This document discusses skin cancer detection using deep learning techniques. It begins with an introduction to skin cancer and the need for early detection. It then reviews the existing methods for skin cancer detection which rely on visual examination by dermatologists. The proposed method uses a deep learning model trained on skin lesion images to classify lesions as benign or malignant. The methodology section describes the image acquisition, preprocessing including enhancement, data augmentation, and preparation steps. It then discusses training a convolutional neural network for classification. Experimental results show the system can accurately detect different types of skin cancers like basal cell carcinoma and keratosis. The conclusion discusses benefits of developing such a system for integrated use on smartphones to enable low-cost cancer screening.