10. Parameter Value
Batch size 32
Embedding dimension 128
Number of heads 8
Optimizer AdamW
Learning rate 4e-4
Decay rate 1e-6
Number of epochs 2,200
Parameter Value
Number of jobs, 𝑁 100, 150, 200, 300
Number of machines, 𝑀 5
The processing time of job 𝑖 on machine 𝑘 , 𝑝𝑖𝑘 𝑈[1,100]
Due date for job 𝑖 , 𝑑𝑖 𝑈[𝑃 − 𝑇𝐹 − 𝑅𝐷𝐷/2,𝑃 1 − 𝑇𝐹 + 𝑅𝐷𝐷/2 ]
Due date tardiness factor, 𝑇𝐹 0.35, 0.65
Due date range factor, 𝑅𝐷𝐷 0.35
𝑃 σ𝑖=1
𝑁 σ𝑘=1
𝑀
𝑝𝑖𝑘𝑎𝑖𝑘
𝑀
※ 𝑇𝐹가 클수록, 납기일이 더 타이트해져 지연 발생 가능성이 높아짐을 의미함
※ 𝑎𝑖𝑘는 누락 작업 여부를 표시하는 이진 행렬임
10
※ GPU: NVIDIAGeForceRTX3080Ti(12GB)
※ CPU: Intel(R)Core(TM) i9-11900KF(3.50GHz)
※ 학습 시간: 약 32h
11. ●
●
●
11
Solver
MILP IBM ILOG CPLEX Optimizer
CP IBM ILOG CP Optimizer
Heuristic
EDD Earliest Due Date
FP Framinan and Perez heuristic
NEH Nawaz-Enscore-Ham
OMDD Order-scheduling Modified Due Date
Metaheuristic
JPO20 Job Position Oscillation δ=2
SR2 Size-Reduction with Q=2
DE Differential Evolution
BRKGA Biased Random Key GeneticAlgorithm
𝑅𝑃𝐷 =
𝑇𝐴 − 𝑇𝐺𝐴
𝑇𝐺𝐴
× 100
※ 𝑇𝐴:비교군이 얻은 총 지연시간
※ 𝑇𝐺𝐴:BRKGA가얻은 총 지연시간
17. [1] L. R. de Abreu, M. J. B. Dias, P. M. O. Palma, and J. J. M. Ferreira, "A novel BRKGA for the customer order scheduling with
missing operations to minimize total tardiness," Swarm and Evolutionary Computation, Vol.75, pp.101149, 2022.
[2] F. Luo, S. Li, M. Wang, Y. Qin, and Z. Tang, "Neural combinatorial optimization with heavy decoder: Toward large scale
generalization," in Advances in Neural Information Processing Systems, Vol.36, pp.8845–8864, 2023.
[3] Y.-D. Kwon, S. Kim, and J. Park, "POMO: Policy optimization with multiple optima for reinforcement learning," in Advances
in Neural Information Processing Systems, Vol.33, pp.21188–21198, 2020.
[4] A. Vaswani et al., "Attention is all you need," in Advances in Neural Information Processing Systems, Vol.30, 2017.
17