SlideShare a Scribd company logo
5
Most read
6
Most read
8
Most read
NATIONAL CHENG KUNG UNIVERSITY
Inst. of Manufacturing Information & Systems
DIGITAL IMAGE PROCESSING AND SOFTWARE
IMPLEMENTATION
HOMEWORK 1
Professor name: Chen, Shang-Liang
Student name: Nguyen Van Thanh
Student ID: P96007019
Class: P9-009 Image Processing and Software Implementation
Time: [4] 2  4
1
Table of Contents
PROBLEM................................................................................................................................................................. 2
SOLUTION................................................................................................................................................................ 3
3.2.1 Negative transformation ............................................................................................................................ 3
3.2.2 Log transformation..................................................................................................................................... 3
3.2.3 Power-law transformation ......................................................................................................................... 4
3.2.4 Piecewise-linear transformation ................................................................................................................ 7
3.3.1 Histogram equalization.............................................................................................................................10
3.4.2 Subtraction ...............................................................................................................................................12
3.6.1 Smoothing Linear Filters...........................................................................................................................14
3.6.2 Order-Statistics Filters..............................................................................................................................16
3.7.2 The Laplacian............................................................................................................................................17
3.7.3 The Gradient.............................................................................................................................................19
2
PROBLEM
影像處理與軟體實現[HW1]
課程碼:P953300 授課教授:陳響亮 教授 助教:陳怡瑄 日期:2011/03/10
題目:請以C# 撰寫一程式,可讀入一影像檔,並可執行以下之影像
空間強化功能。
a. 每一程式需設計一適當之人機操作介面。
b. 每一功能請以不同方法分開撰寫,各項參數需讓使用者自行輸入。
c. 以C# 撰寫時,可直接呼叫Matlab 現有函式,但呼叫多寡,將列為評分考量。
(呼叫越少,分數越高)
一、 基本灰階轉換
1. 影像負片轉換
2. Log轉換
3. 乘冪律轉換
4. 逐段線性函數轉換
二、 直方圖處理
1. 直方圖等化處理
2. 直方圖匹配處理
三、 使用算術/邏輯運算做增強
1. 影像相減增強
2. 影像平均增強
四、 平滑空間濾波器
1. 平滑線性濾波器
2. 排序統計濾波器
五、 銳化空間濾波器
1. 拉普拉斯銳化空間濾波器
2. 梯度銳化空間濾波器
3
SOLUTION
Using Matlab for solving the problem
3.2.1 Negative transformation
Given an image (input image) with gray level in the interval [0, L-1], the negative of that
image is obtained by using the expression: s = (L – 1) – r,
Where r is the gray level of the input image, and s is the gray level of the output.
In Matlab, we use the commands,
>> f=imread('Fig3.04(a).jpg');
g = imcomplement(f);
imshow(f), figure, imshow(g)
In/output image Out/in image
3.2.2 Log transformation
The Logarithm transformations are implemented using the expression:
s = c*log (1+r).
In this case, c = 1. The commands,
>> f=imread('Fig3.05(a).jpg');
g=im2uint8 (mat2gray (log (1+double (f))));
imshow(f), figure, imshow(g)
4
In/output image Out/in image
3.2.3 Power-law transformation
Power-law transformations have the basic form,
s = c*r. ^, where c and  are positive constants.
The commands,
>> f = imread ('Fig3.08(a).jpg');
f = im2double (f);
[m n]=size (f);
c = 1;
gama = input('gama value = ');
for i=1:m
for j=1:n
g(i,j)=c*(f(i,j)^gama);
end
end;
imshow(f),figure, imshow(g);
With  = 0.6, 0.4 and 0.3 respectively, we can get three images respectively, as shown in the
following figure,
5
a b
c d
(a) The original image. (b) – (d) result of applying the power -
law transformation with  = 0.6, 0.4 and 0.3 respectively
6
a b
c d
(a) The original image. (b) – (d) result of applying the power -
law transformation with  = 3, 4 and 5 respectively
7
3.2.4 Piecewise-linear transformation
Contrast stretching
The commands,
% function contrast stretching;
>> r1 = 100; s1 = 40;
r2 = 141; s2 = 216;
a = (s1/r1);
b = ((s2-s1)/ (r2-r1));
c = ((255-s2)/ (255-r2));
k = 0:r1;
y1 = a*k;
plot (k,y1); hold on;
k = r1: r2;
y2 = b*(k - r1) + a*r1;
plot (k,y2);
k = r2+1:255;
y3 = c*(k-r2) + b*(r2-r1)+a*r1;
plot (k,y3);
xlim([0 255]);
ylim([0 255]);
xlabel('input gray level, r');
ylabel('outphut gray level, s');
title('Form of transformation');
hold on; figure;
f = imread('Fig3.10(b).jpg');
[m, n] = size (f);
for i = 1:m
for j = 1:n
if((f(i,j)>=0) & (f(i,j)<=r1))
g(i,j) = a*f(i,j);
else
if((f(i,j)>r1) & (f(i,j)<=r2))
g(i,j) = ((b*(f(i,j)-r1)+(a*r1)));
else
if((f(i,j)>r2) & (f(i,j)<=255))
g(i,j) = ((c*(f(i,j)-r2)+(b*(r2-r1)+(a*r1))));
end
end
end
end
end
imshow(f), figure, imshow(g);
% function thresholding
>> f = imread('Fig3.10(b).jpg');
[m, n] = size(f);
for i = 1:m
for j = 1:n
if((f(i,j)>=0) & (f(i,j)<128))
8
g(i,j) = 0;
else
g(i,j) = 255;
end
end
end
imshow(f), figure, imshow(g);
(a) Form of contrast stretching transformation function.
(b) A low-contrast image. (c) Result of contrast stretching. (d)
Result of thresholding
a b
c d
9
(a) An 8-bit image. (b) – (f) The 8 bit plane
a b c
d e f
10
3.3.1 Histogram equalization
The transformation function of histogram equalization is
( ) ∑ ( ) ∑
k = 0, 1, …, L – 1.
% Histogram;
f1 = imread('Fig3.15(a)1top.jpg');
f2 = imread('Fig3.15(a)2.jpg');
f3 = imread('Fig3.15(a)3.jpg');
f4 = imread('Fig3.15(a)4.jpg');
f = input('image: ');
imhist(f), figure;
g = histeq(f, 256);
imshow(g), figure, imhist(g);
a b c
Fig. 3.17 Transformation functions (1) through (4) were obtained from the
images in Fig. 3.17 (a), using histogram equalization
11
a b
Fig. 3.15 Four
basic image
types: dark,
light, low
contrast, high
contrast, and
their
corresponding
histograms
12
a b c
Fig. 3.17 (a) Image from Fig. 3.15. (b) Results of histogram equalization. (c)
Corresponding histograms.
13
3.4.2 Subtraction
The difference between tow images f (x, y) and h (x, y), expressed as
g (x, y) = f (x, y) – h (x, y),
The commands,
f1 = imread('Fig3.28.a.jpg');
f2 = imread('Fig3.28.b.jpg');
f3 = imsubtract(f1,f2);
f4 = histeq(f3,256);
imshow(f3), figure, imshow(f4);
a b
c d
Fig. 3.17 (a) The first image. (b) The second image. (c) Difference between (a) and
(b). (d) Histogram – equalized difference image.
14
3.6.1 Smoothing Linear Filters
The commands,
f = imread('Fig3.35(a).jpg');
w3 = 1/ (3. ^2)*ones (3);
g3 = imfilter (f, w3, 'conv', 'replicate', 'same');
w5 = 1/ (5. ^2)*ones (5);
g5 = imfilter (f, w5, 'conv', 'replicate', 'same');
w9 = 1/ (9. ^2)*ones (9);
g9 = imfilter (f, w9, 'conv', 'replicate', 'same');
w15 = 1/ (15. ^2)*ones (15);
g15 = imfilter (f, w15, 'conv', 'replicate', 'same');
w35 = 1/ (35. ^2)*ones (35);
g35 = imfilter(f, w35, 'conv', 'replicate', 'same');
imshow (g3), figure, imshow (g5), figure, imshow (g9), figure, imshow
(g15), figure, imshow (g35), figure;
h = imread ('Fig3.36(a).jpg');
h15 = imfilter (h, w15, 'conv', 'replicate', 'same');
[m, n] = size (h15);
for i = 1:m
for j = 1:n
if ((h15 (i,j)>=0) & (h15 (i,j)<128))
g (i,j) = 0;
else
g(i,j) = 255;
end
end
end
imshow(h15), figure, imshow(g);
15
Fig. 3.35 (a) Original image, of size 500 x 500 pixels. (b) – (f) Result of
smoothing with square averaging filter masks of size n = 3, 5, 9, 15,
and 35 respectively.
a b
c d
e f
16
3.6.2 Order-Statistics Filters
The commands,
>> f = imread('Fig3.37(a).jpg');
w3 = 1/(3.^2)*ones(3);
g3 = imfilter(f, w3, 'conv', 'replicate', 'same');
g = medfilt2(g3);
imshow(g3), figure, imshow(g);
a b c
Fig. 3.36 (a) Original image. (b) Image processed by a 15 x 15 averaging mask.
(c) Result of thresholding (b)
Fig. 3.37 (a) X – ray image of circuit board corrupted by salt – and –
pepper noise. (b) Noise reduction with a 3 x 3 averaging mask. (c)
Noise reduction with a 3 x 3 median filter
a b c
17
3.7.2 The Laplacian
The Laplacian for image enhancement is as follows:
( )
{
( ) ( )
( ) ( )
( )
The commands,
% Laplacian function
f1 = imread('Fig3.40(a).jpg');
w4 = fspecial('laplacian', 0);
g1 = imfilter(f1, w4, 'replicate');
imshow(g1, [ ]), figure;
f2 = im2double(f1);
g2 = imfilter(f2, w4, 'replicate');
imshow(g2, [ ]), figure;
g3 = imsubtract(f2,g2);
imshow(g3)
Fig. 3.40 (a) Image of
the North Pole
of the moon.
(b) Laplacian
image scaled
for display
purposes. (d)
Image
enhanced by
Eq. (3.7 – 5)
a b
c d
18
% Laplacian simplication
f1 = imread ('Fig3.41(c).jpg');
w5 = [0 -1 0; -1 5 -1; 0 -1 0];
g1 = imfilter (f1, w5, 'replicate');
imshow (g1), figure;
w9 = [-1 -1 -1; -1 9 -1; -1 -1 -1];
g2 = imfilter (f1, w9, 'replicate');
imshow (g2);
0 -1 0
-1 5 -1
0 -1 0
-1 -1 -1
-1 9 -1
-1 -1 -1
a b c
d e
Fig. 3.37 (a) Composite Laplacian mask. (b) A second composite
mask. (c) Scanning electron microscope image. (d) and (e)
Result of filtering with the masks in (a) and (b) respectively.
19
3.7.3 The Gradient
The commands,
>> f1 = imread('Fig3.45(a).jpg');
w = fspecial('sobel');
g1 = imfilter(f1, w, 'replicate');
imshow(g1);
a b Fig. 3.45 (a) Optical image of contact lens (note defects on the
boundary at 4 and 5 o’clock). (b) Sobel gradient

More Related Content

PPT
Spatial filtering
PPTX
Chapter 8 image compression
PPTX
Image Restoration (Frequency Domain Filters):Basics
PPTX
Log Transformation in Image Processing with Example
PDF
Digital Image Processing - Image Restoration
DOCX
The Digital Image Processing Q@A
PPT
Enhancement in spatial domain
PDF
Image Restoration (Digital Image Processing)
Spatial filtering
Chapter 8 image compression
Image Restoration (Frequency Domain Filters):Basics
Log Transformation in Image Processing with Example
Digital Image Processing - Image Restoration
The Digital Image Processing Q@A
Enhancement in spatial domain
Image Restoration (Digital Image Processing)

What's hot (20)

PPSX
Image Enhancement in Spatial Domain
PPTX
Image Restoration (Order Statistics Filters)
PPTX
Image enhancement techniques
PPTX
Unit 2. Image Enhancement in Spatial Domain.pptx
PDF
Digital image processing using matlab: filters (detail)
PPTX
Chapter 1 and 2 gonzalez and woods
PPTX
Filtering an image is to apply a convolution
PPTX
Chapter 6 color image processing
PPTX
Unit3 dip
PPT
Image segmentation
PPT
Image Restoration
PPTX
Digital Image restoration
PDF
Noise Models
PPTX
Spatial Filters (Digital Image Processing)
PPTX
COM2304: Intensity Transformation and Spatial Filtering – I (Intensity Transf...
PPTX
Morphological image processing
PDF
Image restoration
PPTX
Module 31
PDF
digital image processing, image processing
PPTX
Image Filtering in the Frequency Domain
Image Enhancement in Spatial Domain
Image Restoration (Order Statistics Filters)
Image enhancement techniques
Unit 2. Image Enhancement in Spatial Domain.pptx
Digital image processing using matlab: filters (detail)
Chapter 1 and 2 gonzalez and woods
Filtering an image is to apply a convolution
Chapter 6 color image processing
Unit3 dip
Image segmentation
Image Restoration
Digital Image restoration
Noise Models
Spatial Filters (Digital Image Processing)
COM2304: Intensity Transformation and Spatial Filtering – I (Intensity Transf...
Morphological image processing
Image restoration
Module 31
digital image processing, image processing
Image Filtering in the Frequency Domain
Ad

Similar to Digital image processing using matlab: basic transformations, filters and operators (20)

PPT
annotated-chap-3-gw.ppt
PDF
Aistats RTD
DOCX
Existing method used for analysis of images
DOCX
Existing method used for analysis of images
DOCX
PPT
G Intensity transformation and spatial filtering(1).ppt
PPTX
Lect 03 - first portion
PPT
Ch 3. Image Enhancement in the Spatial Domain_okay.ppt
PPTX
Notes on image processing
PDF
DIP_Manual.pdf
DOC
1.funtions (1)
PDF
Digital Image processing is the class of methods that deal with manipulating ...
PPT
Lect02.ppt
PPTX
ch-2.2 histogram image processing .pptx
PDF
Funções 1
PPTX
Introduction to image contrast and enhancement method
PDF
Hand book of Howard Anton calculus exercises 8th edition
PPT
Computer vision 3 4
DOCX
Image Processing Homework 1
annotated-chap-3-gw.ppt
Aistats RTD
Existing method used for analysis of images
Existing method used for analysis of images
G Intensity transformation and spatial filtering(1).ppt
Lect 03 - first portion
Ch 3. Image Enhancement in the Spatial Domain_okay.ppt
Notes on image processing
DIP_Manual.pdf
1.funtions (1)
Digital Image processing is the class of methods that deal with manipulating ...
Lect02.ppt
ch-2.2 histogram image processing .pptx
Funções 1
Introduction to image contrast and enhancement method
Hand book of Howard Anton calculus exercises 8th edition
Computer vision 3 4
Image Processing Homework 1
Ad

Recently uploaded (20)

PDF
Module 4: Burden of Disease Tutorial Slides S2 2025
PDF
O5-L3 Freight Transport Ops (International) V1.pdf
PDF
102 student loan defaulters named and shamed – Is someone you know on the list?
PPTX
Cell Structure & Organelles in detailed.
PDF
Computing-Curriculum for Schools in Ghana
PDF
Supply Chain Operations Speaking Notes -ICLT Program
PDF
VCE English Exam - Section C Student Revision Booklet
PDF
grade 11-chemistry_fetena_net_5883.pdf teacher guide for all student
PPTX
master seminar digital applications in india
PDF
Chapter 2 Heredity, Prenatal Development, and Birth.pdf
PDF
Physiotherapy_for_Respiratory_and_Cardiac_Problems WEBBER.pdf
PDF
Microbial disease of the cardiovascular and lymphatic systems
PPTX
IMMUNITY IMMUNITY refers to protection against infection, and the immune syst...
PDF
O7-L3 Supply Chain Operations - ICLT Program
PPTX
PPH.pptx obstetrics and gynecology in nursing
PDF
Pre independence Education in Inndia.pdf
PDF
Abdominal Access Techniques with Prof. Dr. R K Mishra
PDF
01-Introduction-to-Information-Management.pdf
PDF
Classroom Observation Tools for Teachers
PPTX
1st Inaugural Professorial Lecture held on 19th February 2020 (Governance and...
Module 4: Burden of Disease Tutorial Slides S2 2025
O5-L3 Freight Transport Ops (International) V1.pdf
102 student loan defaulters named and shamed – Is someone you know on the list?
Cell Structure & Organelles in detailed.
Computing-Curriculum for Schools in Ghana
Supply Chain Operations Speaking Notes -ICLT Program
VCE English Exam - Section C Student Revision Booklet
grade 11-chemistry_fetena_net_5883.pdf teacher guide for all student
master seminar digital applications in india
Chapter 2 Heredity, Prenatal Development, and Birth.pdf
Physiotherapy_for_Respiratory_and_Cardiac_Problems WEBBER.pdf
Microbial disease of the cardiovascular and lymphatic systems
IMMUNITY IMMUNITY refers to protection against infection, and the immune syst...
O7-L3 Supply Chain Operations - ICLT Program
PPH.pptx obstetrics and gynecology in nursing
Pre independence Education in Inndia.pdf
Abdominal Access Techniques with Prof. Dr. R K Mishra
01-Introduction-to-Information-Management.pdf
Classroom Observation Tools for Teachers
1st Inaugural Professorial Lecture held on 19th February 2020 (Governance and...

Digital image processing using matlab: basic transformations, filters and operators

  • 1. NATIONAL CHENG KUNG UNIVERSITY Inst. of Manufacturing Information & Systems DIGITAL IMAGE PROCESSING AND SOFTWARE IMPLEMENTATION HOMEWORK 1 Professor name: Chen, Shang-Liang Student name: Nguyen Van Thanh Student ID: P96007019 Class: P9-009 Image Processing and Software Implementation Time: [4] 2  4
  • 2. 1 Table of Contents PROBLEM................................................................................................................................................................. 2 SOLUTION................................................................................................................................................................ 3 3.2.1 Negative transformation ............................................................................................................................ 3 3.2.2 Log transformation..................................................................................................................................... 3 3.2.3 Power-law transformation ......................................................................................................................... 4 3.2.4 Piecewise-linear transformation ................................................................................................................ 7 3.3.1 Histogram equalization.............................................................................................................................10 3.4.2 Subtraction ...............................................................................................................................................12 3.6.1 Smoothing Linear Filters...........................................................................................................................14 3.6.2 Order-Statistics Filters..............................................................................................................................16 3.7.2 The Laplacian............................................................................................................................................17 3.7.3 The Gradient.............................................................................................................................................19
  • 3. 2 PROBLEM 影像處理與軟體實現[HW1] 課程碼:P953300 授課教授:陳響亮 教授 助教:陳怡瑄 日期:2011/03/10 題目:請以C# 撰寫一程式,可讀入一影像檔,並可執行以下之影像 空間強化功能。 a. 每一程式需設計一適當之人機操作介面。 b. 每一功能請以不同方法分開撰寫,各項參數需讓使用者自行輸入。 c. 以C# 撰寫時,可直接呼叫Matlab 現有函式,但呼叫多寡,將列為評分考量。 (呼叫越少,分數越高) 一、 基本灰階轉換 1. 影像負片轉換 2. Log轉換 3. 乘冪律轉換 4. 逐段線性函數轉換 二、 直方圖處理 1. 直方圖等化處理 2. 直方圖匹配處理 三、 使用算術/邏輯運算做增強 1. 影像相減增強 2. 影像平均增強 四、 平滑空間濾波器 1. 平滑線性濾波器 2. 排序統計濾波器 五、 銳化空間濾波器 1. 拉普拉斯銳化空間濾波器 2. 梯度銳化空間濾波器
  • 4. 3 SOLUTION Using Matlab for solving the problem 3.2.1 Negative transformation Given an image (input image) with gray level in the interval [0, L-1], the negative of that image is obtained by using the expression: s = (L – 1) – r, Where r is the gray level of the input image, and s is the gray level of the output. In Matlab, we use the commands, >> f=imread('Fig3.04(a).jpg'); g = imcomplement(f); imshow(f), figure, imshow(g) In/output image Out/in image 3.2.2 Log transformation The Logarithm transformations are implemented using the expression: s = c*log (1+r). In this case, c = 1. The commands, >> f=imread('Fig3.05(a).jpg'); g=im2uint8 (mat2gray (log (1+double (f)))); imshow(f), figure, imshow(g)
  • 5. 4 In/output image Out/in image 3.2.3 Power-law transformation Power-law transformations have the basic form, s = c*r. ^, where c and  are positive constants. The commands, >> f = imread ('Fig3.08(a).jpg'); f = im2double (f); [m n]=size (f); c = 1; gama = input('gama value = '); for i=1:m for j=1:n g(i,j)=c*(f(i,j)^gama); end end; imshow(f),figure, imshow(g); With  = 0.6, 0.4 and 0.3 respectively, we can get three images respectively, as shown in the following figure,
  • 6. 5 a b c d (a) The original image. (b) – (d) result of applying the power - law transformation with  = 0.6, 0.4 and 0.3 respectively
  • 7. 6 a b c d (a) The original image. (b) – (d) result of applying the power - law transformation with  = 3, 4 and 5 respectively
  • 8. 7 3.2.4 Piecewise-linear transformation Contrast stretching The commands, % function contrast stretching; >> r1 = 100; s1 = 40; r2 = 141; s2 = 216; a = (s1/r1); b = ((s2-s1)/ (r2-r1)); c = ((255-s2)/ (255-r2)); k = 0:r1; y1 = a*k; plot (k,y1); hold on; k = r1: r2; y2 = b*(k - r1) + a*r1; plot (k,y2); k = r2+1:255; y3 = c*(k-r2) + b*(r2-r1)+a*r1; plot (k,y3); xlim([0 255]); ylim([0 255]); xlabel('input gray level, r'); ylabel('outphut gray level, s'); title('Form of transformation'); hold on; figure; f = imread('Fig3.10(b).jpg'); [m, n] = size (f); for i = 1:m for j = 1:n if((f(i,j)>=0) & (f(i,j)<=r1)) g(i,j) = a*f(i,j); else if((f(i,j)>r1) & (f(i,j)<=r2)) g(i,j) = ((b*(f(i,j)-r1)+(a*r1))); else if((f(i,j)>r2) & (f(i,j)<=255)) g(i,j) = ((c*(f(i,j)-r2)+(b*(r2-r1)+(a*r1)))); end end end end end imshow(f), figure, imshow(g); % function thresholding >> f = imread('Fig3.10(b).jpg'); [m, n] = size(f); for i = 1:m for j = 1:n if((f(i,j)>=0) & (f(i,j)<128))
  • 9. 8 g(i,j) = 0; else g(i,j) = 255; end end end imshow(f), figure, imshow(g); (a) Form of contrast stretching transformation function. (b) A low-contrast image. (c) Result of contrast stretching. (d) Result of thresholding a b c d
  • 10. 9 (a) An 8-bit image. (b) – (f) The 8 bit plane a b c d e f
  • 11. 10 3.3.1 Histogram equalization The transformation function of histogram equalization is ( ) ∑ ( ) ∑ k = 0, 1, …, L – 1. % Histogram; f1 = imread('Fig3.15(a)1top.jpg'); f2 = imread('Fig3.15(a)2.jpg'); f3 = imread('Fig3.15(a)3.jpg'); f4 = imread('Fig3.15(a)4.jpg'); f = input('image: '); imhist(f), figure; g = histeq(f, 256); imshow(g), figure, imhist(g); a b c Fig. 3.17 Transformation functions (1) through (4) were obtained from the images in Fig. 3.17 (a), using histogram equalization
  • 12. 11 a b Fig. 3.15 Four basic image types: dark, light, low contrast, high contrast, and their corresponding histograms
  • 13. 12 a b c Fig. 3.17 (a) Image from Fig. 3.15. (b) Results of histogram equalization. (c) Corresponding histograms.
  • 14. 13 3.4.2 Subtraction The difference between tow images f (x, y) and h (x, y), expressed as g (x, y) = f (x, y) – h (x, y), The commands, f1 = imread('Fig3.28.a.jpg'); f2 = imread('Fig3.28.b.jpg'); f3 = imsubtract(f1,f2); f4 = histeq(f3,256); imshow(f3), figure, imshow(f4); a b c d Fig. 3.17 (a) The first image. (b) The second image. (c) Difference between (a) and (b). (d) Histogram – equalized difference image.
  • 15. 14 3.6.1 Smoothing Linear Filters The commands, f = imread('Fig3.35(a).jpg'); w3 = 1/ (3. ^2)*ones (3); g3 = imfilter (f, w3, 'conv', 'replicate', 'same'); w5 = 1/ (5. ^2)*ones (5); g5 = imfilter (f, w5, 'conv', 'replicate', 'same'); w9 = 1/ (9. ^2)*ones (9); g9 = imfilter (f, w9, 'conv', 'replicate', 'same'); w15 = 1/ (15. ^2)*ones (15); g15 = imfilter (f, w15, 'conv', 'replicate', 'same'); w35 = 1/ (35. ^2)*ones (35); g35 = imfilter(f, w35, 'conv', 'replicate', 'same'); imshow (g3), figure, imshow (g5), figure, imshow (g9), figure, imshow (g15), figure, imshow (g35), figure; h = imread ('Fig3.36(a).jpg'); h15 = imfilter (h, w15, 'conv', 'replicate', 'same'); [m, n] = size (h15); for i = 1:m for j = 1:n if ((h15 (i,j)>=0) & (h15 (i,j)<128)) g (i,j) = 0; else g(i,j) = 255; end end end imshow(h15), figure, imshow(g);
  • 16. 15 Fig. 3.35 (a) Original image, of size 500 x 500 pixels. (b) – (f) Result of smoothing with square averaging filter masks of size n = 3, 5, 9, 15, and 35 respectively. a b c d e f
  • 17. 16 3.6.2 Order-Statistics Filters The commands, >> f = imread('Fig3.37(a).jpg'); w3 = 1/(3.^2)*ones(3); g3 = imfilter(f, w3, 'conv', 'replicate', 'same'); g = medfilt2(g3); imshow(g3), figure, imshow(g); a b c Fig. 3.36 (a) Original image. (b) Image processed by a 15 x 15 averaging mask. (c) Result of thresholding (b) Fig. 3.37 (a) X – ray image of circuit board corrupted by salt – and – pepper noise. (b) Noise reduction with a 3 x 3 averaging mask. (c) Noise reduction with a 3 x 3 median filter a b c
  • 18. 17 3.7.2 The Laplacian The Laplacian for image enhancement is as follows: ( ) { ( ) ( ) ( ) ( ) ( ) The commands, % Laplacian function f1 = imread('Fig3.40(a).jpg'); w4 = fspecial('laplacian', 0); g1 = imfilter(f1, w4, 'replicate'); imshow(g1, [ ]), figure; f2 = im2double(f1); g2 = imfilter(f2, w4, 'replicate'); imshow(g2, [ ]), figure; g3 = imsubtract(f2,g2); imshow(g3) Fig. 3.40 (a) Image of the North Pole of the moon. (b) Laplacian image scaled for display purposes. (d) Image enhanced by Eq. (3.7 – 5) a b c d
  • 19. 18 % Laplacian simplication f1 = imread ('Fig3.41(c).jpg'); w5 = [0 -1 0; -1 5 -1; 0 -1 0]; g1 = imfilter (f1, w5, 'replicate'); imshow (g1), figure; w9 = [-1 -1 -1; -1 9 -1; -1 -1 -1]; g2 = imfilter (f1, w9, 'replicate'); imshow (g2); 0 -1 0 -1 5 -1 0 -1 0 -1 -1 -1 -1 9 -1 -1 -1 -1 a b c d e Fig. 3.37 (a) Composite Laplacian mask. (b) A second composite mask. (c) Scanning electron microscope image. (d) and (e) Result of filtering with the masks in (a) and (b) respectively.
  • 20. 19 3.7.3 The Gradient The commands, >> f1 = imread('Fig3.45(a).jpg'); w = fspecial('sobel'); g1 = imfilter(f1, w, 'replicate'); imshow(g1); a b Fig. 3.45 (a) Optical image of contact lens (note defects on the boundary at 4 and 5 o’clock). (b) Sobel gradient