SlideShare a Scribd company logo
1
Lecture 11
Emulsions and Microemulsions.
The dielectric properties of heterogeneous substances.
Polarization of double layer,
Polarization of Maxwell Wagner.
Nonionic microemulsions.
Zwiterionic microemulsions.
Anionic microemulsions.
Dielectrics with conductive paths.
Percolation phenomena .
2
Microemulsion: A macroscopic, single-phase,
thermodynamically stable system of oil
oil and water
stabilized by surfactant molecules.
surfactant molecules.
ionic
microemulsion
Water-in-oil
microemulsion region
W : molar ratio [water] / [surfactant]
Rwp : radius of water core of the droplet
Rwp = ( 1.25 W + 2.7) Å
n-Decane
AOT
Water
AOT-water-decane microemulsion (17.5:21.3:61.2 vol%),
AOT-water-decane microemulsion (17.5:21.3:61.2 vol%),
W = 26.3, R
W = 26.3, Rwp
wp = 35.6 Angstrom
= 35.6 Angstrom
What is microemulsion?
What is microemulsion?
3
• Interfacial polarization (Maxwell-Wagner,
Interfacial polarization (Maxwell-Wagner,
Triphasic Model)
Triphasic Model)
• Ion diffusion polarization(O’Konski, Schwarz,
Ion diffusion polarization(O’Konski, Schwarz,
Schurr models)
Schurr models)
• Mechanism of charge density fluctuation water
Mechanism of charge density fluctuation water
• bound water,
bound water,
• polar heads of surfactants and
polar heads of surfactants and
• cosurfactants.
cosurfactants.
• In the case of ionic microemulsions the
In the case of ionic microemulsions the
cooperative processes of polarization and
cooperative processes of polarization and
dynamics can take place.
dynamics can take place.
The nature of dielectric polarization in ionic microemulsions
The nature of dielectric polarization in ionic microemulsions
Percolation: The transition associated with the
formation of a continuous path spanning an arbitrarily
large ("infinite") range.
The percolation cluster is a self-similar fractal.
The percolation cluster is a self-similar fractal.
5 10 15 20 25 30 35 40 45

s
Temperature (oC )
0 2 4 6 8 10
10-1
100
101
102
103

[

S/cm]
5 10 15 20 25 30 35 40 45
20
40
60
80
100
Tp
Ton
What is the percolation phenomenon?
What is the percolation phenomenon?
5
5 10 15 20 25 30 35 40 45

s
Temperature (oC )
0 2 4 6 8 10
10-1
100
101
102
103

[

S/cm]
5 10 15 20 25 30 35 40 45
20
40
60
80
100
Tp
Ton
T<T
p
o
What is the percolation phenomenon?
What is the percolation phenomenon?
Percolation: The transition associated with the formation of a
Percolation: The transition associated with the formation of a
continuous path spanning an arbitrarily large ("infinite") range.
continuous path spanning an arbitrarily large ("infinite") range.
The percolation cluster is a self-similar fractal.
The percolation cluster is a self-similar fractal.
 
  p
t
p
p
s
p
T
T
T
T
T
T
T
T




~
~


  p
s
p
s T
T
T
T 

~

6
Three dimensional plots of frequency and
temperature dependence of the dielectric
losses '' for the AOT/water/decane
microemulsion
Three dimensional plots of frequency and
temperature dependence of the dielectric
permittivity ' for the AOT/water/decane
microemulsion
Three-dimensional plots of the time and
temperature dependence of the macroscopic
Dipole Correlation Function for the AOT-
water-decane microemulsion
(t)
 
  
  
M M t
M M
( ) ( )
( ) ( )
,
0
0 0
5 10 15 20 25 30 35
4
8
12
16
20
24
4
3
2
1

s
Temperature (
o
C )
10 20 30 40 50
4
8
12
16
Temperature (
o
C )

s
3'
3
AOT-water-decane(hexane) microemulsions at W=26.3 with composition (vol%)
1) 17.5:21.3:61.2 , 2)11.7:14.2:74.1, 3) and 3’hexane)5.9:7.1:87.0 , 4)1.9:2.4:93.7
Low-frequency
permittivity s
Permittivity of ionic microemulsions far below percolation
8
10 20 30 40 50 60
10
-10
10
-8
10
-6
10
-4
10
-2
10
0
3
2
1
2
o
C - (1)
8
o
C - (2)
12
o
C - (3)
Dipole
correlation
function
t (ns)
DCFs of ionic microemulsions far below
percolation
ns counterions 2d
nsconcentration polarization
nsconcentration polarization
 4 = 0.05 ns (bound and bulk water) 44%
DCFs at different temperatures
AOT-water-decane microemulsion (17.5:21.3:61.2 vol%), W=26.3
( ) A exp( t/ )
i i
i 1
N
t  

 
Ai = 1
i=1
N

Phenomenological fit to the four exponents
9
Polarization of ionic microemulsions far below percolation
( )( )( )
k
     

 
+ +
=
< >
2
 m ix mix w
B
2 2 12 N
T
2
0
 mix : permittivity due to nonionic sources
<2
> : mean square dipole moment of a droplet
N0 : droplet concentration
Below percolation, microemulsion is the
dispersion of non-interacting water-surfactant
droplets
Fluctuating dipole moments of the droplets
contribute in dielectric permittivity
10
Mean square fluctuation dipole moment of a droplet
Rd
Rwp
e : ion charge
Ns : number of dissociated surfactant molecules per droplet
Rwp : radius of droplet water pool
c(r) : counterion concentration at distance r from center
As : area of surfactant molecule in interface layer
Ks : equilibrium dissociation constant of surfactant
l : Debye screening length
 










2 2 5
1 2
32 3
15
e R
K
A R
wp
s
s wp
/
taking square and averaging
expanding c(r) at Rwp / lD <<1
  

2 2 4 2
4
e r c r dr N R
o
R
s wp
wp
{ ( ) }

  
 


e i i
i
Ns
( )
r r
1
11
Calculation of the counterion density distribution
c(r)
Distribution of counterions in the droplet interior is governed by the Poisson-Boltzmann
equation

  
 








 



2
0
0
x
e-
= e[ - (0)]/ kBT : dimensionless potential with respect
to the center
x = r /lD : the dimensionless distance,
lD : the characteristic thickness of the counterion layer,
c0 : the counterion concentration at x=0
l
k T
4 e c
D
w B
2
( ) /

 0
1 2
Solution of the Poisson-
Boltzmann equation
a a a
0 1 2
1
1
6
1
45
  
, , ,...
Counterion concentration
c x c a x
j
j
j
( ) 



0
2
0
0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5
-6
-5
-4
-3
-2
-1
0

(x)
x
 (x) = - ln ( a x )
j
2j
j=0


0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5
-6
-5
-4
-3
-2
-1
0

(x)
x
0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5
1
10
100
c(x)
/
c
d
x
12
Calculation of the fluctuation dipole moment of a droplet
 

 




 
2
4 k T R
a (j 2)
(2j 3)(2j 5)
x
w B wp
3 j
wp
2(j 1)
j 0
xwp = Rwp /lD (c0 )
Dissociation of surfactant molecules is described by the equilibrium relation
 
K T c e
N
N N
s
x s
a s
wp
( )


0

The dissociation constant Ks(T) has an Arrhenius temperature behavior
K T K
H
k T
s o
B
( ) exp( )
 

Na : micelle aggregation number
Ns : number of dissociated surfactant molecules
Ks(T) : dissociation constant of the surfactant
(xwp) : dimensionless electrical potential at the
surface of the droplet
H : apparent activation energy of the dissociation
K0 : Arrhenius pre-exponential factor
AOT-water-decane(hexane) microemulsions at W=26.3 with composition (vol%)
(1.9:2.4:93.7) 
(5.9:7.1:87.0) 
(11.7:14.2:74.1) 
(17.5:21.3:61.2) 
2 4 6 8 10 12
300
400
500
Dipole
M
oment
(
Debye
)
Temperature (
o
C )
Experimental fluctuation dipole moments
Temperature dependencies of the
apparent dipole moment of a droplet
a = (<2
>)1/2
Rwp = ( 1.25 W + 2.7) = 35.6 Ångstrom
14
Modeling of the permittivity
Experimental and calculated (solid line) static dielectric permittivity
versus temperature for the AOT-water-decane microemulsions for
various volume fractions of the dispersed phase:
0.39 (curve 4); 0.26 (curve 3); 0.13 (curve 2); 0.043 (curve 1)
5 10 15 20 25 30
2
4
6
8
10
12
14
16
18
20
22
Dielectric
permittivity
Temperature (oC)
15
c ( t/c ) cooperative relaxation
f (t/f ) : fast processes
(t): total DCF (t) = f ( t/f ) + c ( t/c ) R(t/R)
R(t/R) : cluster rearrangements
Dielectric relaxation in percolation : relaxation laws
Dielectric relaxation in percolation : relaxation laws
where = 0.41, = 0.39
e
1 - c t t < t
xp[- c t ] t > t
1 c
2 c


 
(t) ~ where 0.8
 exp[- c t + c t],
1 2
  



(t) = At
(t) = At -
-


 exp [-
exp [-
(t/
(t/


]
]
Relaxation laws proposed for description of
the Dipole Correlation Functions (DCF) of
ionic microemulsions near percolation
Our suggestion for fitting at
the mesoscale region
(t) ~
16
0.01 0.1 1 10 100
-3
-2
-1
0
C
AA
wt %
1.7
2.1
2.5
2.9
3.3
3.7
4.14
4.7
log(DCF
)
time ( ns )
Macroscopic dipole correlation function behavior at
percolation
AOT/Acrylamide-water-toluene AOT-brine-decane
0.01 0.1 1 10 100
-3
-2
-1
0
Temperature 50 oC
A = 80%
A = 82.5%
A = 85%
A = 87.5%
A = 90%
A = 93.5%
log(
DCF
)
time ( ns )
Percolation is caused by
cosurfactant fraction
brine fraction
temperature
0.01 0.1 1 10 100 1000
-3
-2
-1
0
8
7
6
5
4
3
2
1
T oC
1 - 14
2 - 16
3 - 18
4 - 20
5 - 22
6 - 24
7 - 26
8 - 28
log
(
DCF
)
time (ns)
10
-3
-2
100
-3
-2
8
7
1
2
3
6
AOT-water-decane
microemulsion
(t) ~ At -

17
Fitting function
10 15 20 25 30 35 40
0.0
0.2
0.4
0.6
0.8
1.0
1.2

Temperature ( oC )
10 15 20 25 30 35 40
0.2
0.4
0.6
0.8
1.0
1.2

Temperature ( oC )
A
A 







AOT-water-decane microemulsion (17.5:21.3:61.2 vol%)
10 15 20 25 30 35 40
0.5
0.6
0.7
0.8
0.9
1
2
3
A
Temperature ( oC )
10 15 20 25 30 35 40
0
20
40
60
80
100
120
140

,
ns
Temperture (
o
C)
(t) = At - exp [- (t/]
18
Dielectric relaxation in percolation : model of recursive
Dielectric relaxation in percolation : model of recursive
fractal
fractal
nj = n0 pj
Lj = bj
zj = aLj
 = a(bj) = akj
k = b
N * ( / )
(z) = [ ]
g z zj
n
j
N
j


0
t : current time
1 : minimal time
z = t /1
(z) : macroscopic relaxation function
g*(z) : microscopic relaxation function
: minimal spatial scale
j : current self-similarity stage
N : maximal self-similarity stage
nj : number of monomers on the j-th stage
Lj : spatial scale related to j-th stage
zj : temporal scale related to j-th stage
n0 ,a : proportionality factors
b,p,k : scaling parameters
E = 3 : Euclidean dimension
D
Df
f =
=
E
E


Feldman Yu, et al (1996)
Feldman Yu, et al (1996) Phys Rev E 54: 5420
Phys Rev E 54: 5420
Df : fractal dimension
Intermediate asymptotic
N(Z) =A exp [ -B()Z + C()Z ]
ln(p)/ln(k), Z=t/a
1
Lj
0.1
1
10
100
10 15 20 25 30 35 40

c
(ns)
Temperature ( o
C)
10 15 20 25 30 35 40
0.5
1.0
1.5
2.0
2.5
2
1

D f
Temperature
o
C
Temperature dependence of the
Temperature dependence of the
stretching parameter
stretching parameter 

and the fractal dimension
and the fractal dimension D
Df
f
Temperature dependence of the
Temperature dependence of the
macroscopic effective relaxation
macroscopic effective relaxation
time
time 
c
c
Recursive fractal model: fitting results
Recursive fractal model: fitting results
10 15 20 25 30 35 40
102
103
104
105
106
107
108
109
1010
L (Å)
Temperature ( o
C)
101
102
103
10 15 20 25 30 35 40
Temperature ( o
C)
N
The effective length of
the percolation cluster LN
versus the temperature
Temperature dependence of the
number of droplets in the typical
percolation cluster
Recursive fractal model: fitting results
Recursive fractal model: fitting results
?
?
21
Dielectric relaxation in percolation : statistical fractal description ?
Dielectric relaxation in percolation : statistical fractal description ?
   




1
ds
s
w
s
t
g
t )
(
,







1
m
m
ds
s
s
s
s
s
s
s
w
]
)
/
(
exp[
]
)
/
(
exp[
)
(



    
)
(
/
exp
, s
t
s
t
g 


  

 s
s 1

   












 














 z
s
B
z
s
A
z m
2
2
2
m )
,
,
(
exp
)
,
,
,
(
Morphology parameters:
sm : cut-off cluster size
 : polydispersity index
: cut-off rate index
w(s) : Cluster size probability density
distribution function
g(t,s) : Relaxation function
related to s-cluster
Asymptotic behavior at
z >> 1 , z = t /1
Dynamic parameters:
 1 : minimal time
scaling
parameter
1
(t) : relaxation function
2
3
4

(t) = At
(t) = At -
-


 exp [- (t/
exp [- (t/


]
]
22
For
For 


Statistical fractal: results of
Statistical fractal: results of
calculations
calculations
16 18 20 22 24 26 28 30 32 34 36 38 40
10
0
10
1
10
2
10
3
10
4
10
5
10
6
10
7
10
8
10
9
10
10
10
11
10
12
10
13
S
m
Temperature
0
C
1
1




2
1





  



















1
1
1
1
1
m
S
10 15 20 25 30 35 40
0.0
0.5
1.0
1.5
2.0
2.5
3.0
3.5
4.0

Temperature
o
C
12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42
0
1
2
3
4
5
6

Temperature
o
C
23

E
Ds  E=3
E=3

 
 0.6
0.6
S
Sm
m~10
~1012
12
D
Dd
d 
 5
5 ?
?
   
m
D
E
m s
s
w
b
s
s
w s
s
~
,
~
, 
 
 
.
~
,
~ s
s D
m
m
D
b
s
s
and
b
s
s 

1

 s
D
E
s
b 
Condition of the
Condition of the
renormalization
renormalization
Renormalization in the static site percolation model
Renormalization in the static site percolation model
L
sm
bsL
m
S
~
24
Percolation cluster s
Percolation cluster sm
m
Occupied sites and the
percolation backbone on
the effective square lattice
Visualization of the dynamic percolation
Visualization of the dynamic percolation



m
1
m
s

A/
D/
O/
E/
y
z

m


1
B
C
E D
L
H
/
l
Q
F
L/l A
O
L/l
x
2
1
2

















m
H
l
L
l
L
d
m
D
s
l
L
1

25
Hyperscaling relationship for dynamic
percolation












 d
D
m
H
d s
L
L
b


1
1
2
1
b
bd
d is an
is an expansion
expansion coefficient
coefficient
1

 d
D
E
d
b 
1
s
1
2
γD
E
αD
1
1
α
2
m
d
d



























0
0
d
d
D
1
D
E


A O
F
B
D
C
E
L/l
L/l
L
H
.
/
l
x
y
z
m
/1
D'
A'
Q
Condition of the
Condition of the
renormalization
renormalization
s
sm
m
 

26
10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42
0
2
4
6
8
10
12 0.1

3*
Temperature
0
C
Experimental verification of hyperscaling relationship for dynamic
percolation

 
 0.6
0.6 
 

0.2
0.2
E




1

d
D
E=3
E=3
D
Dd
d 
 5
5 ?
?












 d
D
1
1
2
m
H
d s
1
L
L
b


If sm <
1
s
l
L
d
m
D
1
1
1
m




























2
1
2

















m
H
l
L
l
L
27
12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42
0.0
0.2
0.4
0.6
0.8
1.0
1.2
1.4
1.6
1.8
2.0
2.2
2.4
2.6
2.8
3.0
D
s
Temperature
o
C
D
Ds
s=2.54
=2.54
m
d
d
s
s
D
1
D
D
lg
lg


4
1
m
10
6
l
L







5
10
2
l
L








2
1
m
10
2
.
1 











L
l m=120 10-9
s
1=1 10-9
s
l~110-8
m
Lh~2 10-3
m
The relation between Dd and Ds










 s
m
D
1
1
s



10 15 20 25 30 35 40
0.0
0.5
1.0
1.5
2.0
2.5
L
eff
,
mm
Temperature
o
C

More Related Content

PPT
Electrochemistry Notes
PDF
Computation of Dielectric Constant and Loss Factor of Water and Dimethylsulph...
PDF
Computation of Dielectric Constant and Loss Factor of Water and Dimethylsulp...
PPTX
ACSSA Halide-Water Poster
PPTX
The van der waals gas
PPTX
GENERATION OF ELECTRICITY AND HYDROGEN GAS VIA MICROBIAL ELECTROLYSIS OF SEWA...
PDF
3rd Year Undergraduate Cyclic Voltammetry Practical
Electrochemistry Notes
Computation of Dielectric Constant and Loss Factor of Water and Dimethylsulph...
Computation of Dielectric Constant and Loss Factor of Water and Dimethylsulp...
ACSSA Halide-Water Poster
The van der waals gas
GENERATION OF ELECTRICITY AND HYDROGEN GAS VIA MICROBIAL ELECTROLYSIS OF SEWA...
3rd Year Undergraduate Cyclic Voltammetry Practical

Similar to Diel_Lecture11_ Emulsions _Biphasic DFS .ppt (20)

PDF
Hydraulic analysis of complex piping systems (updated)
PPT
Heat Transfer in Microchannels detailed.ppt
PPT
Ch2 slides-1
PDF
Mobility Measurements Probe Conformational Changes in Membrane-embedded prote...
PPTX
Phase behavior and characterization of Polyelectrolyte Complexes
PPTX
Cyclic Voltammetry: Principle, Instrumentation & Applications
PDF
Electrowetting of-water-and-aqueous-solutions-on-poly-ethylene-terephthalate-...
PDF
My_papers_Nastishin_PRL_2012_Elasticity of Lyotropic Chromonic Liquid Crystal...
PDF
The CHE Data Book - KFUPM.pdf
PDF
Basic potential step and sweep methods
PDF
Electrical conductivity
PDF
Electrical conductivity
PPTX
Cyclic voltammetry
PDF
1 s2.0-s0376738800824503-main
PDF
2 cp y ca
PDF
A method to extract potentials from the temperature dependence of langmiur co...
PDF
Baevsky_Liberzon_ICME2015_v2
PPT
Voltametry- Pharmaceutical Analysis
PDF
Slip Flow Regimes and Induced Fluid Structure in Nanoscale Polymer Films
PDF
Supporting electrolyte
Hydraulic analysis of complex piping systems (updated)
Heat Transfer in Microchannels detailed.ppt
Ch2 slides-1
Mobility Measurements Probe Conformational Changes in Membrane-embedded prote...
Phase behavior and characterization of Polyelectrolyte Complexes
Cyclic Voltammetry: Principle, Instrumentation & Applications
Electrowetting of-water-and-aqueous-solutions-on-poly-ethylene-terephthalate-...
My_papers_Nastishin_PRL_2012_Elasticity of Lyotropic Chromonic Liquid Crystal...
The CHE Data Book - KFUPM.pdf
Basic potential step and sweep methods
Electrical conductivity
Electrical conductivity
Cyclic voltammetry
1 s2.0-s0376738800824503-main
2 cp y ca
A method to extract potentials from the temperature dependence of langmiur co...
Baevsky_Liberzon_ICME2015_v2
Voltametry- Pharmaceutical Analysis
Slip Flow Regimes and Induced Fluid Structure in Nanoscale Polymer Films
Supporting electrolyte
Ad

More from PreetiKarwa1 (17)

PPTX
TABLETS Dosage Form - Industrial Pharmacy.pptx
PPTX
PREFORMULATION STUDIES - Industrial Pharmacy.pptx
PPT
Emulsions and Foams_ Biphasic dosage forms.ppt
PPT
Advanced industrial pharmacy. importanceppt
PPT
DOCUMENTATION AND RECORDS - Requirements final.ppt
PPTX
Parenteral Preformulation Final 070220.pptx
PPT
Preformulation -1.- Industrial Pharmacyppt
PPTX
One compartment open model—Extra vascular administration.pptx
PPTX
Dissolution 1_ Absorption _ Biopharm.pptx
PPTX
Presentation6.Bioavailability requirementspptx
PPT
2005-4137S1_03_Mehta bioavaialability.ppt
PPT
Generic_AED_Products_in_the_treatment_of_epilepsy_in_Europe.ppt
PPT
Lee+Lee Bioavailability and Bioequivalence.ppt
PPT
Therapeutic action and Bioequivalence.ppt
PPT
bioavailability and bioequivalence Details
PPT
Pharmaceutical Development and Bioequivalence
PPT
surface Tension in Physical Pharmacy.ppt
TABLETS Dosage Form - Industrial Pharmacy.pptx
PREFORMULATION STUDIES - Industrial Pharmacy.pptx
Emulsions and Foams_ Biphasic dosage forms.ppt
Advanced industrial pharmacy. importanceppt
DOCUMENTATION AND RECORDS - Requirements final.ppt
Parenteral Preformulation Final 070220.pptx
Preformulation -1.- Industrial Pharmacyppt
One compartment open model—Extra vascular administration.pptx
Dissolution 1_ Absorption _ Biopharm.pptx
Presentation6.Bioavailability requirementspptx
2005-4137S1_03_Mehta bioavaialability.ppt
Generic_AED_Products_in_the_treatment_of_epilepsy_in_Europe.ppt
Lee+Lee Bioavailability and Bioequivalence.ppt
Therapeutic action and Bioequivalence.ppt
bioavailability and bioequivalence Details
Pharmaceutical Development and Bioequivalence
surface Tension in Physical Pharmacy.ppt
Ad

Recently uploaded (20)

PPTX
MANAGEMENT SNAKE BITE IN THE TROPICALS.pptx
PDF
Plant-Based Antimicrobials: A New Hope for Treating Diarrhea in HIV Patients...
PDF
Copy of OB - Exam #2 Study Guide. pdf
PDF
OSCE Series Set 1 ( Questions & Answers ).pdf
PPTX
Radiation Dose Management for Patients in Medical Imaging- Avinesh Shrestha
PDF
focused on the development and application of glycoHILIC, pepHILIC, and comm...
PDF
Comparison of Swim-Up and Microfluidic Sperm Sorting.pdf
PPTX
HYPERSENSITIVITY REACTIONS - Pathophysiology Notes for Second Year Pharm D St...
PPT
Infections Member of Royal College of Physicians.ppt
PDF
Lecture on Anesthesia for ENT surgery 2025pptx.pdf
PPTX
CHEM421 - Biochemistry (Chapter 1 - Introduction)
PDF
OSCE SERIES - Set 7 ( Questions & Answers ).pdf
PPTX
Reading between the Rings: Imaging in Brain Infections
PPTX
y4d nutrition and diet in pregnancy and postpartum
PPTX
Post Op complications in general surgery
PPTX
Introduction to Medical Microbiology for 400L Medical Students
PPTX
Neonate anatomy and physiology presentation
PPTX
NRP and care of Newborn.pptx- APPT presentation about neonatal resuscitation ...
PDF
شيت_عطا_0000000000000000000000000000.pdf
PPT
HIV lecture final - student.pptfghjjkkejjhhge
MANAGEMENT SNAKE BITE IN THE TROPICALS.pptx
Plant-Based Antimicrobials: A New Hope for Treating Diarrhea in HIV Patients...
Copy of OB - Exam #2 Study Guide. pdf
OSCE Series Set 1 ( Questions & Answers ).pdf
Radiation Dose Management for Patients in Medical Imaging- Avinesh Shrestha
focused on the development and application of glycoHILIC, pepHILIC, and comm...
Comparison of Swim-Up and Microfluidic Sperm Sorting.pdf
HYPERSENSITIVITY REACTIONS - Pathophysiology Notes for Second Year Pharm D St...
Infections Member of Royal College of Physicians.ppt
Lecture on Anesthesia for ENT surgery 2025pptx.pdf
CHEM421 - Biochemistry (Chapter 1 - Introduction)
OSCE SERIES - Set 7 ( Questions & Answers ).pdf
Reading between the Rings: Imaging in Brain Infections
y4d nutrition and diet in pregnancy and postpartum
Post Op complications in general surgery
Introduction to Medical Microbiology for 400L Medical Students
Neonate anatomy and physiology presentation
NRP and care of Newborn.pptx- APPT presentation about neonatal resuscitation ...
شيت_عطا_0000000000000000000000000000.pdf
HIV lecture final - student.pptfghjjkkejjhhge

Diel_Lecture11_ Emulsions _Biphasic DFS .ppt

  • 1. 1 Lecture 11 Emulsions and Microemulsions. The dielectric properties of heterogeneous substances. Polarization of double layer, Polarization of Maxwell Wagner. Nonionic microemulsions. Zwiterionic microemulsions. Anionic microemulsions. Dielectrics with conductive paths. Percolation phenomena .
  • 2. 2 Microemulsion: A macroscopic, single-phase, thermodynamically stable system of oil oil and water stabilized by surfactant molecules. surfactant molecules. ionic microemulsion Water-in-oil microemulsion region W : molar ratio [water] / [surfactant] Rwp : radius of water core of the droplet Rwp = ( 1.25 W + 2.7) Å n-Decane AOT Water AOT-water-decane microemulsion (17.5:21.3:61.2 vol%), AOT-water-decane microemulsion (17.5:21.3:61.2 vol%), W = 26.3, R W = 26.3, Rwp wp = 35.6 Angstrom = 35.6 Angstrom What is microemulsion? What is microemulsion?
  • 3. 3 • Interfacial polarization (Maxwell-Wagner, Interfacial polarization (Maxwell-Wagner, Triphasic Model) Triphasic Model) • Ion diffusion polarization(O’Konski, Schwarz, Ion diffusion polarization(O’Konski, Schwarz, Schurr models) Schurr models) • Mechanism of charge density fluctuation water Mechanism of charge density fluctuation water • bound water, bound water, • polar heads of surfactants and polar heads of surfactants and • cosurfactants. cosurfactants. • In the case of ionic microemulsions the In the case of ionic microemulsions the cooperative processes of polarization and cooperative processes of polarization and dynamics can take place. dynamics can take place. The nature of dielectric polarization in ionic microemulsions The nature of dielectric polarization in ionic microemulsions
  • 4. Percolation: The transition associated with the formation of a continuous path spanning an arbitrarily large ("infinite") range. The percolation cluster is a self-similar fractal. The percolation cluster is a self-similar fractal. 5 10 15 20 25 30 35 40 45  s Temperature (oC ) 0 2 4 6 8 10 10-1 100 101 102 103  [  S/cm] 5 10 15 20 25 30 35 40 45 20 40 60 80 100 Tp Ton What is the percolation phenomenon? What is the percolation phenomenon?
  • 5. 5 5 10 15 20 25 30 35 40 45  s Temperature (oC ) 0 2 4 6 8 10 10-1 100 101 102 103  [  S/cm] 5 10 15 20 25 30 35 40 45 20 40 60 80 100 Tp Ton T<T p o What is the percolation phenomenon? What is the percolation phenomenon? Percolation: The transition associated with the formation of a Percolation: The transition associated with the formation of a continuous path spanning an arbitrarily large ("infinite") range. continuous path spanning an arbitrarily large ("infinite") range. The percolation cluster is a self-similar fractal. The percolation cluster is a self-similar fractal.     p t p p s p T T T T T T T T     ~ ~     p s p s T T T T   ~ 
  • 6. 6 Three dimensional plots of frequency and temperature dependence of the dielectric losses '' for the AOT/water/decane microemulsion Three dimensional plots of frequency and temperature dependence of the dielectric permittivity ' for the AOT/water/decane microemulsion Three-dimensional plots of the time and temperature dependence of the macroscopic Dipole Correlation Function for the AOT- water-decane microemulsion (t)         M M t M M ( ) ( ) ( ) ( ) , 0 0 0
  • 7. 5 10 15 20 25 30 35 4 8 12 16 20 24 4 3 2 1  s Temperature ( o C ) 10 20 30 40 50 4 8 12 16 Temperature ( o C )  s 3' 3 AOT-water-decane(hexane) microemulsions at W=26.3 with composition (vol%) 1) 17.5:21.3:61.2 , 2)11.7:14.2:74.1, 3) and 3’hexane)5.9:7.1:87.0 , 4)1.9:2.4:93.7 Low-frequency permittivity s Permittivity of ionic microemulsions far below percolation
  • 8. 8 10 20 30 40 50 60 10 -10 10 -8 10 -6 10 -4 10 -2 10 0 3 2 1 2 o C - (1) 8 o C - (2) 12 o C - (3) Dipole correlation function t (ns) DCFs of ionic microemulsions far below percolation ns counterions 2d nsconcentration polarization nsconcentration polarization  4 = 0.05 ns (bound and bulk water) 44% DCFs at different temperatures AOT-water-decane microemulsion (17.5:21.3:61.2 vol%), W=26.3 ( ) A exp( t/ ) i i i 1 N t      Ai = 1 i=1 N  Phenomenological fit to the four exponents
  • 9. 9 Polarization of ionic microemulsions far below percolation ( )( )( ) k          + + = < > 2  m ix mix w B 2 2 12 N T 2 0  mix : permittivity due to nonionic sources <2 > : mean square dipole moment of a droplet N0 : droplet concentration Below percolation, microemulsion is the dispersion of non-interacting water-surfactant droplets Fluctuating dipole moments of the droplets contribute in dielectric permittivity
  • 10. 10 Mean square fluctuation dipole moment of a droplet Rd Rwp e : ion charge Ns : number of dissociated surfactant molecules per droplet Rwp : radius of droplet water pool c(r) : counterion concentration at distance r from center As : area of surfactant molecule in interface layer Ks : equilibrium dissociation constant of surfactant l : Debye screening length             2 2 5 1 2 32 3 15 e R K A R wp s s wp / taking square and averaging expanding c(r) at Rwp / lD <<1     2 2 4 2 4 e r c r dr N R o R s wp wp { ( ) }         e i i i Ns ( ) r r 1
  • 11. 11 Calculation of the counterion density distribution c(r) Distribution of counterions in the droplet interior is governed by the Poisson-Boltzmann equation                    2 0 0 x e- = e[ - (0)]/ kBT : dimensionless potential with respect to the center x = r /lD : the dimensionless distance, lD : the characteristic thickness of the counterion layer, c0 : the counterion concentration at x=0 l k T 4 e c D w B 2 ( ) /   0 1 2 Solution of the Poisson- Boltzmann equation a a a 0 1 2 1 1 6 1 45    , , ,... Counterion concentration c x c a x j j j ( )     0 2 0 0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 -6 -5 -4 -3 -2 -1 0  (x) x  (x) = - ln ( a x ) j 2j j=0   0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 -6 -5 -4 -3 -2 -1 0  (x) x 0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 1 10 100 c(x) / c d x
  • 12. 12 Calculation of the fluctuation dipole moment of a droplet            2 4 k T R a (j 2) (2j 3)(2j 5) x w B wp 3 j wp 2(j 1) j 0 xwp = Rwp /lD (c0 ) Dissociation of surfactant molecules is described by the equilibrium relation   K T c e N N N s x s a s wp ( )   0  The dissociation constant Ks(T) has an Arrhenius temperature behavior K T K H k T s o B ( ) exp( )    Na : micelle aggregation number Ns : number of dissociated surfactant molecules Ks(T) : dissociation constant of the surfactant (xwp) : dimensionless electrical potential at the surface of the droplet H : apparent activation energy of the dissociation K0 : Arrhenius pre-exponential factor
  • 13. AOT-water-decane(hexane) microemulsions at W=26.3 with composition (vol%) (1.9:2.4:93.7)  (5.9:7.1:87.0)  (11.7:14.2:74.1)  (17.5:21.3:61.2)  2 4 6 8 10 12 300 400 500 Dipole M oment ( Debye ) Temperature ( o C ) Experimental fluctuation dipole moments Temperature dependencies of the apparent dipole moment of a droplet a = (<2 >)1/2 Rwp = ( 1.25 W + 2.7) = 35.6 Ångstrom
  • 14. 14 Modeling of the permittivity Experimental and calculated (solid line) static dielectric permittivity versus temperature for the AOT-water-decane microemulsions for various volume fractions of the dispersed phase: 0.39 (curve 4); 0.26 (curve 3); 0.13 (curve 2); 0.043 (curve 1) 5 10 15 20 25 30 2 4 6 8 10 12 14 16 18 20 22 Dielectric permittivity Temperature (oC)
  • 15. 15 c ( t/c ) cooperative relaxation f (t/f ) : fast processes (t): total DCF (t) = f ( t/f ) + c ( t/c ) R(t/R) R(t/R) : cluster rearrangements Dielectric relaxation in percolation : relaxation laws Dielectric relaxation in percolation : relaxation laws where = 0.41, = 0.39 e 1 - c t t < t xp[- c t ] t > t 1 c 2 c     (t) ~ where 0.8  exp[- c t + c t], 1 2       (t) = At (t) = At - -    exp [- exp [- (t/ (t/   ] ] Relaxation laws proposed for description of the Dipole Correlation Functions (DCF) of ionic microemulsions near percolation Our suggestion for fitting at the mesoscale region (t) ~
  • 16. 16 0.01 0.1 1 10 100 -3 -2 -1 0 C AA wt % 1.7 2.1 2.5 2.9 3.3 3.7 4.14 4.7 log(DCF ) time ( ns ) Macroscopic dipole correlation function behavior at percolation AOT/Acrylamide-water-toluene AOT-brine-decane 0.01 0.1 1 10 100 -3 -2 -1 0 Temperature 50 oC A = 80% A = 82.5% A = 85% A = 87.5% A = 90% A = 93.5% log( DCF ) time ( ns ) Percolation is caused by cosurfactant fraction brine fraction temperature 0.01 0.1 1 10 100 1000 -3 -2 -1 0 8 7 6 5 4 3 2 1 T oC 1 - 14 2 - 16 3 - 18 4 - 20 5 - 22 6 - 24 7 - 26 8 - 28 log ( DCF ) time (ns) 10 -3 -2 100 -3 -2 8 7 1 2 3 6 AOT-water-decane microemulsion (t) ~ At - 
  • 17. 17 Fitting function 10 15 20 25 30 35 40 0.0 0.2 0.4 0.6 0.8 1.0 1.2  Temperature ( oC ) 10 15 20 25 30 35 40 0.2 0.4 0.6 0.8 1.0 1.2  Temperature ( oC ) A A         AOT-water-decane microemulsion (17.5:21.3:61.2 vol%) 10 15 20 25 30 35 40 0.5 0.6 0.7 0.8 0.9 1 2 3 A Temperature ( oC ) 10 15 20 25 30 35 40 0 20 40 60 80 100 120 140  , ns Temperture ( o C) (t) = At - exp [- (t/]
  • 18. 18 Dielectric relaxation in percolation : model of recursive Dielectric relaxation in percolation : model of recursive fractal fractal nj = n0 pj Lj = bj zj = aLj  = a(bj) = akj k = b N * ( / ) (z) = [ ] g z zj n j N j   0 t : current time 1 : minimal time z = t /1 (z) : macroscopic relaxation function g*(z) : microscopic relaxation function : minimal spatial scale j : current self-similarity stage N : maximal self-similarity stage nj : number of monomers on the j-th stage Lj : spatial scale related to j-th stage zj : temporal scale related to j-th stage n0 ,a : proportionality factors b,p,k : scaling parameters E = 3 : Euclidean dimension D Df f = = E E   Feldman Yu, et al (1996) Feldman Yu, et al (1996) Phys Rev E 54: 5420 Phys Rev E 54: 5420 Df : fractal dimension Intermediate asymptotic N(Z) =A exp [ -B()Z + C()Z ] ln(p)/ln(k), Z=t/a 1 Lj
  • 19. 0.1 1 10 100 10 15 20 25 30 35 40  c (ns) Temperature ( o C) 10 15 20 25 30 35 40 0.5 1.0 1.5 2.0 2.5 2 1  D f Temperature o C Temperature dependence of the Temperature dependence of the stretching parameter stretching parameter   and the fractal dimension and the fractal dimension D Df f Temperature dependence of the Temperature dependence of the macroscopic effective relaxation macroscopic effective relaxation time time  c c Recursive fractal model: fitting results Recursive fractal model: fitting results
  • 20. 10 15 20 25 30 35 40 102 103 104 105 106 107 108 109 1010 L (Å) Temperature ( o C) 101 102 103 10 15 20 25 30 35 40 Temperature ( o C) N The effective length of the percolation cluster LN versus the temperature Temperature dependence of the number of droplets in the typical percolation cluster Recursive fractal model: fitting results Recursive fractal model: fitting results ? ?
  • 21. 21 Dielectric relaxation in percolation : statistical fractal description ? Dielectric relaxation in percolation : statistical fractal description ?         1 ds s w s t g t ) ( ,        1 m m ds s s s s s s s w ] ) / ( exp[ ] ) / ( exp[ ) (         ) ( / exp , s t s t g         s s 1                                   z s B z s A z m 2 2 2 m ) , , ( exp ) , , , ( Morphology parameters: sm : cut-off cluster size  : polydispersity index : cut-off rate index w(s) : Cluster size probability density distribution function g(t,s) : Relaxation function related to s-cluster Asymptotic behavior at z >> 1 , z = t /1 Dynamic parameters:  1 : minimal time scaling parameter 1 (t) : relaxation function 2 3 4  (t) = At (t) = At - -    exp [- (t/ exp [- (t/   ] ]
  • 22. 22 For For    Statistical fractal: results of Statistical fractal: results of calculations calculations 16 18 20 22 24 26 28 30 32 34 36 38 40 10 0 10 1 10 2 10 3 10 4 10 5 10 6 10 7 10 8 10 9 10 10 10 11 10 12 10 13 S m Temperature 0 C 1 1     2 1                            1 1 1 1 1 m S 10 15 20 25 30 35 40 0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0  Temperature o C 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42 0 1 2 3 4 5 6  Temperature o C
  • 23. 23  E Ds  E=3 E=3     0.6 0.6 S Sm m~10 ~1012 12 D Dd d   5 5 ? ?     m D E m s s w b s s w s s ~ , ~ ,      . ~ , ~ s s D m m D b s s and b s s   1   s D E s b  Condition of the Condition of the renormalization renormalization Renormalization in the static site percolation model Renormalization in the static site percolation model L sm bsL m S ~
  • 24. 24 Percolation cluster s Percolation cluster sm m Occupied sites and the percolation backbone on the effective square lattice Visualization of the dynamic percolation Visualization of the dynamic percolation    m 1 m s  A/ D/ O/ E/ y z  m   1 B C E D L H / l Q F L/l A O L/l x 2 1 2                  m H l L l L d m D s l L 1 
  • 25. 25 Hyperscaling relationship for dynamic percolation              d D m H d s L L b   1 1 2 1 b bd d is an is an expansion expansion coefficient coefficient 1   d D E d b  1 s 1 2 γD E αD 1 1 α 2 m d d                            0 0 d d D 1 D E   A O F B D C E L/l L/l L H . / l x y z m /1 D' A' Q Condition of the Condition of the renormalization renormalization s sm m   
  • 26. 26 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42 0 2 4 6 8 10 12 0.1  3* Temperature 0 C Experimental verification of hyperscaling relationship for dynamic percolation     0.6 0.6     0.2 0.2 E     1  d D E=3 E=3 D Dd d   5 5 ? ?              d D 1 1 2 m H d s 1 L L b   If sm < 1 s l L d m D 1 1 1 m                             2 1 2                  m H l L l L
  • 27. 27 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42 0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0 2.2 2.4 2.6 2.8 3.0 D s Temperature o C D Ds s=2.54 =2.54 m d d s s D 1 D D lg lg   4 1 m 10 6 l L        5 10 2 l L         2 1 m 10 2 . 1             L l m=120 10-9 s 1=1 10-9 s l~110-8 m Lh~2 10-3 m The relation between Dd and Ds            s m D 1 1 s    10 15 20 25 30 35 40 0.0 0.5 1.0 1.5 2.0 2.5 L eff , mm Temperature o C