Handwritten digit recognition uses convolutional neural networks to recognize handwritten digits from images. The MNIST dataset, containing 60,000 training images and 10,000 test images of handwritten digits, is used to train models. Convolutional neural network architectures for this task typically involve convolutional layers to extract features, followed by flatten and dense layers to classify digits. When trained on the MNIST dataset, convolutional neural networks can accurately recognize handwritten digits in test images.