This document discusses applying DevOps practices and principles to machine learning model development and deployment. It outlines how continuous integration (CI), continuous delivery (CD), and continuous monitoring can be used to safely deliver ML features to customers. The benefits of this approach include continuous value delivery, end-to-end ownership by data science teams, consistent processes, quality/cadence improvements, and regulatory compliance. Key aspects covered are experiment tracking, model versioning, packaging and deployment, and monitoring models in production.