SlideShare a Scribd company logo
Designing	for	Addressability,	Bio-orthogonality	and	
Abstrac7on	Scalability	at	the	Interface	of	
Compu7ng,	Synthe7c	Biology	and	Nanotechnology	
Prof.	Natalio	Krasnogor	
	
	
Interdisciplinary	Compu7ng	and	Complex	Biosystems	(ICOS)	Research	Group		
hEp://ico2s.org/		
	
Centre	For	Synthe7c	Biology	and	the	Bioeconomy	(CSBB)	
	hEps://www.ncl.ac.uk/csbb/		
Centro	Nacional	de	Biotecnologia	–	Madrid	-	2018	
@ico2s	
@nkrasnogor
Outline	
•  Mo7va7on	
•  Designing	bio-orthogonality	and	addressability	
for	DNA	(RNA)	origami	
•  Designing	for	physiological	condi7ons	
•  Designing	for	abstrac7on	scalability	
•  Conclusions	
Centro	Nacional	de	Biotecnologia	–	Madrid	-	2018
Outline	
•  Mo1va1on	
•  Designing	bio-orthogonality	and	addressability	
for	DNA	(RNA)	origami	
•  Designing	for	physiological	condi7ons	
•  Designing	for	abstrac7on	scalability	
•  Conclusions	
Centro	Nacional	de	Biotecnologia	–	Madrid	-	2018
Working	the	Interfaces	
Centro	Nacional	de	Biotecnologia	–	Madrid	-	2018	
The	
Cool	
Stuff	
Compu1ng	
Synthe1c	
Biology	
Nano	
technology
Multiscale Computation in Nature
•  A Research Programme
Centro	Nacional	de	Biotecnologia	–	Madrid	-	2018	
Programmable algorithmic entry to
the vast world of nanoscale physical,
chemical & biological systems and
processes
ComputerScience
Information & Algorithms
Embedded behavior
Robustness
Uncertainty
Complexity
Tradeoffs
How does “The Logistics of Small Things” look like?
How does “The Decision Making in/with Small Things” take place?
How is “Uncertainty Handled by Small Things” ?
How to stack-up “abstractions” to achieve higher complexities programmatically?
•  2	nm	in	diameter	
•  0.34	nm	width	of	
nt	
•  1	turn	=	10.5bp	
Stability	based	on:	
•  base	pairing	
•  base	stacking	
DNA	nanotechnology	
dates	back	to	‘80	
Centro	Nacional	de	Biotecnologia	–	Madrid	-	2018	
DNA	as	nanomaterial
DNA AND RNA ORIGAMI TECHNIQUE: MAIN CONCEPT
Centro	Nacional	de	Biotecnologia	–	Madrid	-	2018
Rothemund,	Folding	DNA	to	create	nanoscale	shapes	and	pa4erns,	Nature	2006	
Centro	Nacional	de	Biotecnologia	–	Madrid	-	2018
Centro	Nacional	de	Biotecnologia	–	Madrid	-	2018	
Douglas	et	al.	
A	Logic-Gated	Nanorobot	for	
Targeted	Transport	of	Molecular	
Payloads,	Science	2012
Linko	and	Dietz,	The	enabled	state	of	DNA	nanotechnology,	Current	Opinion	in	Biotechnology	2013	
Centro	Nacional	de	Biotecnologia	–	Madrid	-	2018
Inten7on	
•  Develop	DNA/RNA	origami	techniques	that	are	cell-
compa7ble	
–  As	liEle	biological	crosstalk	as	possible	
–  Folding	buffer	≈	cell	cytoplasm	||	colony/biofilm	extracellular	media	
–  Physiological	temperatures	
–  Addressability	
–  Survivability	
•  Why?	
–  Synthesis	of	DNA/RNA	origami	nanostructures	in	vivo.		
•  RNA	origami	as	programmable	loci	to	co-locate	bio-processes	(e.g.	
biosynthesis	pathways)	
•  New	kinds	of	post-transcrip7on,	post-transla7on	control	devices		
–  Cell-instructable	origami	nanostructures	ex	vivo.	
•  New	kinds	of	inter-cellular	communica7on	devices,	mul7-cellular	
organisa7on	architects	
Centro	Nacional	de	Biotecnologia	–	Madrid	-	2018
Outline	
•  Mo7va7on	
•  Designing	bio-orthogonality	and	
addressability	for	DNA	(RNA)	origami	
•  Designing	for	physiological	condi7ons	
•  Designing	for	abstrac7on	scalability	
•  Conclusions	
Centro	Nacional	de	Biotecnologia	–	Madrid	-	2018
Scaffold	requirements	
•  Biological	orthogonality	
•  Unique	addressability	
	
Centro	Nacional	de	Biotecnologia	–	Madrid	-	2018
Scaffold	sequence	as	a	limi7ng	
factor:	
•  Biological	parts	
Centro	Nacional	de	Biotecnologia	–	Madrid	-	2018
Scaffold	sequence	as	a	limi7ng	
factor:	
•  Biological	parts	
•  Sequence	repe77ons	
Centro	Nacional	de	Biotecnologia	–	Madrid	-	2018	
5 6 7 8 9 10 11 12 13
Length
0
100
101
102
103
104
Repeats
pUC19
6 9 12 15 18 21 24 27 30 33 36 39 42
Length
0
100
101
102
103
104 M13
5 6 7 8 9 10 11 12 13 14 15
Length
0
100
101
102
103
104
105 -phage
Superstring	problem:	
find	a	shortest	circular	‘supersequence’	that	
contains	all	possible	subsequences	of	length	n	
over	given	alphabet.	
	
Centro	Nacional	de	Biotecnologia	–	Madrid	-	2018	
Nicolaas	Govert	de	Bruijn
De	Bruijn	sequence	for	DNA	alphabet	
Centro	Nacional	de	Biotecnologia	–	Madrid	-	2018	
Genera7on	
AAACAAGAATACCACGAC
TAGCAGGAGTATCATGAT
TCCCGCCTCGGCGTCTGC
TTGGGTGTTT(AA)
De	Bruijn	sequence	for	DNA	alphabet	
Centro	Nacional	de	Biotecnologia	–	Madrid	-	2018	
Genera7on	
AAACAAGAACACGACTAG
CAGTATCATGATTCCCGCC
TCGTCTGCTTGGGTGTTT(
AA)	
Bioparts	
Filtering	
TAC,	GAG,	GCG
DNA	origami	design	
Centro	Nacional	de	Biotecnologia	–	Madrid	-	2018	
pUC19	
2.6	kb	
	
De	Bruijn	
2.6	kb	
	
5.3	x	101409	unique	sequences	
roughly	1080	of	par7cles	in	observable	universe
De	Bruijn	Sequence		
	
B(4,n):	predefined	sub-sequences	(of	n	nucleo7des	length)	that	appear	just	once	in	the	whole	main	sequence	while	working	
with	n	long	units	(or	longer).		
	
B(4,3)	S	=	“AAACAATAAGACCACTACGATCATTATGAGCAGTAGGCCCTCCGCTCCTGTGTCGGTTCTGGG”.		
	
No	3-nucleo7de	subsequence	appears	more	than	once,	thus	gran7ng	the	important	unique	addressability	feature.		
•  non-biological	
•  highly-addressable	
•  up	to	unique	
addressability	
•  circular	
Centro	Nacional	de	Biotecnologia	–	Madrid	-	2018
Energe7c	op7misa7on	
Centro	Nacional	de	Biotecnologia	–	Madrid	-	2018	
DBS	Random
Two	aspects	of	addressability	
Centro	Nacional	de	Biotecnologia	–	Madrid	-	2018
Staple	addressability	
188 domains 646 domains 4444 domains
0.0
0.2
0.4
0.6
0.8
1.0
Addressabilitymeasure Scaffold
DBS
natural
Centro	Nacional	de	Biotecnologia	–	Madrid	-	2018
Scaffold	addressability	
small medium large
DNA origami size
0.0
0.2
0.4
0.6
0.8
1.0
Probability
origin
DBS
viral
Centro	Nacional	de	Biotecnologia	–	Madrid	-	2018
Origami	Tile	Folding	Model
Scaffold	prepara7on	protocols	
	
	
• M13
• pUC19
• PCR circular
• PCR linear
• RNA/DNA hybrid
Centro	Nacional	de	Biotecnologia	–	Madrid	-	2018
De	Bruijn	DNA	scaffold	prepara7on	protocol	
	
	
Centro	Nacional	de	Biotecnologia	–	Madrid	-	2018
AFM	imaging	(pUC19)	
Centro	Nacional	de	Biotecnologia	–	Madrid	-	2018
AFM	imaging	(De	Bruijn)	
Centro	Nacional	de	Biotecnologia	–	Madrid	-	2018
AFM	imaging	(De	Bruijn)	
	
Centro	Nacional	de	Biotecnologia	–	Madrid	-	2018
De	Bruijn	sequence	encoded	in	a	
plasmid
T7	RNA	Polymerase
					De	Bruijn	RNA	scaffold	prepara7on	protocol	
	
	
Centro	Nacional	de	Biotecnologia	–	Madrid	-	2018
AFM	imaging	(De	Bruijn)	
Centro	Nacional	de	Biotecnologia	–	Madrid	-	2018
Labeling	of	scaffold	DBS	using	Alexa	488	Ulysis®	
Nucleic	Acid	Labeling	kit
Purifica7on	with	Micro	Bio-Spin®
	P-30	spin	column	(BioRad)
Agarose	gel	electrophoresis	imaging	using	Typhoon	laser	scanner	(Alexa	488:	excita7on	488	nm,	emission	532	nm;	EtBr:	
excita7on	510	nm,	emission	590	nm)	
Agarose	 gel	 electrophoresis	 of	 Alexa	 488	
labeled	DBS	scaffold	imaged	before	(len)	and	
aner	(right)	ethidium	bromide	staining.	Lanes.	
1:	low	range	ssRNA	ladder;	
2:	Alexa	488	labeled	scaffold	DBS;	
3:	not	labeled	scaffold	DBS.
Alexa 488 EtBr
scaffold	
De	Bruijn	scaffold	stability	in	vivo	
Centro	Nacional	de	Biotecnologia	–	Madrid	-	2018
RNA	DBS	scaffold	electropora7on	in	NEB	5-alpha	electrocompetent	E.	coli	(1.8	kV,	200	Ω,	25	μF)
Cells	recovering	for	25	or	40	minutes	at	37	°C	under	shaking	
Centrifuga7on,	washing	and	cells	embedding	in	agarose	plugs
Cells	lysis	in	agarose	plugs
Agarose	plugs	loading	into	the	wells	of	1%	agarose	gel	and	imaging	using	Typhoon	laser	scanner	(Alexa	488:	
excita7on	488	nm,	emission	532	nm;	EtBr:	excita7on	510	nm,	emission	590	nm)	.	
Alexa	488																																																																																EtBr	
scaffold	
scaffold	 scaffold	 scaffold	
1-4	no	incuba7on;	5-8	10	min	preincuba7on;	10	no	electropora7on	control	
scaffold	 scaffold	
De	Bruijn	scaffold	stability	in	vivo	
Centro	Nacional	de	Biotecnologia	–	Madrid	-	2018
Outline	
•  Mo7va7on	
•  Designing	bio-orthogonality	and	addressability	
for	DNA	(RNA)	origami	
•  Designing	for	physiological	condi1ons	
•  Designing	for	abstrac7on	scalability	
•  Conclusions	
Centro	Nacional	de	Biotecnologia	–	Madrid	-	2018
Expression	in	large	quan77es	
	
Forma7on	of	stable	interac7ons	
	
Control	of	gene	expression	
New	tools	for	the	programmable	control	of	gene	expression	
RNA	origami	as	organel-like	structure	opera7ng		as	an	ar7ficial	
regulatory	machine	
Designing	for	Physiological	Condi7ons:	RNA	
Advantages	
Centro	Nacional	de	Biotecnologia	–	Madrid	-	2018
Prepara7on	of	Chemically	Modified	RNA	
Nanostructures	
Centro	Nacional	de	Biotecnologia	–	Madrid	-	2018	
	
Endo	et	al.,	Chem.	Eur.	J.	2014,	20,	15330-15333,	willey
Design	and	Synthesis	of	RNA	Origami	
Centro	Nacional	de	Biotecnologia	–	Madrid	-	2018	
	
•  Bio-orthogonality	(biological	
inert	and	uniquely	
addressable	sequences)	
•  Physiologically	compa7ble	
folding	at	37	°C	
•  Assembly	monitoring	using	a	
split	light	up	Broccoli	aptamer	
system
Broccoli	Aptamer	(1)		
	
l  Ligand	binding	RNA	sequence		
	
l  Fluorogenic	dye:	DFHBI-1T,	cell	permeable	with	negligible	
toxicity	in	living	cells	
	
l  Selec7on	using	combined	SELEX/FACS	approach.		
	
	
(Filonov	et	al.,	J.	Am.	Chem.	Soc.	2014,	136,	16299-16308)		
Centro	Nacional	de	Biotecnologia	–	Madrid	-	2018
Broccoli	Aptamer	(2)		
	
	
l  Folding	in	vivo	without	the	use	of	a	tRNA	scaffold	required	by	Spinach	
aptamer.	
	
l  Lower	dependance	on	magnesium	for	folding	(robust	imaging	in	E.	coli	
and	without	the	need	for	addi7onal	magnesium	in	media).	
	
l  	In	vivo:	Broccoli	RNA	imaging	in	E.	coli.
Scale	bar,	2	μm.	
Centro	Nacional	de	Biotecnologia	–	Madrid	-	2018
Alam et al., ACS Synth. Biol. 2017, 6, 1710-1721.
Split	Broccoli	for	Visualising	RNA-RNA	Assembly	In	Vivo	
Centro	Nacional	de	Biotecnologia	–	Madrid	-	2018
DBS:	bio-orthogonal	De	Bruijn	sequence	
Centro	Nacional	de	Biotecnologia	–	Madrid	-	2018	
Split	Light-up	Broccoli	System:	Design	and	oxRNA	
Simula7on
F-30	Broccoli	
' B i o - o r t h o g o n a l '	 s t r u c t u r e	
reengineered	 from	 ϕ29	 three-way	
junc7on	mo7f			
(Filonov	 et	 al.	 Chem.	 Biol.	 2015	 22,	
649-660)		
	
		
m-Fold	Predicted	Structures	and		Split	System	Design	
l  8	base	pairs	of	F-30	Arm	1	
l  Elimina7on	of	the	terminal	4	nt		
loop	UUCG	
l  Elonga7on	in	5'	and	3'	end	with		
RNA	sequences	complementary	
to	a	pre-selected	DBS		
Centro	Nacional	de	Biotecnologia	–	Madrid	-	2018
Light-up	Split	Aptamer:	in	gel	imaging	
Broccoli	
Split1	
Split2	
Complementary		
Split1/Split2	DBS	
Broccoli	
Split1	
Split2	
Compl.		
Split1/Split2	DBS	
Split1+Split2	
Split1+Split2+Compl.		
Split1/Split2	DBS	
Broccoli	
Split1	
Split2	
Compl.		
Split1/Split2	DBS	
Split1+Split2	
Split1+Split2+Compl.		
Split1/Split2	DBS	
Centro	Nacional	de	Biotecnologia	–	Madrid	-	2018
Fluorescence	emission	intensity	(expressed	in	arbitrary	units,	a.u.)	in	40	
mM	HEPES	pH	7.4,	100	mM	KCl,	1	mM	MgCl
2	
Split	Aptamer	System:		Spectrofluorometer	Measurements	
		
Centro	Nacional	de	Biotecnologia	–	Madrid	-	2018
Fluorescence	emission	intensity	(expressed	in	arbitrary	units,	a.u.)	of	Split1,	
Split2	 and	 complementary	 Split1/Split2	 DBS.	 Error	 bars	 indicate	 standard	
devia7on	(n=3).	Limit	of	detec7on:	54	arbitrary	units	(a.u.)	
Split	Aptamer	System:		Spectrofluorometer	Measurements	
at	Different	[c]	and	at	0.5	mM	MgCl2	
Centro	Nacional	de	Biotecnologia	–	Madrid	-	2018
Fluorescence	emission	intensity	(expressed	in	arbitrary	units,	a.u.)	of	background	and	
Broccoli	aptamer	(0.27μM)	in	aptamer	buffer	and	in	folding	buffer	with	decreasing	KCl	
concentra7on			
Influence	of	Potasium	Chloride	Concentra7on	on	Broccoli	
Fluorescence	Emission	Intensity	
Aptamer	buffer		 Folding	buffer		
Centro	Nacional	de	Biotecnologia	–	Madrid	-	2018
l  Bio-orthogonality	
	
l  Folding	at	37	°C	(isothermal	condi7ons)	
	
l  Assembly	monitoring	through	the		
new	light	up	split	aptamer	system	
	
		
Light	Up	Aptamer	Origami	Nano-Ribbon	
Centro	Nacional	de	Biotecnologia	–	Madrid	-	2018
RNA	Origami	Folding:		
Preliminary	Screening	by	Gel	Electrophoresis	
6%	TBE	gel	electrophoresis	of	well-folded	two	dimensional	RNA	origami		
Scaffold	
Staple	strands	
RNA	origami	
Purified	
RNA	origami	
Centro	Nacional	de	Biotecnologia	–	Madrid	-	2018
RNA	Origami:	AFM	Imaging	(1)	
Centro	Nacional	de	Biotecnologia	–	Madrid	-	2018	
scale	bar	20	nm;															b:	scale	bar	10	nm
Scale	bar	20	nm	
Dimensions:	25.6	nm	±	2.7	nm,	5.3	nm	±	0.8	nm		
Centro	Nacional	de	Biotecnologia	–	Madrid	-	2018	
RNA	Origami:	AFM	Imaging	(2)
Normalized	fluorescence	value:	0.7	(standard	devia7on:	±	0.1,	n=3)	
Scaffold	
Staple	strands	
Broccoli	
Purified	
RNA	origami	
Scaffold	
Staple	strands	
Broccoli	
Purified	
RNA	origami	
Centro	Nacional	de	Biotecnologia	–	Madrid	-	2018	
Light-Up	RNA	Origami:		
In	Gel	Imaging	and	Spectrumfluorometer	
Measurements
STABILITY	OF	DBS	RNA	SCAFFOLD	IN	VIVO	(1)		
Agarose	gel	electrophoresis	of	A488	labeled	DBS,	no	DBS1	and	noDBS2	scaffold	
sequences.	
Ladder	
A488	DBS	
A488	no	DBS1	
Ladder	
A488	DBS	
A488	noDBS2	
A488	no	DBS1	
A488	noDBS2	
Centro	Nacional	de	Biotecnologia	–	Madrid	-	2018
1							2						3																4	 1							2						3															4	 1							2							3							4	 1							2							3							4	
STABILITY	OF	DBS	RNA	SCAFFOLD	IN	VIVO	(2)		
RNA	DBS	electropora7on	in	E.coli	
Cells	recovery	
Cells	embedding	in	agarose	plugs	and	lysis	
Agarose	plugs	loading	in	wells	(1%	agarose	gel)	
A488	no	DBS	sequences	were	used	as	nega7ve	control:	both	sequences	do	not	show	a	dis7nct	
band.	 Centro	Nacional	de	Biotecnologia	–	Madrid	-	2018
Outline	
•  Mo7va7on	
•  Designing	bio-orthogonality	and	addressability	
for	DNA	(RNA)	origami	
•  Designing	for	physiological	condi7ons	
•  Designing	for	abstrac1on	scalability	
•  Conclusions	
Centro	Nacional	de	Biotecnologia	–	Madrid	-	2018
Living	Cells	Are	Informa7on	Processors	
LeDuc et al. Towards an in
vivo biologically inspired
nanofactory. Nature (2007)
Centro	Nacional	de	Biotecnologia	–	Madrid	-	2018
But	What	About	Memory?	
•  DNA	has	been	used	to	store	data.	
•  DNA	can	store	very	large	amount	of	data.	
•  DNA	is	a	durable,	efficient	and	cheap	digital	substrate.
•  DNA	data	structures	for	informa7on	processing	
•  Biological	data	with	programma7c	API	
Figure 2: Data structures, and common operations to store and retrieve ordered information
A StackA Stack
B QueueB Queue
C TreeC Tree
Last In
First Out
push(data)
pop()
enqueue(data)
dequeue()
First In
First Out
data4
data3
data4
data2
data1
data1
data6
34
2
5
Sub-Tree
Root
Parent Node Child Node
Siblings
Leaf Node
data1
data2
data3
data4
data5
data6
data7
data8
data9
data10
graft(subtree)
prune(subtree)
add(data, parent)
search(data)
getparent(data)
Centro	Nacional	de	Biotecnologia	–	Madrid	-	2018
A	stack	is	a	data	register,	two	opera7ons:	push	and	pop.	You	can	push	
values	on	the	stack,	and	pop	them	from	the	stack.	This	happens	in	
LIFO	(last	in,	first	out)	order.	
	
SIGNAL	(X)	
SIGNAL	(Y)	
SIGNAL	(Y)	
SIGNAL	(X)	
PUSHING	 POPPING	
Last	in	 First	out	
Stack	Data	Structure	
Centro	Nacional	de	Biotecnologia	–	Madrid	-	2018
Image	by	Ouldridge	et	al.	
The	rate	constant	of	the	strand-displacement	reac7on	varies	over	a	factor	of	106,		from	1	M−1	s−1	to	6	×	106	M−1	s−1.		
DNA	hybridiza7on	and	DNA	strand	displacement	
Centro	Nacional	de	Biotecnologia	–	Madrid	-	2018
DNA	“Bricks”	
Smallest	brick:	22nt									Largest	brick:	137nt		
l* A
(S) Start
(P) Push
(Q) Pop
(R) Read
(X) Write_x
(TX) Report_x
(TY) Report_y
(Y) Write_y
B* C* A
w*
Y
w
i h
B C A*
A* B
d
C
d*
e
A B* C*
d*
e*
d
B* C* A
v*
X
v
g f
(Z) Releaser
m* l*
r X*
r Y*
(L) Linker
m l
DNAStrands
Centro	Nacional	de	Biotecnologia	–	Madrid	-	2018
Stack	Recorder	-	Single	Molecule	Opera7on	
start	
Last	In	
First	Out	
Recording	4	signals	on	stack	
in	order	X(1),	Y(1),	X(2),	Y(2)	
Centro	Nacional	de	Biotecnologia	–	Madrid	-	2018
start	
push	
Last	In	
First	Out	
Stack	Recorder	-	Single	Molecule	Opera7on	
Centro	Nacional	de	Biotecnologia	–	Madrid	-	2018
Last	In	
First	Out	
Stack	Recorder	-	Single	Molecule	Opera7on	
Centro	Nacional	de	Biotecnologia	–	Madrid	-	2018
signal	X(1)	
X(1)	
Last	In	
First	Out	
Stack	Recorder	-	Single	Molecule	Opera7on	
Centro	Nacional	de	Biotecnologia	–	Madrid	-	2018
X(1)	
Last	In	
First	Out	
X(1)	
Stack	Recorder	-	Single	Molecule	Opera7on	
Centro	Nacional	de	Biotecnologia	–	Madrid	-	2018
push	
X(1)	
Last	In	
First	Out	
X(1)	
Stack	Recorder	-	Single	Molecule	Opera7on	
Centro	Nacional	de	Biotecnologia	–	Madrid	-	2018
X(1)	
Last	In	
First	Out	
X(1)	
Stack	Recorder	-	Single	Molecule	Opera7on	
Centro	Nacional	de	Biotecnologia	–	Madrid	-	2018
signal	Y(1)	
X(1)	
Last	In	
First	Out	
X(1)	
Y(1)	
Stack	Recorder	-	Single	Molecule	Opera7on	
Centro	Nacional	de	Biotecnologia	–	Madrid	-	2018
X(1)	
Y(1)	
Last	In	
First	Out	
X(1)	
Y(1)	
Stack	Recorder	-	Single	Molecule	Opera7on	
Centro	Nacional	de	Biotecnologia	–	Madrid	-	2018
Aner	4	signals	pushed	to	stack:	
X(1)	
Y(1)	
X(2)	
Y(2)	
Last	In	
First	Out	X(1)	
Y(1)	
X(2)	
Y(2)	
Stack	Recorder	-	Single	Molecule	Opera7on	
Centro	Nacional	de	Biotecnologia	–	Madrid	-	2018
S
 + P
 + X
Desired	Mul7-Molecule	Scenario	
All	stack	complexes	in	solu7on	would	have	iden7cal	state	
Centro	Nacional	de	Biotecnologia	–	Madrid	-	2018
G0
of binding
(kcal/mol)
DNA	Sequence	Op7misa7on	
Domains	on	the	DNA	bricks	
had	their	nucleo7de	sequences	op7mised	
so	that	these	mul7ple	objec7ves	were	sa7sfied:	
Single	DNA	strands	folded	into	the	
correct	local	topology	
Pairs	of	DNA	strands	co-folded	into	the	
correct	stack	topology	
Desired	reac7ons	resulted	in	irreversible	transforma7ons	
Undesired	reac7ons	were	minimised	
Jerzy	Kozyra,	Harold	Fellermann,	Ben	Shirt-Ediss,	Annunziata	
Lopiccolo,	and	Natalio	Krasnogor.	2017.	Op1mizing	nucleic	acid	
sequences	for	a	molecular	data	recorder.	Proceedings	of	the	GenePc	
and	EvoluPonary	ComputaPon	Conference	(GECCO	'17).	ACM,	New	
York,	NY,	USA,	1145-1152.	DOI:	hEps://doi.org/
10.1145/3071178.3071345		
Centro	Nacional	de	Biotecnologia	–	Madrid	-	2018
S
P
S
P
X
S
P
X
P
S
P
X
P
X
S
P
X
P
X
P
S
P
X
P
X
P
X
S
P
X
P
X
P
X
P
S
P
X
P
X
P
X
P
X
Single Tube Experimental Results
Centro	Nacional	de	Biotecnologia	–	Madrid	-	2018
S
P
S
P
X
S
P
X
P
S
P
X
P
X
S
P
X
P
X
P
S
P
X
P
X
P
X
S
P
X
P
X
P
X
P
S
P
X
P
X
P
X
P
X
SP
Centro	Nacional	de	Biotecnologia	–	Madrid	-	2018
S
P
S
P
X
S
P
X
P
S
P
X
P
X
S
P
X
P
X
P
S
P
X
P
X
P
X
S
P
X
P
X
P
X
P
S
P
X
P
X
P
X
P
X
SPX
1 signal
Centro	Nacional	de	Biotecnologia	–	Madrid	-	2018
S
P
S
P
X
S
P
X
P
S
P
X
P
X
S
P
X
P
X
P
S
P
X
P
X
P
X
S
P
X
P
X
P
X
P
S
P
X
P
X
P
X
P
X
SPXP
Centro	Nacional	de	Biotecnologia	–	Madrid	-	2018
S
P
S
P
X
S
P
X
P
S
P
X
P
X
S
P
X
P
X
P
S
P
X
P
X
P
X
S
P
X
P
X
P
X
P
S
P
X
P
X
P
X
P
X
SPXPX
2 signals
Centro	Nacional	de	Biotecnologia	–	Madrid	-	2018
S
P
S
P
X
S
P
X
P
S
P
X
P
X
S
P
X
P
X
P
S
P
X
P
X
P
X
S
P
X
P
X
P
X
P
S
P
X
P
X
P
X
P
X
SPXPXP
Centro	Nacional	de	Biotecnologia	–	Madrid	-	2018
S
P
S
P
X
S
P
X
P
S
P
X
P
X
S
P
X
P
X
P
S
P
X
P
X
P
X
S
P
X
P
X
P
X
P
S
P
X
P
X
P
X
P
X
SPXPXPX
3 signals
Centro	Nacional	de	Biotecnologia	–	Madrid	-	2018
S
P
S
P
X
S
P
X
P
S
P
X
P
X
S
P
X
P
X
P
S
P
X
P
X
P
X
S
P
X
P
X
P
X
P
S
P
X
P
X
P
X
P
X
SPXPXPXP
Centro	Nacional	de	Biotecnologia	–	Madrid	-	2018
S
P
S
P
X
S
P
X
P
S
P
X
P
X
S
P
X
P
X
P
S
P
X
P
X
P
X
S
P
X
P
X
P
X
P
S
P
X
P
X
P
X
P
X
SPXPXPXPX
4 signals
Centro	Nacional	de	Biotecnologia	–	Madrid	-	2018
S
P
S
P
X
S
P
X
P
S
P
X
P
X
S
P
X
P
X
P
S
P
X
P
X
P
X
S
P
X
P
X
P
X
P
S
P
X
P
X
P
X
P
X
SPXPXPXPXP
…and so on
Centro	Nacional	de	Biotecnologia	–	Madrid	-	2018
stepwise	assembled	tape	with	signals	X-Y-X-Y-X	
	
bio7nylated	report	strands	with	gold	nanobeads	bind	to	signal	domains	
signal	loop	backbone	 nanobeads	reporter	
16nm	
3.4nm	
3.7nm	
5nm	 10nm	
Transmission	electron	microscope	
Centro	Nacional	de	Biotecnologia	–	Madrid	-	2018
Rule-Based	Kine7c	Model	of	DNA	Chemistry	
pop	
push	
read	
X	…stack	
stack…	push	
stack…	X	…stack	
stack…	X	push	
stack…	push	
stack…	push	stack…	
…stack	
start	 push	
X	
read	
pop	
start	
…stack	
push	
X	…stack	
+	
+	
+	
(1)	
(2)	
(3)	
(4)	 +	
…stack	 +	 X	
…stack	 +	
…stack	 +	 pop	push	
Recording	Signals	
Popping	Signals	
(5)	
All	reac7ons	
considered	
irreversible	
inert	dsDNA	product	
inert	dsDNA	product	
Two	hybridisa7on	
rate	constants:	
Two	strand-	
displacement	
rate	constants:
Recording Signals: 
Model Parameter Space Explora:on
≠
Recording Signals: 
Model Parameter Space Explora:on
≠
Recording Signals: 
Model Parameter Space Explora:on
≠
Recording Signals: 
Model Parameter Space Explora:on
≠
Recording Signals: 
Model Parameter Space Explora:on
≈
Recording:	Approximate	Kine7c	Model	Rate	Constants	
1	 2	 3	 4	 5	 6	 7	 8	 9	 1	 2	 3	 4	 5	 6	 7	 8	 9	
SP	 SPXP	 SPXPXP	
Experiment	 Model	
Centro	Nacional	de	Biotecnologia	–	Madrid	-	2018
Actual	Mul7-Molecule	Scenario	
S	 +	P	 +	X	
—	Complexes	can	have	several	isoforms	
—	Unintended	side	reac7ons	take	place	
—	DNA	complexes	have	finite	diffusion	and	reac7on	rates	
—	Finite	wait	7mes	mean	that	chemistry	is	s7ll	under	kine7c	control	
Centro	Nacional	de	Biotecnologia	–	Madrid	-	2018
Outline	
•  Mo7va7on	
•  Designing	bio-orthogonality	and	addressability	
for	DNA	(RNA)	origami	
•  Designing	for	physiological	condi7ons	
•  Designing	for	abstrac7on	scalability	
•  Conclusions	
Centro	Nacional	de	Biotecnologia	–	Madrid	-	2018
You	Can	Build	To	Compute	
Tetra-Pyridyl	Porphyrin	(TPyP)	on	Au(111)	
Structural	unit	
to	func1onalise	
(~	1nm)	
With	G.	Terrazas,	P.	
Moriarty	and	N.	
Chapness	But:		the	smaller	the	
processor	you	build	the	
dumber	it	is!
Backbone	
Self-assembly	coun7ng	
process	
•  Blue	porphyrin-7les	act	as	counters1,2	“seeded”	via	
red	porphyrin-7les	
•  Backbones	are	spa7al	limits	controlling	blue-
porphyrin-7les	assembly	
1	Q.	Cheng	et	al.	Op7mal	self-assembly	of	counters	at	temperature	two.	In	FoundaPons	of	Nanosciense,	2004.	
2	P.	Moisset.	Computer	aided	search	for	op7mal	self-assembly	systems.	In	N.	Krasnogor	et	al.	(Eds.),	Systems	Self-Assembly	MulPdisciplinary	Snapshots,	2008.	
m1	
m2	
Embedded	Discrete	Process	of	Computa1on	(I)	
Backbone	
Es	=	0.50			
E11	=	1.00			
E22	=	0.20			
E12	=	0.20	
Es	=	0.60			
E11	=	0.40			
E22	=	0.20			
E12	=	0.10
Embedded	Discrete	Process	of	Computa1on	(II)	
Checkers	paEern	
(spa7al	interac7ons)	
•  Highly	ordered	self-assembled	structure	
•  Spontaneous	internal	arrangements	
•  Globally	complex	shape	with	locally	
simple	organisa7on	
λ	(y)	
λ	(y)	
(x)	
(ε)	 (ε)	
(x)	
q1	
q2	
ε,	x,	y	Є	[0,	1]	
ε	+	x	+	y	=	1	
x	>>	ε	>>	y	
Computed	by	a	finite	state	
machine-like	process	
ε:	probability	of	mistaking	symbol	
λ:	new	diagonal	begins
Es	=	0.50	E11	=	E22	=	0.10	E12	=	0.40	
Es	=	0.50	E11	=	E22	=	0.10	E12	=	0.30	
Es	=	0.50	E11	=	E22	=	0.30	E12	=	0.40	
Es	=	0.50	E11	=	E22	=	E12	=	0.30	
Differently	programmed	spa7al	
interac7ons	generate:	
•  micro	level	features	(order/
disorder)		
•  macro	level	features	(regular/
irregular	shape)
Construc7on	as	a	Mean	of	Informa7on	Processing	
l 	DNA	&	RNA	origami	based	on:	
l 	bio-orthogonal	De	Bruijn	Sequence	
l 	unique	addressability	
l 	RNA	origami	isothermal	folding	at	37	°C	
•  The	no	toxicity	of	DFHBI-1T,	its	ability	to	assemble	at	37°C	
without	ini7al	thermal	denatura7on	and	reduced	magnesium	
dependance	è	light-up	split	aptamer	a	poten7al	tool	for	
protein-free	fluorescence	detec7on	of	endogenous	RNA	in	live	
bacterial	cells		
l 	DNA	(&	RNA)	Data	Structures	may	lead	to	a	“full-stack”	for	in	
vivo	informa7on	processing
Thank	you	
•  Victor	for	the	invita7on	
•  The	brilliant	PhD	students	and	postdocs		
•  UK’s	EPSRC	for	funding	
•  U.	S7mming,	U.,	J.Y.	Gu	-	School	of	Chemistry,	Newcastle	University		
•  K.	Voitchovsky,	L.	Piantanida	-School	of	Physics,	Durham	University		
99	IPMU	2018	–	Cadiz,	Spain	
hEps://portabolomics.ico2s.org/

More Related Content

PPT
Emerging Trends
PPTX
Nanobiotechnology - Introduction, Concept, Scope, Vision, Applications and Pr...
PPTX
DNA computers
PPTX
Future trends in synthetic biology
PDF
Nanotechnology 1st Edition Marvin Zelkowitz Phd Ms Bs
PPTX
Nanotechnology and Nano-biotechnology.
PPT
Collaborations Between Calit2, SIO, and the Venter Institute-a Beginning
PPTX
Chapter 7-other emerging technologies (1).pptx
Emerging Trends
Nanobiotechnology - Introduction, Concept, Scope, Vision, Applications and Pr...
DNA computers
Future trends in synthetic biology
Nanotechnology 1st Edition Marvin Zelkowitz Phd Ms Bs
Nanotechnology and Nano-biotechnology.
Collaborations Between Calit2, SIO, and the Venter Institute-a Beginning
Chapter 7-other emerging technologies (1).pptx

Similar to Designing for Addressability, Bio-orthogonality and Abstraction Scalability at the Interface of Computing, Synthetic Biology and Nanotechnology (7)

PPS
Bio Inspired Computing Final Version
PPTX
Recent advances in Biotechnology (Exam Point of View)
PDF
Looking into the Crystal Ball: From Transistors to the Smart Earth
PPT
Bio-Molecular computers
PPT
2008: Natural Computing: The Virtual Laboratory and Two Real-World Applications
DOCX
Applications of nanobiotechnology
PDF
Briefings from 10 Feb 2016 Innovation Network event
Bio Inspired Computing Final Version
Recent advances in Biotechnology (Exam Point of View)
Looking into the Crystal Ball: From Transistors to the Smart Earth
Bio-Molecular computers
2008: Natural Computing: The Virtual Laboratory and Two Real-World Applications
Applications of nanobiotechnology
Briefings from 10 Feb 2016 Innovation Network event
Ad

More from Natalio Krasnogor (20)

PPT
Pathology is being disrupted by Data Integration, AI & Blockchain
PPTX
Biological Apps: Rapidly Converging Technologies for Living Information Proce...
PDF
DNA data-structure
PDF
Advanced computationalsyntbio
PDF
The Infobiotics workbench
PDF
Introduction to biocomputing
PDF
Evolvability of Designs and Computation with Porphyrins-based Nano-tiles
PDF
Plenary Speaker slides at the 2016 International Workshop on Biodesign Automa...
PPT
Integrative Networks Centric Bioinformatics
PDF
An Unorthodox View on Memetic Algorithms
PPTX
Darwin’s Magic: Evolutionary Computation in Nanoscience, Bioinformatics and S...
PDF
Towards a Rapid Model Prototyping Strategy for Systems & Synthetic Biology
PDF
P
 Systems 
Model 
Optimisation 
by
 Means 
of 
Evolutionary 
Based 
Search
 ...
PDF
HUMIES presentation: Evolutionary design of energy functions for protein str...
PPT
Evolutionary Symbolic Discovery for Bioinformatics, Systems and Synthetic Bi...
PDF
Computational Synthetic Biology
PPT
Integrative analysis of transcriptomics and proteomics data with ArrayMining ...
PDF
Synthetic Biology - Modeling and Optimisation
PDF
A Genetic Programming Challenge: Evolving the Energy Function for Protein Str...
PDF
Building Executable Biology Models for Synthetic Biology
Pathology is being disrupted by Data Integration, AI & Blockchain
Biological Apps: Rapidly Converging Technologies for Living Information Proce...
DNA data-structure
Advanced computationalsyntbio
The Infobiotics workbench
Introduction to biocomputing
Evolvability of Designs and Computation with Porphyrins-based Nano-tiles
Plenary Speaker slides at the 2016 International Workshop on Biodesign Automa...
Integrative Networks Centric Bioinformatics
An Unorthodox View on Memetic Algorithms
Darwin’s Magic: Evolutionary Computation in Nanoscience, Bioinformatics and S...
Towards a Rapid Model Prototyping Strategy for Systems & Synthetic Biology
P
 Systems 
Model 
Optimisation 
by
 Means 
of 
Evolutionary 
Based 
Search
 ...
HUMIES presentation: Evolutionary design of energy functions for protein str...
Evolutionary Symbolic Discovery for Bioinformatics, Systems and Synthetic Bi...
Computational Synthetic Biology
Integrative analysis of transcriptomics and proteomics data with ArrayMining ...
Synthetic Biology - Modeling and Optimisation
A Genetic Programming Challenge: Evolving the Energy Function for Protein Str...
Building Executable Biology Models for Synthetic Biology
Ad

Recently uploaded (20)

PPTX
Introduction to Cardiovascular system_structure and functions-1
PDF
ELS_Q1_Module-11_Formation-of-Rock-Layers_v2.pdf
DOCX
Q1_LE_Mathematics 8_Lesson 5_Week 5.docx
PDF
SEHH2274 Organic Chemistry Notes 1 Structure and Bonding.pdf
PPTX
cpcsea ppt.pptxssssssssssssssjjdjdndndddd
PDF
lecture 2026 of Sjogren's syndrome l .pdf
PPTX
C1 cut-Methane and it's Derivatives.pptx
PPTX
ognitive-behavioral therapy, mindfulness-based approaches, coping skills trai...
PPTX
Pharmacology of Autonomic nervous system
PPTX
POULTRY PRODUCTION AND MANAGEMENTNNN.pptx
PDF
An interstellar mission to test astrophysical black holes
PDF
. Radiology Case Scenariosssssssssssssss
PDF
Lymphatic System MCQs & Practice Quiz – Functions, Organs, Nodes, Ducts
PPTX
EPIDURAL ANESTHESIA ANATOMY AND PHYSIOLOGY.pptx
PPTX
Fluid dynamics vivavoce presentation of prakash
PPTX
TOTAL hIP ARTHROPLASTY Presentation.pptx
PDF
Warm, water-depleted rocky exoplanets with surfaceionic liquids: A proposed c...
PPTX
Application of enzymes in medicine (2).pptx
PPTX
Overview of calcium in human muscles.pptx
PPTX
famous lake in india and its disturibution and importance
Introduction to Cardiovascular system_structure and functions-1
ELS_Q1_Module-11_Formation-of-Rock-Layers_v2.pdf
Q1_LE_Mathematics 8_Lesson 5_Week 5.docx
SEHH2274 Organic Chemistry Notes 1 Structure and Bonding.pdf
cpcsea ppt.pptxssssssssssssssjjdjdndndddd
lecture 2026 of Sjogren's syndrome l .pdf
C1 cut-Methane and it's Derivatives.pptx
ognitive-behavioral therapy, mindfulness-based approaches, coping skills trai...
Pharmacology of Autonomic nervous system
POULTRY PRODUCTION AND MANAGEMENTNNN.pptx
An interstellar mission to test astrophysical black holes
. Radiology Case Scenariosssssssssssssss
Lymphatic System MCQs & Practice Quiz – Functions, Organs, Nodes, Ducts
EPIDURAL ANESTHESIA ANATOMY AND PHYSIOLOGY.pptx
Fluid dynamics vivavoce presentation of prakash
TOTAL hIP ARTHROPLASTY Presentation.pptx
Warm, water-depleted rocky exoplanets with surfaceionic liquids: A proposed c...
Application of enzymes in medicine (2).pptx
Overview of calcium in human muscles.pptx
famous lake in india and its disturibution and importance

Designing for Addressability, Bio-orthogonality and Abstraction Scalability at the Interface of Computing, Synthetic Biology and Nanotechnology