1
NMR-Investigation of Structure of
Polymeric Multilayer Membranes and
Fluid Mobility inside Membranes
Results of NMR-diffusometry
2
Aims:
 To show that NMR-diffusometry can
be applied as a microscopic method
for studying some structural
properties of polymeric membranes
 To study features of fluid behavior
imbedded inside membrane
3
Why can NMR-diffusometry be
used as a microscopy?
introduction
4
Methodical basics of microscopy of
solid matrices…
Collection of particles
with well-known
characterizations
Interactions with
solid matrix
Collection of particles
with new
characterizations
SOLID MATRIX
5
Diffusometry as a microscopy
‘Free-moving’ fluid
molecules
(gas, liquid)
Interactions with solid
matrix (restrictions)
Fluid molecules
interacted with wall of
solid matrix
SOLID MATRIX
(porous medium)
6
Free diffusion: Time Dependence of
Mean Square Displacement
0 100 200 300 400 500 600
0
20
40
60
80
100
120
140
Monte-Carlo result
Einstein formula
experimental time
m.s.d.
Results of computer simulation (Monte-Carlo Method)
exp
2
exp
2
...,6 trdsmDtr 
x
z
y
Diffusion coefficient Experimental time
7
Free diffusion: Time Dependence of
Diffusion Coefficient D
exp
2
6Dtr 
0 100 200 300 400 500 600
20
30
40
50
D ( t exp
) = const ( t exp
)
DiffusionCoefficient,D
experimental time
Results of computer simulation (Monte-Carlo Method)
x
z
y
8
Restricted Diffusion: Time Dependence
of Mean Square Displacement
0 100 200 300 400 500 600
0
10
20
30
40
50
60
0
20
40
60
80
100
120
140
0 100 200 300 400 500 600
m.s.d.
experimental time
free diffusion
restricted diffusion
experimental time
m.s.d.
Results of computer simulation (Monte-Carlo Method)
x
z
y
d
9
Restricted Diffusion: Time
Dependence of D
x
Results of computer simulation (Monte-Carlo Method)
10
1
10
2
10
310
0
10
1
10
2
10
2
10
3
10
1
D
(texp
)~
texp
1
DiffusionCoefficient,D
experimental time
Free diffusion
Restricted diffusion
  1
expexpexp
2
exp
2
~,6
6








ttDDtd
dr
Dtr
z
y
d
10
NMR-Diffusometry:
Initial Information Is in Diffusion Decays
0 1 2 3 4 5 6
10
-6
10
-4
10
-2
10
0
SINGLE-exponential
diffusion decay
NormilizedAmplitude,A/A0
q
2
t exp
[ x 10
9
, m
2
s ]
 
 
 Dtq
qA
DtqA
A
A
exp
2exp
2
0 0
lnln 















0 1 2 3 4 5 6
0.4
0.5
0.6
0.7
0.8
0.9
1
NormalizedAmplitude,A/A0
q
2
t exp
[ x 10
9
, m
2
s ]
DOUBLE-exp. decay:
D 1
= 2.7 x 10
-9
, D 2
= 7 x 10
-11
THREE-exp. decay:
D 1
= 2.7 x 10
-9
, D 2
= 7 x 10
-11
D 2
= 2 x 10
-13
SINGLE-exp. decay
D = 2.7 x 10
-9
  ii i Dtqp
A
A
exp
2
0
ln 






D
11
NMR-Diffusometry:
Decay for Free Diffusion
Results of computer simulation (Monte-Carlo Method)
x
z
y
0 1 2 3
10
-4
10
-3
10
-2
10
-1
10
0
q
2
t exp
NormalizedAmplitude,A/A0
 Dtq
A
A
exp
2
0
ln 





12
0.0 0.5 1.0 1.5 2.0
10
-5
10
-4
10
-3
10
-2
10
-1
10
0
NormalizedAmplitude,A/A0
q
2
t exp
Free Diffusion
Restricted Diffusion
NMR-Diffusometry:
Decay for Restricted Diffusion
Results of computer simulation (Monte-Carlo Method)
z
y
d
  ii i Dtqp
A
A
exp
2
0
ln 






13
NMR-Diffusometry:
Average Propagator
     
   exp..exp
....exp..exp
,,
2exp,,
trPFTinversetqA
drqritrPtqA
dsm
dsmdsmdsm

  
0.000 0.005 0.010
0.02
0.04
0.06
0.08
0.10
0.12
0.14
DisplacementProbabilityDistribution
Displasement
Free Diffusion
Restricted Diffusion
0.0 0.5 1.0 1.5 2.0
10
-5
10
-4
10
-3
10
-2
10
-1
10
0
NormalizedAmplitude,A/A0
q
2
t exp
Free Diffusion
Restricted Diffusion
FFT
PROPAGATOR
14
NMR-Diffusometry: Remarks
 q = g,
 is gyromagnetic ratio of resonant nuclear;
 and g – duration and amplitude of pulsed field
gradient, respectively;
 it is unnecessary to have a transparent sample (like
for optic methods) or sample with specially prepared
surface, and so on…
 NMR does not produce sufficient changes in sample
(remaining radiation, damaged pore structure…)
 typical limits for application of NMR are
extremely short relaxation times
 NMR experiment may take a few days
15
NMR-Investigation of
Polymeric Porous Materials
experimental
16
Samples:
 Porous PA-6 filled with water
 Porous polyelectrolyte complex
PEI / PAAc (multilayers) filled with
water
 Porous polyelectrolyte complex
PEI / PAAc (multilayers) produced in
NaCl solution, filled with water
17
Equipment
 NMR spectrometer
Bruker AVANCE 500
operating on frequency 1H 500 MHz
 Diffusion probe Diff30
maximum g = 11.6 T/m
 t° = 22°C
18
PA-6: Shape of Diffusion Decays
0 20 40 60 80 100
10
-2
10
-1
10
0
D 1
= 7 x 10
-12
m
2
/ s
p 1
= 0.011
NormalizedAmplitude,A/A0
q
2
t exp
[ x 10
9
, m
2
s ]
t exp
= 400 ms
  ii i Dtqp
A
A
exp
2
0
ln 






10
-11
10
-10
10
-9
0.0
0.1
0.2
0.3
0.4
0.5
0.6
freewaterD
free water part
relativepopulation,pi
,
takenbycomponentwithDi
Diffusion Coefficient, D i
, m
2
/ s
19
PA-6: Time Dependence of D
0 20 40 60 80 100
10
-2
10
-1
10
0
50 60 70 80 90
0.005
0.006
0.007
0.008
NormalizedAmplitude,A/A0
q
2
t exp
[ x 10
9
, m
2
s ]
t exp
300 ms
400 ms
500 ms
q
2
t exp
[ x 10
9
, m
2
s ]
A/A0
10
-1
10
02x10
-12
10
-11
d = ( 6 D texp
)
1/2
d = ( 4.2 ± 0.1 ) m
D ~ t exp
1
DiffusionCoefficient,D,m
2
/s
experimental time, t exp
, s
20
PA-6: Molecular Exchange between
Water in Pores and Water outside Pores
0 10 20 30 40
0.01
0.02
0.03
0.04
Propagator,
DisplacementProbabilityDistribution
Displacement, m
t exp
400 ms
750 ms
900 ms
0.0 0.2 0.4 0.6 0.8 1.0
e
-5
e
-4
mean life-time of water inside pores
 = 1.1 s
water in pores
~ 2.5 %
relativepartofparticleslocatedinpores,pi
t exp
, s
21
PEI / PAAc: Shape of Diffusion Decay
0 50 100 150 200 250 300
10
-3
10
-2
10
-1
10
0
NormalizedAmplitude,A/A0
q
2
t exp
[ x 10
9
, m
2
s ]
PEI / PAA, t exp
= 400 ms
PA-6, t exp
= 400 ms
0 100 200 300
10
-3
10
-2
10
-1
10
0
NormalizedAmplitude,A/A0
q
2
t exp
[ x 10
9
, m
2
s ]
t exp
400
600
800
22
PEI / PAAc: Time-Dependence of
Diffusion Coefficient
0.1 1
10
-11
d = ( 6 D t exp
)
1/2
d = ( 5.6 ± 0.1 ) m
D ~ t exp
1
DiffusionCoefficient,D[m
2
/s]
Experimental Time, t exp
, s
23
PEI / PAAc: To Question about
Molecular Exchange
0 10 20 30
0.00
0.01
0.02
0.03
0.04
0.05
0.06
Propagator,
DisplacementProbabilityDistribution
Displacement, m
PEI / PAAc, t exp
= 400 ms
PA-6, t exp
= 400 ms
0 10 20 30
0.01
0.02
0.03
0.04
0.05
0.06
0.07
Displacement, m
Propagator,
DisplacementProbabilityDistribution
t exp
400 ms
600 ms
800 ms
Life-time of water molecules in the pore of PEI / PAAc is lager than
that for PA-6, at least, in a few times.
24
PEI / PAAc Produced in Salt Solution:
Diffusion Decays and Dependence D(t)
100 400
1
2
3
4
5
6
7
8
9
10
d = ( 6 D t exp
)
1/2
=
= ( 5.8 ± 0.1 ) m
D ~ t exp
1
DiffusionCoefficient,D,[x10
11
,m
2
/s]
Experimental Time, t exp
, ms
0 10 20 30 40
10
-2
10
-1
10
0
NormalizedAmplitude,A/A0
q
2
t exp
[ x 10
9
, m
2
s ]
t exp
100 ms
150 ms
200 ms
25
PEI / PAAc: To Question about
Molecular Exchange
0 10 20 30 40
0.00
0.01
0.02
0.03
0.04
0.05
0.06
0.07
Propagator,
DisplacementProbabilityDistribution
Displacement, m
t exp
100 ms
150 ms
200 ms
0 5 10 15 20
0.01
0.02
0.03
0.04
0.05
0.06
0.07
0 5 10 15 20
0.01
0.02
0.03
0.04
0.05
0.06
0.07
Propagator,
DisplacementProbabilityDistribution
Displacement, m
t exp
= 200 ms
PEI / PAAc
PEI / PAAc
in Salt-Solution
NormalizedPropagators
Displacement
26
Conclusions
 NMR-diffusometry permits:
a) to obtain information about pore size;
b) to characterize features of translational
mobility of fluid molecules inside porous
medium and interaction between solid
matrix and fluid trough the study of
molecular exchange.
27
Conclusions:
 polymeric membranes were studied:
a) the pore sizes were measured:
Material
Pore size,
μm
PA-6
PEI / PAAc
PEI / PAAc + NaCl
4.2±0.1
5.6±0.1
5.8±0.1
28
Conclusions:
b) the materials produced on basis of PEI /
PAAc complex are characterized by the
lager relative part of water located in
pores than porous PA-6;
c) for PA-6, the molecular exchange
between water in pores and water
outside pores were found;
for material PEI / PAAc this effect was
not registered, for material PEI / PAAc
produced in salt-solution molecular
exchange may exist.

More Related Content

PDF
A New Method for Determining the Size Distribution of Particles in CMP Slurries
PPT
CNT Nantes- 2011
PPT
The Cambridge Trimaster 2013
PPT
Ink jet rheology and processing-Monash 2009
PPT
Extreme Rheology- Cardiff- 2009
PDF
Session 4 ic2011 wang
PDF
Prez Baljaa09
PPTX
Nanoparticle Tracking Analysis (particle by particle technique)
A New Method for Determining the Size Distribution of Particles in CMP Slurries
CNT Nantes- 2011
The Cambridge Trimaster 2013
Ink jet rheology and processing-Monash 2009
Extreme Rheology- Cardiff- 2009
Session 4 ic2011 wang
Prez Baljaa09
Nanoparticle Tracking Analysis (particle by particle technique)

Similar to Diffusometry in polyelectrolyte membranes IPFDD2003 (8)

PDF
ConfinedBrownian MotionPhysRevE.49.5158.pdf
PPTX
Liquid Phase Difusibilty Mass Transfer.pptx
PDF
Pushkar N Patil
PDF
Dynamical heterogeneity and structural relaxation in periodically deformed po...
PPTX
Pore Geometry from the Internal Magnetic Fields
PPT
2 Brownian motion.ppt
PDF
GeorgeLiuJP1_FINAL
PDF
ON ESTIMATION OF TIME SCALES OF MASS TRANSPORT IN INHOMOGENOUS MATERIAL
ConfinedBrownian MotionPhysRevE.49.5158.pdf
Liquid Phase Difusibilty Mass Transfer.pptx
Pushkar N Patil
Dynamical heterogeneity and structural relaxation in periodically deformed po...
Pore Geometry from the Internal Magnetic Fields
2 Brownian motion.ppt
GeorgeLiuJP1_FINAL
ON ESTIMATION OF TIME SCALES OF MASS TRANSPORT IN INHOMOGENOUS MATERIAL
Ad

Diffusometry in polyelectrolyte membranes IPFDD2003

  • 1. 1 NMR-Investigation of Structure of Polymeric Multilayer Membranes and Fluid Mobility inside Membranes Results of NMR-diffusometry
  • 2. 2 Aims:  To show that NMR-diffusometry can be applied as a microscopic method for studying some structural properties of polymeric membranes  To study features of fluid behavior imbedded inside membrane
  • 3. 3 Why can NMR-diffusometry be used as a microscopy? introduction
  • 4. 4 Methodical basics of microscopy of solid matrices… Collection of particles with well-known characterizations Interactions with solid matrix Collection of particles with new characterizations SOLID MATRIX
  • 5. 5 Diffusometry as a microscopy ‘Free-moving’ fluid molecules (gas, liquid) Interactions with solid matrix (restrictions) Fluid molecules interacted with wall of solid matrix SOLID MATRIX (porous medium)
  • 6. 6 Free diffusion: Time Dependence of Mean Square Displacement 0 100 200 300 400 500 600 0 20 40 60 80 100 120 140 Monte-Carlo result Einstein formula experimental time m.s.d. Results of computer simulation (Monte-Carlo Method) exp 2 exp 2 ...,6 trdsmDtr  x z y Diffusion coefficient Experimental time
  • 7. 7 Free diffusion: Time Dependence of Diffusion Coefficient D exp 2 6Dtr  0 100 200 300 400 500 600 20 30 40 50 D ( t exp ) = const ( t exp ) DiffusionCoefficient,D experimental time Results of computer simulation (Monte-Carlo Method) x z y
  • 8. 8 Restricted Diffusion: Time Dependence of Mean Square Displacement 0 100 200 300 400 500 600 0 10 20 30 40 50 60 0 20 40 60 80 100 120 140 0 100 200 300 400 500 600 m.s.d. experimental time free diffusion restricted diffusion experimental time m.s.d. Results of computer simulation (Monte-Carlo Method) x z y d
  • 9. 9 Restricted Diffusion: Time Dependence of D x Results of computer simulation (Monte-Carlo Method) 10 1 10 2 10 310 0 10 1 10 2 10 2 10 3 10 1 D (texp )~ texp 1 DiffusionCoefficient,D experimental time Free diffusion Restricted diffusion   1 expexpexp 2 exp 2 ~,6 6         ttDDtd dr Dtr z y d
  • 10. 10 NMR-Diffusometry: Initial Information Is in Diffusion Decays 0 1 2 3 4 5 6 10 -6 10 -4 10 -2 10 0 SINGLE-exponential diffusion decay NormilizedAmplitude,A/A0 q 2 t exp [ x 10 9 , m 2 s ]      Dtq qA DtqA A A exp 2exp 2 0 0 lnln                 0 1 2 3 4 5 6 0.4 0.5 0.6 0.7 0.8 0.9 1 NormalizedAmplitude,A/A0 q 2 t exp [ x 10 9 , m 2 s ] DOUBLE-exp. decay: D 1 = 2.7 x 10 -9 , D 2 = 7 x 10 -11 THREE-exp. decay: D 1 = 2.7 x 10 -9 , D 2 = 7 x 10 -11 D 2 = 2 x 10 -13 SINGLE-exp. decay D = 2.7 x 10 -9   ii i Dtqp A A exp 2 0 ln        D
  • 11. 11 NMR-Diffusometry: Decay for Free Diffusion Results of computer simulation (Monte-Carlo Method) x z y 0 1 2 3 10 -4 10 -3 10 -2 10 -1 10 0 q 2 t exp NormalizedAmplitude,A/A0  Dtq A A exp 2 0 ln      
  • 12. 12 0.0 0.5 1.0 1.5 2.0 10 -5 10 -4 10 -3 10 -2 10 -1 10 0 NormalizedAmplitude,A/A0 q 2 t exp Free Diffusion Restricted Diffusion NMR-Diffusometry: Decay for Restricted Diffusion Results of computer simulation (Monte-Carlo Method) z y d   ii i Dtqp A A exp 2 0 ln       
  • 13. 13 NMR-Diffusometry: Average Propagator          exp..exp ....exp..exp ,, 2exp,, trPFTinversetqA drqritrPtqA dsm dsmdsmdsm     0.000 0.005 0.010 0.02 0.04 0.06 0.08 0.10 0.12 0.14 DisplacementProbabilityDistribution Displasement Free Diffusion Restricted Diffusion 0.0 0.5 1.0 1.5 2.0 10 -5 10 -4 10 -3 10 -2 10 -1 10 0 NormalizedAmplitude,A/A0 q 2 t exp Free Diffusion Restricted Diffusion FFT PROPAGATOR
  • 14. 14 NMR-Diffusometry: Remarks  q = g,  is gyromagnetic ratio of resonant nuclear;  and g – duration and amplitude of pulsed field gradient, respectively;  it is unnecessary to have a transparent sample (like for optic methods) or sample with specially prepared surface, and so on…  NMR does not produce sufficient changes in sample (remaining radiation, damaged pore structure…)  typical limits for application of NMR are extremely short relaxation times  NMR experiment may take a few days
  • 16. 16 Samples:  Porous PA-6 filled with water  Porous polyelectrolyte complex PEI / PAAc (multilayers) filled with water  Porous polyelectrolyte complex PEI / PAAc (multilayers) produced in NaCl solution, filled with water
  • 17. 17 Equipment  NMR spectrometer Bruker AVANCE 500 operating on frequency 1H 500 MHz  Diffusion probe Diff30 maximum g = 11.6 T/m  t° = 22°C
  • 18. 18 PA-6: Shape of Diffusion Decays 0 20 40 60 80 100 10 -2 10 -1 10 0 D 1 = 7 x 10 -12 m 2 / s p 1 = 0.011 NormalizedAmplitude,A/A0 q 2 t exp [ x 10 9 , m 2 s ] t exp = 400 ms   ii i Dtqp A A exp 2 0 ln        10 -11 10 -10 10 -9 0.0 0.1 0.2 0.3 0.4 0.5 0.6 freewaterD free water part relativepopulation,pi , takenbycomponentwithDi Diffusion Coefficient, D i , m 2 / s
  • 19. 19 PA-6: Time Dependence of D 0 20 40 60 80 100 10 -2 10 -1 10 0 50 60 70 80 90 0.005 0.006 0.007 0.008 NormalizedAmplitude,A/A0 q 2 t exp [ x 10 9 , m 2 s ] t exp 300 ms 400 ms 500 ms q 2 t exp [ x 10 9 , m 2 s ] A/A0 10 -1 10 02x10 -12 10 -11 d = ( 6 D texp ) 1/2 d = ( 4.2 ± 0.1 ) m D ~ t exp 1 DiffusionCoefficient,D,m 2 /s experimental time, t exp , s
  • 20. 20 PA-6: Molecular Exchange between Water in Pores and Water outside Pores 0 10 20 30 40 0.01 0.02 0.03 0.04 Propagator, DisplacementProbabilityDistribution Displacement, m t exp 400 ms 750 ms 900 ms 0.0 0.2 0.4 0.6 0.8 1.0 e -5 e -4 mean life-time of water inside pores  = 1.1 s water in pores ~ 2.5 % relativepartofparticleslocatedinpores,pi t exp , s
  • 21. 21 PEI / PAAc: Shape of Diffusion Decay 0 50 100 150 200 250 300 10 -3 10 -2 10 -1 10 0 NormalizedAmplitude,A/A0 q 2 t exp [ x 10 9 , m 2 s ] PEI / PAA, t exp = 400 ms PA-6, t exp = 400 ms 0 100 200 300 10 -3 10 -2 10 -1 10 0 NormalizedAmplitude,A/A0 q 2 t exp [ x 10 9 , m 2 s ] t exp 400 600 800
  • 22. 22 PEI / PAAc: Time-Dependence of Diffusion Coefficient 0.1 1 10 -11 d = ( 6 D t exp ) 1/2 d = ( 5.6 ± 0.1 ) m D ~ t exp 1 DiffusionCoefficient,D[m 2 /s] Experimental Time, t exp , s
  • 23. 23 PEI / PAAc: To Question about Molecular Exchange 0 10 20 30 0.00 0.01 0.02 0.03 0.04 0.05 0.06 Propagator, DisplacementProbabilityDistribution Displacement, m PEI / PAAc, t exp = 400 ms PA-6, t exp = 400 ms 0 10 20 30 0.01 0.02 0.03 0.04 0.05 0.06 0.07 Displacement, m Propagator, DisplacementProbabilityDistribution t exp 400 ms 600 ms 800 ms Life-time of water molecules in the pore of PEI / PAAc is lager than that for PA-6, at least, in a few times.
  • 24. 24 PEI / PAAc Produced in Salt Solution: Diffusion Decays and Dependence D(t) 100 400 1 2 3 4 5 6 7 8 9 10 d = ( 6 D t exp ) 1/2 = = ( 5.8 ± 0.1 ) m D ~ t exp 1 DiffusionCoefficient,D,[x10 11 ,m 2 /s] Experimental Time, t exp , ms 0 10 20 30 40 10 -2 10 -1 10 0 NormalizedAmplitude,A/A0 q 2 t exp [ x 10 9 , m 2 s ] t exp 100 ms 150 ms 200 ms
  • 25. 25 PEI / PAAc: To Question about Molecular Exchange 0 10 20 30 40 0.00 0.01 0.02 0.03 0.04 0.05 0.06 0.07 Propagator, DisplacementProbabilityDistribution Displacement, m t exp 100 ms 150 ms 200 ms 0 5 10 15 20 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0 5 10 15 20 0.01 0.02 0.03 0.04 0.05 0.06 0.07 Propagator, DisplacementProbabilityDistribution Displacement, m t exp = 200 ms PEI / PAAc PEI / PAAc in Salt-Solution NormalizedPropagators Displacement
  • 26. 26 Conclusions  NMR-diffusometry permits: a) to obtain information about pore size; b) to characterize features of translational mobility of fluid molecules inside porous medium and interaction between solid matrix and fluid trough the study of molecular exchange.
  • 27. 27 Conclusions:  polymeric membranes were studied: a) the pore sizes were measured: Material Pore size, μm PA-6 PEI / PAAc PEI / PAAc + NaCl 4.2±0.1 5.6±0.1 5.8±0.1
  • 28. 28 Conclusions: b) the materials produced on basis of PEI / PAAc complex are characterized by the lager relative part of water located in pores than porous PA-6; c) for PA-6, the molecular exchange between water in pores and water outside pores were found; for material PEI / PAAc this effect was not registered, for material PEI / PAAc produced in salt-solution molecular exchange may exist.