SlideShare a Scribd company logo
Wastewater Management


   Process Design and Economic
          Considerations
Presentation Outline
• Introduction of Project
• Process Description and Results
    – PFD
    – Process Units
       •   Neutralization Reactors
       •   Hydrocyclones
       •   Primary Clarification
       •   Reverse Osmosis
       •   Waste Disposal
•   Economics
•   Conclusion
•   References
•   Data Tables/Equations/Resources
Project Introduction
• Plant location: MN
• Produces:Metals
• Current market conditions makes plant
  construction feasible.
• Plant construction delays due to EPA
  regulations, TDS ≤ 10 ppm
• High flow rate and total TDS concentration
  promotes creative solution
Design Presentation
Pass 1



      Equipments Used         Process description
Ozone Treatment           Removal of Fe and Mn
Clarifier                 Flocculant and polymer
                          addition
Multimedia Filter         Total suspended solid removal
Reverse Osmosis Unit      Membrane filteration
Pass 2 & 3




       Equipments Used           Process description
Neutralization Reactors     Addition of lime
Hydrocyclone                90% solid removal
                            (CaCO3,CaSO4)
Clarifier                   Flocculant and Polymer addition

Reverse Osmosis Unit        Membrane filteration
Experimental Design
• Geochemical modeling
   Aqueous geochemical modeling
   Equilibrium concentrations (or activities) of chemical
    species in solution
   Saturation indices (SI's) of solid phases in
    equilibrium with a solution.
   Design software used PHREEQ from USGS
   Calculation of the effects of mixing of waters,
   Saturation index of the compounds higher than 1
    precipitate out
   Changing the solution's temperature, Eh, or pH, etc
 Jar testing: simulating the coagulation/flocculation process
 Flocculants and polymers were bought from integrated
  engineers
 Selection based on the highest amount of flocks formed per
  amount of flocculants added.
 Conductivity test for testing the presence of inorganics
  dissolved in the mixture
Ozone Contact Tank




           • Addition of Ozone
              - 100% Removal
              - Manganese and Iron
                  •   Separated out in later
                      steps.
Reactor Clarifier




•   Addition of flocculants to remove dissolved solids
•   Flocculants settle and are removed
•   Removed flocculants are sent to the landfill
•   Pass 1 will be 96,200 gal with a detention time of 2 hr
•   Pass 2 will be 26,500 gal with a detention time of 1.5 hr
•   Pass 3 will be 8,500 gal with detention time of 1.5 hr
Sand Filter
     •   Either dual coal-sand or tri-
         media coal-sand-garnet.
     •   It has an effective high rate
         filtration process with long
         filter runs.
     •   It is a proven and widely
         accepted filtration process.
     •   Helps remove more
         suspended solids before
         going to the RO unit.
     •   Sized for 800gpm
     •   Area 80.0 ft2
     •   Backwash velocity calculated
         after filter media is chosen.
Reverse Osmosis
Unit 1
                                      Example Staged RO Unit
• Modeled as three parallel
  units with ten stages
   – 800 gal∙min-1 feed flow
   – 60% Recovery
   – 10 mg∙L-1 Permeate
     Concentration
• Special Design Parameters
   – High inlet flow requires
     multiple stages/passes
   – Antiscalent addition
   – High flux yields high pressure
     inlet flow
Reverse Osmosis
Unit 2                         Unit 3
• Modeled as three parallel    • Modeled as three parallel
  units with seven stages        units with five stages
   – 320 gal∙min-1 feed flow      – 128 gal∙min-1 feed flow
   – 60% Recovery                 – 50% Recovery
   – 10 mg∙L-1 Permeate           – 10 mg∙L-1 Permeate
     Concentration                  Concentration
   – 192 gal∙min-1 permeate       – 192 gal∙min-1 permeate
     flow                           flow
   – 12.3% membrane recovery      – 12.9% membrane recovery
   – 99.3% solute rejection       – 99.5% solute rejection
Neutralization Reactor
• Reverse Osmosis Unit Feed
   – Highly saturated
• Addition of Lime
   – Stabilize pH
   – Aid in removal of salts
       •   Gypsum
       •   Calcium Carbonate
       •   Aragonite
       •   Artinite
       •   Calcite
       •   Chrysotile          • Design
       •   Clinoenstatite        - Modeled as circular up flow
       •   Diopside
                                   clarifier
       •   Huntite
       •   Hydromagnesite        - Using same equations as the
       •   Magnesite               Ozone Contact Tank
       •   Sepiolite
       •   Talc
       •   Tremolite
Hydrocyclones
• Removes solids in the
  waste stream
• The removed solids are
  land filled
• 16 in. with1,600 hp shaft
  will be used for Pass 2
• 12 in. with 360 hp shaft
  will be used for Pass 3
Reactor Clarifier




•   Addition of flocculants to remove dissolved solids
•   Flocculants settle and are removed
•   Removed flocculants are sent to the landfill
•   Pass 1 will be 96,200 gal with a detention time of 2 hr
•   Pass 2 will be 26,500gal with a detention time of 1.5 hr
•   Pass 3 will be 8,500 gal with detention time of 1.5 hr
Landfill design




•   Hazardous waste landfill must have a double linear
•   Can not be located in wetland on a floodplain
•   Cover is placed on top when landfill is closed
•   All leachate is collected and treated
Gypsum Removal

• Removal by vacuum
  belt filtration
• Can be run using
  just gravity or with a
  pressure drop.
• Drying rates up to
  80%.
Gypsum
• Produce approximately
  600kg per day.
• Widely used product.
    – Plaster ingredient
    – Fertilizer and soil
      conditioner
    – Plaster of Paris
• Approximately 90% of
  gypsum is used in the
  manufacture of wallboard for
  residential and non-
  residential applications.
• Sharp rise in gypsum prices
  likely in 2012 due to housing
  industry coming back after
  recession.
Vacuum
                                                                      BeltFilter, $389,081


                               Economics                       Multimedia
                                                                                .00




                                                          Filter, $160,000.00                                    Flocculation
                                                                                                             Clarifier, $798,600
                                                                                                                       00

                                                      Hydrocyclone, $34,

• No future estimate                                       084.00
                                                                                        Reverse
                                                                                    Osmosis, $790,000    Neutralization
    – not significant in production                                                        .00        Clarifier, $651,425.
                                                                                                                00
      of profitable material.
•   Gypsum
    – produced and sold to offset
      some of the cost.                   Chemica                         Capital
                                      Cost, $3,292,489.
• Energy Cost
                                                                     Cost, $2,823,190.
                                             88                             00

    – Evaporator
        • $9million per year


                                                                                  Operating and
                                                                                   Maintenance
                                                                                 Cost, $1,560,654.
                                                                                        00
Recomendations

•   Flocculants and polymers for Clarifiers
•   Automated process
•   Pilot plant for the process
•   Scaling up the process according to
    fluctuation
Conclusions
• Reverse Osmosis unit over other ideas
   – Evaporator
   – Recrystallizer
   – Carbon nano-tubes
• Should now be EPA compliant
• Profitability associated with other areas of the mine
References
•   BRUCE HUTTON, I. K. (2007). OPERATING AND MAINTENANCE EXPERIENCE
    AT THE. Johanusburg: Anglo steel.
•   Brunfelt, P. C. (2012, April). Project Discussion. (A. Shah, Interviewer)
•   Iverson, D. (2012, April). Cost of the Reverse Osmosis. (A. shah, Interviewer)
•   NETAFIM USA. (2010). Hydrocyclone separators for gold mine. Fresno, CA 93727:
    NETAFIM USA.
•   Russell, D. (2012, April). Cost Of antiscalent Spectraguard 350. (A.
    Shah, Interviewer)
•   SHARMA, J. R. (May 2010). DEVELOPMENT OF A PRELIMINARY COST
    ESTIMATION METHOD FOR. Arlington: THE UNIVERSITY OF TEXAS AT
    ARLINGTON.
•   Kahan, I (2009) “eMalahleni Water Reclamation Plant – Towards Zero Waste” WISA
    Membrane Technology, Conference 2009
•   Kawamura, S. (2000). Integrated Design and Operation of Water Treatment
    Facilities. John Wiley & Sons, Inc., New York.
•   Groudev, Stoyan. "Safe Management of Mining Waste and Waste
    Facilities." http://www.safemanmin.eu/. N.p., 2008. Web. 30 Apr 2012.
•   LaGrega, Michael. Hazardous Waste Management. 2nd. waveland press inc, 2010.
Appendix
Design Presentation
RO Unit 1 Data Sheet
                                                                                                                              From       Total in
Pass                        1         2         3         4         5         6         7         8         9         10      RO1:1      Stage 1

Flow Vo (gal/min)         266.667   243.318   222.014   202.575   184.839   168.655   153.888   140.414   128.120   116.902   116.902   xxxxxxxxx

Recovery                  0.0876    0.0876    0.0876    0.0876    0.0876    0.0876    0.0876    0.0876    0.0876    0.0876    0.0876     0.0876

Permeate flow (gal/min)   23.348    21.304    19.438    17.736    16.183    14.766    13.473    12.294    11.217    10.235    160.00     480.00
Concentrate Flow
(gal/min)                 243.318   222.014   202.575   184.839   168.655   153.888   140.414   128.120   116.902   106.667   106.667    320.00

TDS Conc (g/gal)           3.595    3.9363    4.3104    4.7204    5.1697    5.6622    6.2019    6.7934    7.4416    8.1521    8.1521     8.1521

TDS Perm (g/gal)          0.03785   0.03785   0.03785   0.03785   0.03785   0.03785   0.03785   0.03785   0.03785   0.03785  0.03785   0.03785
                          HRLE-      HRLE-     HRLE-     HRLE-     HRLE-     HRLE-     HRLE-     HRLE-     HRLE-     HRLE-
Membrane                    440i      440i      440i      440i      440i      440i      440i      440i      440i      440i  HRLE-440i HRLE-440i

Area ft^2                  440       440       440       440       440       440       440       440       440       440       4400      13200

Flux (gal/ft^2*day)       76.413    69.722    63.618    58.048    52.965    48.328    44.096    40.235    36.713    33.498    52.364     52.364

Moles Feed                 0.092     0.101     0.110     0.121     0.132     0.145     0.159     0.174     0.190     0.209     0.209      0.209

Moles Permeate            0.00102   0.00102   0.00102   0.00102   0.00102   0.00102   0.00102   0.00102   0.00102   0.00102   0.00102    0.00102
Osmotic Pressure, Feed
(atm)                      5.936     6.500     7.118     7.795     8.536     9.350    10.241    11.218    12.288    13.461    13.461     13.461

ΔΠ (atm)                   5.738     6.301     6.919     7.596     8.338     9.151    10.042    11.019    12.089    13.262    13.262     13.262

ΔP (atm)                  101.254   93.454    86.441    80.155    74.544    69.561    65.163    61.313    57.980    55.135    74.500     74.500
RO Unit 1 Ion Balances
          From H:1   From C:1     1         2         3         4         5         6         7         8         9           10         Final
                                mol/gal   mol/gal   mol/gal   mol/gal   mol/gal   mol/gal   mol/gal   mol/gal   mol/gal
Element    g/gal      g/gal      Feed      Feed      Feed      Feed      Feed      Feed      Feed      Feed      Feed     mol/gal Feed   g/gal

K         0.037850 0.034244 0.000876 0.000959 0.001050 0.001150 0.001260 0.001379 0.001511 0.001655 0.001813               0.001986      0.086

Na        0.189250 0.171221 0.004379 0.004795 0.005251 0.005750 0.006298 0.006897 0.007555 0.008275 0.009065               0.009931      0.429

Mg        0.803785 0.727214 0.018600 0.020366 0.022301 0.024422 0.026747 0.029295 0.032087 0.035148 0.038501               0.042177      1.823

Ca        0.227100 0.205466 0.005255 0.005754 0.006301 0.006900 0.007557 0.008277 0.009066 0.009931 0.010878               0.011917      0.515

Sr        0.001514 0.001370 0.000035 0.000038 0.000042 0.000046 0.000050 0.000055 0.000060 0.000066 0.000073               0.000079      0.003

Ba        0.000114 0.000103 0.000003 0.000003 0.000003 0.000003 0.000004 0.000004 0.000005 0.000005 0.000005               0.000006      0.000

CO3       0.006359 0.005753 0.000147 0.000161 0.000176 0.000193 0.000212 0.000232 0.000254 0.000278 0.000305               0.000334      0.014

HCO3      1.616195 1.462230 0.037399 0.040950 0.044842 0.049107 0.053781 0.058904 0.064519 0.070672 0.077416               0.084807      3.665

CL        0.075700 0.068489 0.001752 0.001918 0.002100 0.002300 0.002519 0.002759 0.003022 0.003310 0.003626               0.003972      0.172

SO4       0.946250 0.856107 0.021896 0.023975 0.026254 0.028751 0.031488 0.034487 0.037775 0.041377 0.045326               0.049653      2.146

SiO2      0.018925 0.017122 0.000438 0.000480 0.000525 0.000575 0.000630 0.000690 0.000755 0.000828 0.000907               0.000993      0.043

B         0.001893 0.001712 0.000044 0.000048 0.000053 0.000058 0.000063 0.000069 0.000076 0.000083 0.000091               0.000099      0.004

CO2       0.048599 0.043970 0.001125 0.001231 0.001348 0.001477 0.001617 0.001771 0.001940 0.002125 0.002328               0.002550      0.110

Total      3.9735    3.5950     0.0919    0.1007    0.1102    0.1207    0.1322    0.1448    0.1586    0.1738    0.1903      0.2085       8.152
RO Unit 2 Data Sheet
                                                                                                   From       Total in
Pass                          1          2         3         4         5         6         7       RO2:1      Stage 2

Flow Vo (gal/min)           106.66     93.575    82.098    72.025    63.188    55.435    48.634    xxxxxx    xxxxxxxxx

Recovery                    0.1227     0.1227    0.1227    0.1227    0.1227    0.1227    0.1227    0.1227     0.1227

Permeate flow (gal/min)    13.0872     11.4815   10.0728   8.8369    7.7527    6.8015    5.9670    63.9997    192.00
Concentrate Flow
(gal/min)                  93.5795     82.0980   72.0252   63.1883   55.4355   48.6340   42.6670   42.6670    128.00

TDS Conc (g/gal)          5.82192139   6.6308    7.5529    8.6038    9.8018    11.1673   12.7238   12.7238    12.7238

TDS Perm (g/gal)           0.03785     0.03785   0.03785   0.03785   0.03785   0.03785   0.03785
                                                                                               0.03785  0.03785
                                                                                                HRLE-
Membrane                  HRLE-440i HRLE-440i HRLE-440i HRLE-440i HRLE-440i HRLE-440i HRLE-440i 440i   HRLE-440i

Area ft^2                    440        440       440       440       440       440       440       3080       9240

Flux (gal/ft^2*day)         42.831     37.576    32.966    28.921    25.373    22.260    19.528    29.922     29.922

Moles Feed                  0.149       0.170     0.193     0.220     0.251     0.286     0.325     0.325      0.325

Moles Permeate             0.00102     0.00102   0.00102   0.00102   0.00102   0.00102   0.00102   0.00102    0.00102
Osmotic Pressure, Feed
(atm)                       9.613      13.139    14.966    17.048    19.422    22.128    25.212    25.212     25.212

ΔΠ (atm)                    9.415      12.940    14.767    16.850    19.224    21.929    25.013    25.013     25.013

Δp (atm)                    62.953     59.910    55.974    53.001    50.939    49.754    49.424    62.416     62.416
RO Unit 2 Ion Balances
          From H:2    From C:2     1          2         3         4         5         6           7         Total
                                 mol/gal   mol/gal   mol/gal   mol/gal   mol/gal   mol/gal
Element    g/gal       g/gal      Feed      Feed      Feed      Feed      Feed      Feed     mol/gal Feed   g/gal

K         0.08583     0.08185    0.00209   0.00238   0.00272   0.00309   0.00352   0.00402     0.00458      0.179

Na        0.42915     0.40924    0.01047   0.01192   0.01358   0.01547   0.01762   0.02008     0.02288      0.894

Mg        1.82268     1.73813    0.04446   0.05063   0.05767   0.06570   0.07485   0.08527     0.09716      3.799

Ca        0.51498     0.49109    0.01256   0.01431   0.01629   0.01856   0.02115   0.02409     0.02745      1.073

Sr        0.00343     0.00327    0.00008   0.00010   0.00011   0.00012   0.00014   0.00016     0.00018      0.007

Ba        0.00026     0.00025    0.00001   0.00001   0.00001   0.00001   0.00001   0.00001     0.00001      0.001

CO3       0.01442     0.01375    0.00035   0.00040   0.00046   0.00052   0.00059   0.00067     0.00077      0.030

HCO3      1.83246     1.74745    0.04469   0.05090   0.05798   0.06605   0.07525   0.08573     0.09768      3.819

CL        0.17166     0.16370    0.00419   0.00477   0.00543   0.00619   0.00705   0.00803     0.00915      0.358

SO4       1.07287     1.02310    0.02617   0.02980   0.03395   0.03867   0.04406   0.05019     0.05719      2.236

SiO2      0.04291     0.04092    0.00105   0.00119   0.00136   0.00155   0.00176   0.00201     0.00229      0.089

B         0.00429     0.00409    0.00010   0.00012   0.00014   0.00015   0.00018   0.00020     0.00023      0.009

CO2       0.11020     0.10509    0.00269   0.00306   0.00349   0.00397   0.00453   0.00516     0.00587      0.230

Total      6.105       5.822      0.149     0.170     0.193     0.220     0.251     0.286       0.325       12.724
RO Unit 3 Data Sheet
                                                                                                       Total in
Pass                             1           2           3           4           5       From RO3:1    Stage 3

Flow Vo (gal/min)             42.667      37.144      32.336      28.150      24.506       xxxxxx     xxxxxxxxx

Recovery                      0.1294      0.1294      0.1294      0.1294      0.1294       0.1294      0.1294

Permeate flow (gal/min)        5.523       4.808       4.186       3.644       3.172       21.333       64.00

Concentrate Flow (gal/min)    37.144      32.336      28.150      24.506      21.334       21.334       64.00

TDS Conc (g/gal)               9.318      10.698      12.283      14.103      16.195       16.195      16.195

TDS Perm (g/gal)              0.03785     0.03785     0.03785     0.03785     0.03785     0.03785      0.03785

Membrane                     HRLE-440i   HRLE-440i   HRLE-440i   HRLE-440i   HRLE-440i   HRLE-440i    HRLE-440i

Area ft^2                       440         440         440         440         440         2200        6600

Flux (gal/ft^2*day)           18.075      15.736      13.699      11.925      10.382       13.963      13.963

Moles Feed                    0.2383      0.2736      0.3142      0.3607      0.4142       0.4142      0.4142

Moles Permeate                0.00102     0.00102     0.00102     0.00102     0.00102     0.00102      0.00102
Osmotic Pressure, Feed
(atm)                         15.386      17.664      20.282      23.288      26.742       26.742      26.742

ΔΠ (atm)                      15.186      17.465      20.082      23.089      26.542       26.542      26.542

ΔP (atm)                      37.781      37.134      37.206      37.995      39.519       43.996      43.996
RO Unit 3 Ion Balances
          From R:3   From C:3        1            2            3            4            5         Total


Element    g/gal      g/gal     mol/gal Feed mol/gal Feed mol/gal Feed mol/gal Feed mol/gal Feed   g/gal
K         0.17888    0.17190      0.00440      0.00505      0.00580      0.00665      0.00764      0.2988
Na        0.89439    0.85948      0.02198      0.02524      0.02898      0.03327      0.03821      1.4938
Mg        3.79866    3.65038      0.09336      0.10719      0.12307      0.14132      0.16227      6.3446
Ca        1.07327    1.03137      0.02638      0.03029      0.03477      0.03993      0.04585      1.7926
Sr        0.00716    0.00688      0.00018      0.00020      0.00023      0.00027      0.00031      0.0120
Ba        0.00054    0.00052      0.00001      0.00002      0.00002      0.00002      0.00002      0.0009
CO3       0.03005    0.02888      0.00074      0.00085      0.00097      0.00112      0.00128      0.0502
HCO3      1.90952    1.83498      0.04693      0.05388      0.06187      0.07104      0.08157      3.1893
CL        0.35776    0.34379      0.00879      0.01010      0.01159      0.01331      0.01528      0.5975
SO4       1.11799    1.07435      0.02748      0.03155      0.03622      0.04159      0.04776      1.8673
SiO2      0.08944    0.08595      0.00220      0.00252      0.00290      0.00333      0.00382      0.1494
B         0.00894    0.00859      0.00022      0.00025      0.00029      0.00033      0.00038      0.0149
CO2       0.22968    0.22071      0.00565      0.00648      0.00744      0.00854      0.00981      0.3836
Total      9.696      9.318       0.2383       0.2736        0.3142       0.3607       0.4142      16.195
Surface Complexation
           Principles
• Fully considers variable charge surfaces. # of sorption of
  sites is constant but their individual charge, & total surface
  charge, vary as a function of solution composition

• Similar to aqueous complexation/speciation

• A mix of anions, cations & neutral species can sorb

• Accounts for electrostatic work required to transport
  species through the “diffuse layer” (similar to an activity
  coefficient correction)   Gouy-Chapman theory
Surface complexation equations
• 1st deprotonation                           2nd deprotonation
  reaction:
                                              reaction:
 SOH +     SOH 0       H+                        SOH 0        SO-   H+
     2

         SOH 0     H                              app
                                                         SO     H
  app
K a1                                          K   a2
           SOH 2                                          SOH 0


                           Divalent cation complexation

                       SOH 0     M 2+    SOM +     H+

                           app
                                 SOM     H
                       K   M
                                 SOH 0   M2
Upflow Clarifier Equations
Sand Filter
Hydrocyclones
Reactor Clarifier
RO Design Equations
•   π is the osmotic pressure, atm
•   i = Van’t Hoff factor
•   Cs = solute concentration, mol∙L-1
•   R = Universal Gas Constant, L∙atm∙mol-1∙K-1
•   T = absolute temperature, K




•   πp, osmotic pressure of the permeate side, atm
•   πf is the osmotic pressure on the feed side, atm
RO Design Equations


•   Jp = permeate flux, gal∙ft-2∙day-1
•   qp = permeate flow, gal∙day-1
•   Am is the membrane surface area, ft2




•   Aw = membrane water permeability coefficient ,gal∙ft-2∙day-1∙atm-1
•   ΔP = Pressure drop in atm.

More Related Content

PDF
Setawwa 2010, 29-58 choules
PPTX
Presentation fyp
PPT
Packaged Sewage Treatment Plant
PDF
Kalundborg Symbiosis at IWCAIS conference
PPT
03 En Actiflo Softening
PDF
Modular Gold Plant - Presentation by Resources Gold Technology
PPTX
Polymer profile modification
PDF
Bajaj Auto Limited(Aurangabad division) Waluj
Setawwa 2010, 29-58 choules
Presentation fyp
Packaged Sewage Treatment Plant
Kalundborg Symbiosis at IWCAIS conference
03 En Actiflo Softening
Modular Gold Plant - Presentation by Resources Gold Technology
Polymer profile modification
Bajaj Auto Limited(Aurangabad division) Waluj

What's hot (15)

PDF
Environmental data
PPT
Actiflo Carb + Uf For Nom Removal
DOCX
300000TPA-Coal Washing Plant-DPRK_HOT Mining20141125.rev
PPTX
Enzotech presentation july12
PDF
Project memorandum 91 1313-06 lone star plant water use
PDF
Accelator us infilco
PDF
Compakblue - Wastewater reuse in a compact treatment solution
PPTX
Insight into Innovative Decentralized Wastewater Technologies
PDF
Choosing Hydroprocessing Scheme
PDF
Technical Paper About Refinery Hydroprocessing Technology Selection.Pdf
PPT
110510 tracers in heavy oil
PPTX
San Angelo City Council November 6, 2012 Hickory Update
PDF
Industry Brochure - Water-WasteWater
PDF
Patent US 7854836 B2 Process for improving and recuperating waste, heavy and ...
PDF
Presentation On Mar Type sewage treatment plant
Environmental data
Actiflo Carb + Uf For Nom Removal
300000TPA-Coal Washing Plant-DPRK_HOT Mining20141125.rev
Enzotech presentation july12
Project memorandum 91 1313-06 lone star plant water use
Accelator us infilco
Compakblue - Wastewater reuse in a compact treatment solution
Insight into Innovative Decentralized Wastewater Technologies
Choosing Hydroprocessing Scheme
Technical Paper About Refinery Hydroprocessing Technology Selection.Pdf
110510 tracers in heavy oil
San Angelo City Council November 6, 2012 Hickory Update
Industry Brochure - Water-WasteWater
Patent US 7854836 B2 Process for improving and recuperating waste, heavy and ...
Presentation On Mar Type sewage treatment plant
Ad

Similar to Design Presentation (20)

KEY
CWI Tank Cleaning
 
PDF
Water Treatment Plant Design by Damora, Waite, Yu, Maroofian
PPTX
DESIGN OF A SEWAGE TREATMENT PLANT
PDF
Eco-friendly Gold Leaching Reagent and An Innovative Gold Leaching technology...
PPTX
Summary Environmental Impact Assessment Report.pptx
PPT
Wastewater treatment
PPTX
RAW WATER TREATMENT preciptated SLUDGE REUSE.pptx
PDF
deleum_Wax-scale removal injection company
PPTX
FINAL PPT1
PPT
MBBR PRESENTATION
PDF
Berrigan- Nitrate-Removal_April-7-2016-Minnesota-AWWA-Metro-District
PDF
Loudon rf fc europe presentation5
PDF
Compactsolutionforcso
PPTX
David Ball - Hulamin
PDF
Business and Environment Series: Babcock - Closing the Loop, Managing Downstr...
PPTX
waste water treatment
PPTX
Application for ceramic filter and reverse osmosis membrane for produced wate...
PPTX
Ppt assgn 1
PPTX
sewage treatment.pptx
PPTX
sewage treatment.pptx
CWI Tank Cleaning
 
Water Treatment Plant Design by Damora, Waite, Yu, Maroofian
DESIGN OF A SEWAGE TREATMENT PLANT
Eco-friendly Gold Leaching Reagent and An Innovative Gold Leaching technology...
Summary Environmental Impact Assessment Report.pptx
Wastewater treatment
RAW WATER TREATMENT preciptated SLUDGE REUSE.pptx
deleum_Wax-scale removal injection company
FINAL PPT1
MBBR PRESENTATION
Berrigan- Nitrate-Removal_April-7-2016-Minnesota-AWWA-Metro-District
Loudon rf fc europe presentation5
Compactsolutionforcso
David Ball - Hulamin
Business and Environment Series: Babcock - Closing the Loop, Managing Downstr...
waste water treatment
Application for ceramic filter and reverse osmosis membrane for produced wate...
Ppt assgn 1
sewage treatment.pptx
sewage treatment.pptx
Ad

Design Presentation

  • 1. Wastewater Management Process Design and Economic Considerations
  • 2. Presentation Outline • Introduction of Project • Process Description and Results – PFD – Process Units • Neutralization Reactors • Hydrocyclones • Primary Clarification • Reverse Osmosis • Waste Disposal • Economics • Conclusion • References • Data Tables/Equations/Resources
  • 3. Project Introduction • Plant location: MN • Produces:Metals • Current market conditions makes plant construction feasible. • Plant construction delays due to EPA regulations, TDS ≤ 10 ppm • High flow rate and total TDS concentration promotes creative solution
  • 5. Pass 1 Equipments Used Process description Ozone Treatment Removal of Fe and Mn Clarifier Flocculant and polymer addition Multimedia Filter Total suspended solid removal Reverse Osmosis Unit Membrane filteration
  • 6. Pass 2 & 3 Equipments Used Process description Neutralization Reactors Addition of lime Hydrocyclone 90% solid removal (CaCO3,CaSO4) Clarifier Flocculant and Polymer addition Reverse Osmosis Unit Membrane filteration
  • 7. Experimental Design • Geochemical modeling  Aqueous geochemical modeling  Equilibrium concentrations (or activities) of chemical species in solution  Saturation indices (SI's) of solid phases in equilibrium with a solution.  Design software used PHREEQ from USGS  Calculation of the effects of mixing of waters,  Saturation index of the compounds higher than 1 precipitate out  Changing the solution's temperature, Eh, or pH, etc
  • 8.  Jar testing: simulating the coagulation/flocculation process  Flocculants and polymers were bought from integrated engineers  Selection based on the highest amount of flocks formed per amount of flocculants added.  Conductivity test for testing the presence of inorganics dissolved in the mixture
  • 9. Ozone Contact Tank • Addition of Ozone - 100% Removal - Manganese and Iron • Separated out in later steps.
  • 10. Reactor Clarifier • Addition of flocculants to remove dissolved solids • Flocculants settle and are removed • Removed flocculants are sent to the landfill • Pass 1 will be 96,200 gal with a detention time of 2 hr • Pass 2 will be 26,500 gal with a detention time of 1.5 hr • Pass 3 will be 8,500 gal with detention time of 1.5 hr
  • 11. Sand Filter • Either dual coal-sand or tri- media coal-sand-garnet. • It has an effective high rate filtration process with long filter runs. • It is a proven and widely accepted filtration process. • Helps remove more suspended solids before going to the RO unit. • Sized for 800gpm • Area 80.0 ft2 • Backwash velocity calculated after filter media is chosen.
  • 12. Reverse Osmosis Unit 1 Example Staged RO Unit • Modeled as three parallel units with ten stages – 800 gal∙min-1 feed flow – 60% Recovery – 10 mg∙L-1 Permeate Concentration • Special Design Parameters – High inlet flow requires multiple stages/passes – Antiscalent addition – High flux yields high pressure inlet flow
  • 13. Reverse Osmosis Unit 2 Unit 3 • Modeled as three parallel • Modeled as three parallel units with seven stages units with five stages – 320 gal∙min-1 feed flow – 128 gal∙min-1 feed flow – 60% Recovery – 50% Recovery – 10 mg∙L-1 Permeate – 10 mg∙L-1 Permeate Concentration Concentration – 192 gal∙min-1 permeate – 192 gal∙min-1 permeate flow flow – 12.3% membrane recovery – 12.9% membrane recovery – 99.3% solute rejection – 99.5% solute rejection
  • 14. Neutralization Reactor • Reverse Osmosis Unit Feed – Highly saturated • Addition of Lime – Stabilize pH – Aid in removal of salts • Gypsum • Calcium Carbonate • Aragonite • Artinite • Calcite • Chrysotile • Design • Clinoenstatite - Modeled as circular up flow • Diopside clarifier • Huntite • Hydromagnesite - Using same equations as the • Magnesite Ozone Contact Tank • Sepiolite • Talc • Tremolite
  • 15. Hydrocyclones • Removes solids in the waste stream • The removed solids are land filled • 16 in. with1,600 hp shaft will be used for Pass 2 • 12 in. with 360 hp shaft will be used for Pass 3
  • 16. Reactor Clarifier • Addition of flocculants to remove dissolved solids • Flocculants settle and are removed • Removed flocculants are sent to the landfill • Pass 1 will be 96,200 gal with a detention time of 2 hr • Pass 2 will be 26,500gal with a detention time of 1.5 hr • Pass 3 will be 8,500 gal with detention time of 1.5 hr
  • 17. Landfill design • Hazardous waste landfill must have a double linear • Can not be located in wetland on a floodplain • Cover is placed on top when landfill is closed • All leachate is collected and treated
  • 18. Gypsum Removal • Removal by vacuum belt filtration • Can be run using just gravity or with a pressure drop. • Drying rates up to 80%.
  • 19. Gypsum • Produce approximately 600kg per day. • Widely used product. – Plaster ingredient – Fertilizer and soil conditioner – Plaster of Paris • Approximately 90% of gypsum is used in the manufacture of wallboard for residential and non- residential applications. • Sharp rise in gypsum prices likely in 2012 due to housing industry coming back after recession.
  • 20. Vacuum BeltFilter, $389,081 Economics Multimedia .00 Filter, $160,000.00 Flocculation Clarifier, $798,600 00 Hydrocyclone, $34, • No future estimate 084.00 Reverse Osmosis, $790,000 Neutralization – not significant in production .00 Clarifier, $651,425. 00 of profitable material. • Gypsum – produced and sold to offset some of the cost. Chemica Capital Cost, $3,292,489. • Energy Cost Cost, $2,823,190. 88 00 – Evaporator • $9million per year Operating and Maintenance Cost, $1,560,654. 00
  • 21. Recomendations • Flocculants and polymers for Clarifiers • Automated process • Pilot plant for the process • Scaling up the process according to fluctuation
  • 22. Conclusions • Reverse Osmosis unit over other ideas – Evaporator – Recrystallizer – Carbon nano-tubes • Should now be EPA compliant • Profitability associated with other areas of the mine
  • 23. References • BRUCE HUTTON, I. K. (2007). OPERATING AND MAINTENANCE EXPERIENCE AT THE. Johanusburg: Anglo steel. • Brunfelt, P. C. (2012, April). Project Discussion. (A. Shah, Interviewer) • Iverson, D. (2012, April). Cost of the Reverse Osmosis. (A. shah, Interviewer) • NETAFIM USA. (2010). Hydrocyclone separators for gold mine. Fresno, CA 93727: NETAFIM USA. • Russell, D. (2012, April). Cost Of antiscalent Spectraguard 350. (A. Shah, Interviewer) • SHARMA, J. R. (May 2010). DEVELOPMENT OF A PRELIMINARY COST ESTIMATION METHOD FOR. Arlington: THE UNIVERSITY OF TEXAS AT ARLINGTON. • Kahan, I (2009) “eMalahleni Water Reclamation Plant – Towards Zero Waste” WISA Membrane Technology, Conference 2009 • Kawamura, S. (2000). Integrated Design and Operation of Water Treatment Facilities. John Wiley & Sons, Inc., New York. • Groudev, Stoyan. "Safe Management of Mining Waste and Waste Facilities." http://www.safemanmin.eu/. N.p., 2008. Web. 30 Apr 2012. • LaGrega, Michael. Hazardous Waste Management. 2nd. waveland press inc, 2010.
  • 26. RO Unit 1 Data Sheet From Total in Pass 1 2 3 4 5 6 7 8 9 10 RO1:1 Stage 1 Flow Vo (gal/min) 266.667 243.318 222.014 202.575 184.839 168.655 153.888 140.414 128.120 116.902 116.902 xxxxxxxxx Recovery 0.0876 0.0876 0.0876 0.0876 0.0876 0.0876 0.0876 0.0876 0.0876 0.0876 0.0876 0.0876 Permeate flow (gal/min) 23.348 21.304 19.438 17.736 16.183 14.766 13.473 12.294 11.217 10.235 160.00 480.00 Concentrate Flow (gal/min) 243.318 222.014 202.575 184.839 168.655 153.888 140.414 128.120 116.902 106.667 106.667 320.00 TDS Conc (g/gal) 3.595 3.9363 4.3104 4.7204 5.1697 5.6622 6.2019 6.7934 7.4416 8.1521 8.1521 8.1521 TDS Perm (g/gal) 0.03785 0.03785 0.03785 0.03785 0.03785 0.03785 0.03785 0.03785 0.03785 0.03785 0.03785 0.03785 HRLE- HRLE- HRLE- HRLE- HRLE- HRLE- HRLE- HRLE- HRLE- HRLE- Membrane 440i 440i 440i 440i 440i 440i 440i 440i 440i 440i HRLE-440i HRLE-440i Area ft^2 440 440 440 440 440 440 440 440 440 440 4400 13200 Flux (gal/ft^2*day) 76.413 69.722 63.618 58.048 52.965 48.328 44.096 40.235 36.713 33.498 52.364 52.364 Moles Feed 0.092 0.101 0.110 0.121 0.132 0.145 0.159 0.174 0.190 0.209 0.209 0.209 Moles Permeate 0.00102 0.00102 0.00102 0.00102 0.00102 0.00102 0.00102 0.00102 0.00102 0.00102 0.00102 0.00102 Osmotic Pressure, Feed (atm) 5.936 6.500 7.118 7.795 8.536 9.350 10.241 11.218 12.288 13.461 13.461 13.461 ΔΠ (atm) 5.738 6.301 6.919 7.596 8.338 9.151 10.042 11.019 12.089 13.262 13.262 13.262 ΔP (atm) 101.254 93.454 86.441 80.155 74.544 69.561 65.163 61.313 57.980 55.135 74.500 74.500
  • 27. RO Unit 1 Ion Balances From H:1 From C:1 1 2 3 4 5 6 7 8 9 10 Final mol/gal mol/gal mol/gal mol/gal mol/gal mol/gal mol/gal mol/gal mol/gal Element g/gal g/gal Feed Feed Feed Feed Feed Feed Feed Feed Feed mol/gal Feed g/gal K 0.037850 0.034244 0.000876 0.000959 0.001050 0.001150 0.001260 0.001379 0.001511 0.001655 0.001813 0.001986 0.086 Na 0.189250 0.171221 0.004379 0.004795 0.005251 0.005750 0.006298 0.006897 0.007555 0.008275 0.009065 0.009931 0.429 Mg 0.803785 0.727214 0.018600 0.020366 0.022301 0.024422 0.026747 0.029295 0.032087 0.035148 0.038501 0.042177 1.823 Ca 0.227100 0.205466 0.005255 0.005754 0.006301 0.006900 0.007557 0.008277 0.009066 0.009931 0.010878 0.011917 0.515 Sr 0.001514 0.001370 0.000035 0.000038 0.000042 0.000046 0.000050 0.000055 0.000060 0.000066 0.000073 0.000079 0.003 Ba 0.000114 0.000103 0.000003 0.000003 0.000003 0.000003 0.000004 0.000004 0.000005 0.000005 0.000005 0.000006 0.000 CO3 0.006359 0.005753 0.000147 0.000161 0.000176 0.000193 0.000212 0.000232 0.000254 0.000278 0.000305 0.000334 0.014 HCO3 1.616195 1.462230 0.037399 0.040950 0.044842 0.049107 0.053781 0.058904 0.064519 0.070672 0.077416 0.084807 3.665 CL 0.075700 0.068489 0.001752 0.001918 0.002100 0.002300 0.002519 0.002759 0.003022 0.003310 0.003626 0.003972 0.172 SO4 0.946250 0.856107 0.021896 0.023975 0.026254 0.028751 0.031488 0.034487 0.037775 0.041377 0.045326 0.049653 2.146 SiO2 0.018925 0.017122 0.000438 0.000480 0.000525 0.000575 0.000630 0.000690 0.000755 0.000828 0.000907 0.000993 0.043 B 0.001893 0.001712 0.000044 0.000048 0.000053 0.000058 0.000063 0.000069 0.000076 0.000083 0.000091 0.000099 0.004 CO2 0.048599 0.043970 0.001125 0.001231 0.001348 0.001477 0.001617 0.001771 0.001940 0.002125 0.002328 0.002550 0.110 Total 3.9735 3.5950 0.0919 0.1007 0.1102 0.1207 0.1322 0.1448 0.1586 0.1738 0.1903 0.2085 8.152
  • 28. RO Unit 2 Data Sheet From Total in Pass 1 2 3 4 5 6 7 RO2:1 Stage 2 Flow Vo (gal/min) 106.66 93.575 82.098 72.025 63.188 55.435 48.634 xxxxxx xxxxxxxxx Recovery 0.1227 0.1227 0.1227 0.1227 0.1227 0.1227 0.1227 0.1227 0.1227 Permeate flow (gal/min) 13.0872 11.4815 10.0728 8.8369 7.7527 6.8015 5.9670 63.9997 192.00 Concentrate Flow (gal/min) 93.5795 82.0980 72.0252 63.1883 55.4355 48.6340 42.6670 42.6670 128.00 TDS Conc (g/gal) 5.82192139 6.6308 7.5529 8.6038 9.8018 11.1673 12.7238 12.7238 12.7238 TDS Perm (g/gal) 0.03785 0.03785 0.03785 0.03785 0.03785 0.03785 0.03785 0.03785 0.03785 HRLE- Membrane HRLE-440i HRLE-440i HRLE-440i HRLE-440i HRLE-440i HRLE-440i HRLE-440i 440i HRLE-440i Area ft^2 440 440 440 440 440 440 440 3080 9240 Flux (gal/ft^2*day) 42.831 37.576 32.966 28.921 25.373 22.260 19.528 29.922 29.922 Moles Feed 0.149 0.170 0.193 0.220 0.251 0.286 0.325 0.325 0.325 Moles Permeate 0.00102 0.00102 0.00102 0.00102 0.00102 0.00102 0.00102 0.00102 0.00102 Osmotic Pressure, Feed (atm) 9.613 13.139 14.966 17.048 19.422 22.128 25.212 25.212 25.212 ΔΠ (atm) 9.415 12.940 14.767 16.850 19.224 21.929 25.013 25.013 25.013 Δp (atm) 62.953 59.910 55.974 53.001 50.939 49.754 49.424 62.416 62.416
  • 29. RO Unit 2 Ion Balances From H:2 From C:2 1 2 3 4 5 6 7 Total mol/gal mol/gal mol/gal mol/gal mol/gal mol/gal Element g/gal g/gal Feed Feed Feed Feed Feed Feed mol/gal Feed g/gal K 0.08583 0.08185 0.00209 0.00238 0.00272 0.00309 0.00352 0.00402 0.00458 0.179 Na 0.42915 0.40924 0.01047 0.01192 0.01358 0.01547 0.01762 0.02008 0.02288 0.894 Mg 1.82268 1.73813 0.04446 0.05063 0.05767 0.06570 0.07485 0.08527 0.09716 3.799 Ca 0.51498 0.49109 0.01256 0.01431 0.01629 0.01856 0.02115 0.02409 0.02745 1.073 Sr 0.00343 0.00327 0.00008 0.00010 0.00011 0.00012 0.00014 0.00016 0.00018 0.007 Ba 0.00026 0.00025 0.00001 0.00001 0.00001 0.00001 0.00001 0.00001 0.00001 0.001 CO3 0.01442 0.01375 0.00035 0.00040 0.00046 0.00052 0.00059 0.00067 0.00077 0.030 HCO3 1.83246 1.74745 0.04469 0.05090 0.05798 0.06605 0.07525 0.08573 0.09768 3.819 CL 0.17166 0.16370 0.00419 0.00477 0.00543 0.00619 0.00705 0.00803 0.00915 0.358 SO4 1.07287 1.02310 0.02617 0.02980 0.03395 0.03867 0.04406 0.05019 0.05719 2.236 SiO2 0.04291 0.04092 0.00105 0.00119 0.00136 0.00155 0.00176 0.00201 0.00229 0.089 B 0.00429 0.00409 0.00010 0.00012 0.00014 0.00015 0.00018 0.00020 0.00023 0.009 CO2 0.11020 0.10509 0.00269 0.00306 0.00349 0.00397 0.00453 0.00516 0.00587 0.230 Total 6.105 5.822 0.149 0.170 0.193 0.220 0.251 0.286 0.325 12.724
  • 30. RO Unit 3 Data Sheet Total in Pass 1 2 3 4 5 From RO3:1 Stage 3 Flow Vo (gal/min) 42.667 37.144 32.336 28.150 24.506 xxxxxx xxxxxxxxx Recovery 0.1294 0.1294 0.1294 0.1294 0.1294 0.1294 0.1294 Permeate flow (gal/min) 5.523 4.808 4.186 3.644 3.172 21.333 64.00 Concentrate Flow (gal/min) 37.144 32.336 28.150 24.506 21.334 21.334 64.00 TDS Conc (g/gal) 9.318 10.698 12.283 14.103 16.195 16.195 16.195 TDS Perm (g/gal) 0.03785 0.03785 0.03785 0.03785 0.03785 0.03785 0.03785 Membrane HRLE-440i HRLE-440i HRLE-440i HRLE-440i HRLE-440i HRLE-440i HRLE-440i Area ft^2 440 440 440 440 440 2200 6600 Flux (gal/ft^2*day) 18.075 15.736 13.699 11.925 10.382 13.963 13.963 Moles Feed 0.2383 0.2736 0.3142 0.3607 0.4142 0.4142 0.4142 Moles Permeate 0.00102 0.00102 0.00102 0.00102 0.00102 0.00102 0.00102 Osmotic Pressure, Feed (atm) 15.386 17.664 20.282 23.288 26.742 26.742 26.742 ΔΠ (atm) 15.186 17.465 20.082 23.089 26.542 26.542 26.542 ΔP (atm) 37.781 37.134 37.206 37.995 39.519 43.996 43.996
  • 31. RO Unit 3 Ion Balances From R:3 From C:3 1 2 3 4 5 Total Element g/gal g/gal mol/gal Feed mol/gal Feed mol/gal Feed mol/gal Feed mol/gal Feed g/gal K 0.17888 0.17190 0.00440 0.00505 0.00580 0.00665 0.00764 0.2988 Na 0.89439 0.85948 0.02198 0.02524 0.02898 0.03327 0.03821 1.4938 Mg 3.79866 3.65038 0.09336 0.10719 0.12307 0.14132 0.16227 6.3446 Ca 1.07327 1.03137 0.02638 0.03029 0.03477 0.03993 0.04585 1.7926 Sr 0.00716 0.00688 0.00018 0.00020 0.00023 0.00027 0.00031 0.0120 Ba 0.00054 0.00052 0.00001 0.00002 0.00002 0.00002 0.00002 0.0009 CO3 0.03005 0.02888 0.00074 0.00085 0.00097 0.00112 0.00128 0.0502 HCO3 1.90952 1.83498 0.04693 0.05388 0.06187 0.07104 0.08157 3.1893 CL 0.35776 0.34379 0.00879 0.01010 0.01159 0.01331 0.01528 0.5975 SO4 1.11799 1.07435 0.02748 0.03155 0.03622 0.04159 0.04776 1.8673 SiO2 0.08944 0.08595 0.00220 0.00252 0.00290 0.00333 0.00382 0.1494 B 0.00894 0.00859 0.00022 0.00025 0.00029 0.00033 0.00038 0.0149 CO2 0.22968 0.22071 0.00565 0.00648 0.00744 0.00854 0.00981 0.3836 Total 9.696 9.318 0.2383 0.2736 0.3142 0.3607 0.4142 16.195
  • 32. Surface Complexation Principles • Fully considers variable charge surfaces. # of sorption of sites is constant but their individual charge, & total surface charge, vary as a function of solution composition • Similar to aqueous complexation/speciation • A mix of anions, cations & neutral species can sorb • Accounts for electrostatic work required to transport species through the “diffuse layer” (similar to an activity coefficient correction) Gouy-Chapman theory
  • 33. Surface complexation equations • 1st deprotonation 2nd deprotonation reaction: reaction: SOH + SOH 0 H+ SOH 0 SO- H+ 2 SOH 0 H app SO H app K a1 K a2 SOH 2 SOH 0 Divalent cation complexation SOH 0 M 2+ SOM + H+ app SOM H K M SOH 0 M2
  • 38. RO Design Equations • π is the osmotic pressure, atm • i = Van’t Hoff factor • Cs = solute concentration, mol∙L-1 • R = Universal Gas Constant, L∙atm∙mol-1∙K-1 • T = absolute temperature, K • πp, osmotic pressure of the permeate side, atm • πf is the osmotic pressure on the feed side, atm
  • 39. RO Design Equations • Jp = permeate flux, gal∙ft-2∙day-1 • qp = permeate flow, gal∙day-1 • Am is the membrane surface area, ft2 • Aw = membrane water permeability coefficient ,gal∙ft-2∙day-1∙atm-1 • ΔP = Pressure drop in atm.

Editor's Notes

  • #10: Ozone neutralization mixer is in place to help draw out and facilitate the precipitation of Manganese and Iron. Integrated Design and Operation of Water Treatment Facilities, 2nd edition by Susumu Kawamura.
  • #18: Hazardous landfill are required by the EPA to have 2 liner system. It is also required to have a leachate collection system and above the first liner and to have a leak detection system above the 2nd liner. Landfill also can not be located in a floodplain , wetland or near a source of open water. When the landfill is no longer in use a permanent cover is placed on top. This cover consists of vegetation, soil, a drainage layer, and geomembrane. There is also a vent to allow gas release and prevent pressure build up in the landfill. The collected leachate can either be re-injected into the landfill, treated on site or Sources : hazardous waste book, http://www.biutec.at/safemanmin/pdf/D31_Rev20080922.pdf,
  • #37: Sources: Charts are from Netafilm
  • #38: Sources: assumptions from Kawamura (2000) in shurma