500V/4000A emitter turn-off (ETO) thyristor." Energy Conversion Congress and Exposition (ECCE), 2015 IEEE. IEEE, 2015. [3] Falahi, Ghazal, and Alex Huang. "Control of modular multilevel converter based HVDC systems during asymmetrical grid faults." Industrial Electronics Society, IECON 2014-40th Annual Conference of the IEEE. IEEE, 2014. [4] Falahi, Ghazal, Wensong Yu, and Alex Q. Huang. "THD minimization of modular multilevel converter with unequal DC values." Energy Conversion Congress and Exposition (ECCE), 2014 IEEE. IEEE, 2014. [5] Falahi, Ghazal, and Alex Huang. "Low voltage ride through control of modular multilevel converter based HVDC systems." Industrial Electronics Society, IECON 2014-40th Annual Conference of the IEEE. IEEE, 2014. 49