This document discusses developing an explainable artificial neural network model for optimizing a gluconic acid bioreactor process. It aims to 1) use a grey wolf optimizer trained ANN approach to model the complex bioreactor system, 2) convert the ANN model into an explainable closed-form equation to provide insight into the underlying reactor physics, and 3) optimize the model to maximize gluconic acid yield and profitability using an evolutionary algorithm. Artificial intelligence techniques like ANNs are effective for modeling complicated bioprocesses but provide "black box" solutions that lack explainability. This study develops a general methodology to increase the explainability and acceptability of an ANN model for engineering applications like bioreactor optimization