On	
  the	
  EEDI	
  and	
  Minimum	
  
Propulsion	
  Power	
  
A	
  case	
  study	
  of	
  Interim	
  Guidelines	
  for	
  
determining	
  minimum	
  propulsion	
  power	
  to	
  
maintain	
  the	
  manoeuvrability	
  of	
  ships	
  in	
  
adverse	
  condi:ons	
  	
  	
  	
  
Diploma	
  Thesis	
  Final	
  Presenta9on	
  
Supervising	
  professor:	
  Dr.	
  Apostolos	
  Papanikolaou	
  
Na9onal	
  Technical	
  University	
  of	
  Athens	
  
Georgios	
  N.	
  Antonopoulos	
  
R.N:	
  08107044	
  
The	
  Energy	
  Efficiency	
  Design	
  
Index	
  (EEDI)	
  
What	
  is	
  the	
  Energy	
  Efficiency	
  Design	
  
Index	
  (EEDI)?	
  
•  EEDI	
  is	
  a	
  performance	
  based	
  indicator	
  that	
  expresses	
  ship’s	
  
carbon	
  dioxide	
  emissions	
  (in	
  grams)	
  per	
  ship’s	
  transporta9on	
  
work,	
  given	
  as	
  capacity-­‐mile	
  
•  EEDI	
  takes	
  into	
  account	
  the	
  involuntary	
  loss	
  of	
  speed	
  due	
  to	
  
adverse	
  weather	
  condi9ons	
  (considered	
  BF6),	
  which	
  is	
  
expressed	
  by	
  the	
  fw	
  correc9on	
  coefficient	
  and	
  may	
  be	
  	
  
referred	
  to	
  as	
  EEDIweather.	
  
What	
  is	
  the	
  required	
  EEDI?	
  
•  Ships	
  bigger	
  than	
  400	
  GT,	
  with	
  building	
  
contracts	
  as	
  from	
  1st	
  of	
  January	
  2013	
  
and	
  the	
  delivery	
  of	
  which	
  is	
  on	
  or	
  a]er	
  
1	
  July	
  2015,	
  will	
  have	
  to	
  meet	
  an	
  EEDI	
  
marginal	
  value	
  criterion	
  (or	
  not	
  
surpass	
  the	
  relevant	
  EEDI	
  reference	
  
line),	
  which	
  depends	
  on	
  ship	
  type	
  and	
  
size.	
  
	
  
•  Following	
  the	
  two-­‐year	
  phase	
  zero	
  period,	
  the	
  
reference	
  level	
  will	
  be	
  9ghtened	
  incrementally	
  
every	
  five	
  years,	
  in	
  2015,	
  2020	
  and	
  2025	
  (via	
  
10%	
  EEDI	
  value	
  reduc9on	
  each	
  9me)	
  to	
  keep	
  
pace	
  with	
  technological	
  developments	
  related	
  
to	
  new	
  efficiency	
  and	
  powering	
  reduc9on	
  
measures.	
  	
  
•  This	
  required	
  price	
  (Required	
  EEDI)	
  
comes	
  from	
  a	
  baseline	
  created	
  from	
  
different	
  exis9ng	
  ships	
  build	
  from	
  1998	
  
to	
  2007	
  (Reference	
  Line)	
  with	
  data	
  
form	
  IHS-­‐Fairplay	
  data	
  base.	
  
•  Concerns	
  about	
  the	
  validity	
  of	
  the	
  
exis9ng	
  database	
  are	
  expressed	
  
Agained	
  EEDI	
  and	
  compliance	
  
measures	
  
•  Ships	
  whose	
  agained	
  
EEDI	
  is	
  greater	
  than	
  the	
  
required,	
  need	
  to	
  take	
  
measures	
  in	
  order	
  to	
  
comply	
  
•  There	
  are	
  various	
  
op9ons	
  regarding	
  the	
  
way	
  one	
  will	
  choose	
  to	
  
decrease	
  a	
  ship’s	
  
agained	
  EEDI	
  value	
  	
  
Op9ons	
  regarding	
  EEDI	
  compliance	
  
•  Slow-­‐steaming,	
  
meaning	
  the	
  voluntary	
  
reduc5on	
  of	
  a	
  ships	
  
MCR	
  and	
  consequently	
  
its	
  fuel	
  consump9on,	
  
speed	
  and	
  its	
  carbon	
  
dioxide	
  emissions	
  
•  Shi]ing	
  the	
  powering	
  
curve	
  to	
  the	
  right,	
  by	
  
means	
  of	
  
hydrodynamic	
  
op5miza5on	
  
•  Making	
  realis5c	
  
predic5ons	
  for	
  the	
  
power	
  requirements	
  of	
  
a	
  vessel,	
  based	
  on	
  its	
  
intended	
  trading	
  routes	
  
and	
  expected	
  weather	
  
condi9ons	
  	
  
•  Use	
  of	
  alterna5ve	
  fuels	
  	
  
•  Installa9on	
  of	
  
innova5ve	
  efficiency	
  
technologies	
  
Slow-­‐steaming	
  
+ A	
  method	
  already	
  widespread	
  in	
  the	
  shipping	
  industry	
  since	
  
2007,	
  when	
  a	
  drama9c	
  increase	
  in	
  the	
  price	
  of	
  crude	
  oil	
  
occurred	
  	
  
+ Enabled	
  the	
  shipping	
  industry	
  to	
  both	
  reduce	
  opera9onal	
  
costs	
  and	
  comply	
  with	
  the	
  new	
  regula9ons	
  	
  
-  Opera9ng	
  ships	
  at	
  a	
  lower	
  speed,	
  than	
  originally	
  planned,	
  is	
  
not	
  op9mal	
  in	
  many	
  respects	
  	
  
-  With	
  the	
  introduc9on	
  of	
  slow	
  steaming	
  and	
  of	
  
underpowered	
  ships,	
  ships'	
  manoeuvrability	
  will	
  be	
  
affected,	
  especially	
  when	
  ships	
  operate	
  in	
  extreme	
  weather	
  
phenomena	
  	
  
IMO	
  Standards	
  for	
  Ship	
  Manoeuvrability	
  in	
  
2002,	
  Res.	
  MSC.137(76)	
  	
  
Currently	
  Manoeuvrability	
  is	
  evaluated	
  with	
  specific	
  trial	
  manoeuvres	
  
in	
  calm	
  water,	
  in	
  full	
  load	
  condi5on	
  and	
  in	
  deep	
  water,	
  addressing	
  the	
  
following	
  ship	
  abili9es:	
  	
  
•  turning	
  using	
  hard-­‐over	
  rudder	
  	
  
•  ini9al	
  turning	
  (course-­‐changing)	
  	
  
	
  
But	
  Manoeuvrability	
  is	
  also	
  	
  influenced	
  by:	
  
•  Adverse	
  weather	
  condi9ons	
  (dri]	
  forces	
  due	
  to	
  waves	
  and	
  wind)	
  
•  Loading	
  Condi9ons	
  that	
  maximize	
  the	
  lateral	
  windage	
  area	
  and/or	
  
lead	
  to	
  rudder	
  surfacing	
  
•  Low	
  speed	
  
•  Shallow	
  waters	
  (squakng	
  effect)	
  
	
  
•  yaw-­‐checking	
  	
  
•  course-­‐keeping	
  	
  
•  emergency	
  stopping	
  	
  
Minimum	
  Propulsion	
  Power	
  
The	
  IACS	
  study	
  on	
  Minimum	
  Power	
  suggested	
  that	
  the	
  ship	
  should	
  be	
  able	
  to:	
  
1.	
  keep	
  speed	
  through	
  water	
  of	
  at	
  least	
  4.0	
  knots	
  in	
  waves	
  and	
  wind	
  from	
  
any	
  direc9on	
  	
  
–  ship	
  must	
  be	
  able	
  to	
  leave	
  coastal	
  area	
  in	
  sufficiently	
  short	
  5me,	
  before	
  
the	
  weather	
  condi9ons	
  become	
  even	
  more	
  severe	
  that	
  the	
  ship	
  will	
  not	
  be	
  
able	
  to	
  sail	
  in	
  the	
  open	
  sea	
  –	
  includes	
  margin	
  for	
  currents	
  
2.	
  Keep	
  course	
  in	
  waves	
  and	
  wind	
  from	
  any	
  direc9on	
  	
  
–  Course-­‐keeping	
  is	
  used	
  as	
  a	
  conserva5ve	
  criterion	
  to	
  ensure	
  
maneuverability	
  
•  To	
  address	
  this	
  issue,	
  IMO	
  developed	
  (on	
  the	
  basis	
  this	
  study)	
  the	
  Interim	
  
Guidelines	
  for	
  determining	
  minimum	
  propulsion	
  power	
  to	
  maintain	
  the	
  
maneuverability	
  of	
  ships	
  in	
  adverse	
  condi:ons	
  	
  	
  
•  These	
  	
  Interim	
  Guidelines	
  include	
  a	
  three-­‐level	
  assessment	
  (the	
  third	
  level	
  
has	
  been	
  removed	
  for	
  now)	
  aimed	
  to	
  determine	
  if	
  a	
  ship	
  has	
  the	
  available	
  
propulsion	
  power	
  to	
  maintain	
  her	
  maneuverability	
  in	
  adverse	
  weather	
  
condi5ons	
  	
  
•  If	
  a	
  vessel	
  complies	
  with	
  any	
  one	
  of	
  the	
  assessment	
  levels,	
  it	
  means	
  that	
  its	
  
installed	
  propulsion	
  power	
  is	
  deemed	
  sufficient	
  	
  
Interim	
  Guidelines	
  for	
  determining	
  minimum	
  propulsion	
  
power	
  to	
  maintain	
  the	
  maneuverability	
  of	
  ships	
  in	
  
adverse	
  condi:ons	
  	
  
Assessment	
  level	
  1:	
  Minimum	
  
power	
  lines	
  	
  
•  Installed	
  power	
  must	
  be	
  
greater	
  than	
  Minimum	
  
installed	
  power=	
  ax(DWT)-­‐b	
  
[kW]	
  
•  a,	
  b	
  defined	
  per	
  ship	
  type	
  
Assessment	
  level	
  1:	
  Simplified	
  
Assessment	
  
•  Consists	
  of	
  Excel-­‐level	
  
arithme9c	
  calcula9ons	
  
•  Requires	
  the	
  calcula9on	
  of	
  
added	
  resistance	
  in	
  waves	
  in	
  
respec9ve	
  environmental	
  
condi9ons	
  
•  RAW	
  Needs	
  to	
  be	
  determined	
  
through	
  tank-­‐tests	
  or	
  computer	
  
codes	
  
Greek	
  Document	
  in	
  MSC	
  23.91.5:	
  Safety	
  evalua:on	
  of	
  the	
  interim	
  
guidelines	
  for	
  determining	
  minimum	
  propulsion	
  power	
  to	
  maintain	
  
the	
  manoeuvrability	
  of	
  ships	
  under	
  adverse	
  weather	
  condi:ons	
  	
  
•  Proposed	
  an	
  increase	
  in	
  the	
  lower	
  values	
  of	
  Minimum	
  
Power	
  Lines	
  by	
  10-­‐15%	
  in	
  an	
  agempt	
  to	
  correct	
  
revealed	
  conflicts	
  between	
  the	
  two	
  assessment	
  levels	
  
•  Proposed	
  that	
  a	
  more	
  suitable	
  adverse	
  weather	
  
criterion	
  for	
  safe	
  maneuverability	
  is	
  minimum	
  speed	
  	
  
•  Proposed	
  the	
  use	
  of	
  10Bf	
  weather	
  criteria	
  as	
  a	
  result	
  of	
  
serious	
  concerns	
  expressed	
  regarding	
  the	
  adequacy	
  of	
  
the	
  current	
  weather	
  criteria	
  (which	
  were	
  considered	
  
not	
  sufficiently	
  severe)	
  	
  
Scope	
  of	
  this	
  Thesis	
  
•  inves9gate	
  the	
  viability	
  of	
  these	
  sample	
  ships	
  in	
  regard	
  to	
  
compliance	
  with	
  both	
  the	
  EEDI	
  and	
  the	
  Interim	
  Guidelines	
  	
  
•  further	
  inves9ga9on	
  on	
  some	
  of	
  the	
  proposals	
  made	
  in	
  MSC	
  
23.91.5	
  	
  
And,	
  also	
  for	
  one	
  of	
  the	
  ships:	
  
•  the	
  coefficient	
  fw	
  is	
  determined	
  and	
  the	
  EEDIweather	
  value	
  is	
  
calculated	
  
•  	
  the	
  rela9on	
  between	
  added	
  resistance	
  in	
  waves	
  to	
  total	
  
resistance	
  is	
  explored	
  	
  
A	
  case	
  study	
  on	
  4	
  ships	
  of	
  incrementally	
  bigger	
  size	
  and	
  installed	
  
power	
  aimed	
  to:	
  	
  
Approach	
  of	
  Added	
  Resistance	
  in	
  
Waves	
  
NewDriT	
  v.7	
  
•  3D	
  frequency	
  domain	
  panel	
  code	
  
based	
  on	
  near-­‐field	
  poten5al	
  
method	
  
•  used	
  to	
  solve	
  the	
  basic	
  sea-­‐
keeping	
  problem	
  and	
  to	
  calculate	
  
the	
  first	
  order	
  poten9al	
  and	
  the	
  
linear	
  ship	
  responses	
  	
  
•  computes	
  the	
  added	
  wave	
  
resistance	
  as	
  the	
  steady	
  second	
  
order	
  force	
  obtained	
  by	
  direct	
  
integra5on	
  of	
  the	
  hydrodynamic,	
  
steady	
  second	
  order	
  pressure	
  
ac9ng	
  on	
  the	
  hull’s	
  weged	
  
surface,	
  which	
  can	
  be	
  calculated	
  
exactly	
  from	
  first	
  order	
  poten9al	
  
func9ons	
  and	
  their	
  deriva9ves	
  
LIU	
  
•  3D	
  9me	
  domain	
  panel	
  code	
  
based	
  on	
  far-­‐field	
  poten5al	
  
method	
  
•  is	
  based	
  on	
  considera9ons	
  of	
  
the	
  diffracted	
  and	
  radiated	
  
wave	
  energy	
  and	
  
momentum	
  flux	
  at	
  infinity,	
  
leading	
  to	
  the	
  steady	
  added	
  
wave	
  resistance	
  force	
  by	
  the	
  
total	
  rate	
  of	
  momentum	
  
change	
  
Construc9on	
  of	
  panelized	
  surface	
  for	
  
“TEST_SHIP”	
  
•  for	
  the	
  applica5on	
  of	
  the	
  computer	
  codes	
  
used	
  for	
  our	
  calcula9ons,	
  a	
  panelized	
  
surface	
  of	
  sufficient	
  accuracy	
  of	
  the	
  hull	
  
needed	
  to	
  be	
  produced	
  (1080	
  panels)	
  
•  the	
  surface	
  was	
  described	
  by	
  quadrilateral	
  
elements	
  (panels),	
  which	
  are	
  formed	
  based	
  
on	
  four	
  points	
  
•  Based	
  on	
  the	
  geometric	
  complexity,	
  the	
  
hull	
  was	
  divided	
  into	
  groups	
  of	
  different	
  
density	
  
Approach	
  of	
  added	
  resistance	
  in	
  short	
  
waves	
  
•  Short	
  waves:	
  waves	
  which	
  are	
  less	
  than	
  0.5	
  of	
  the	
  ship’s	
  length	
  
•  High	
  prac9cal	
  interest:	
  most	
  encountered	
  waves	
  are	
  of	
  short	
  wave	
  size	
  
•  Zaraphoni9s	
  and	
  Papanikolaou	
  method:	
  
•  Inputs:	
  nodes	
  from	
  known	
  waterline	
  and	
  assigned	
  flare	
  angles,	
  Cb,	
  Fn	
  
•  Liu	
  and	
  Papanikolaou	
  simplified	
  formula:	
  
( )
1
cos 1 4
2 2
sin
1 0.87
sin 1 5
2
n
L
Fn
n a d
B
F F d
L
F g Fn
C
α
θ
ρ ζ α θ
λ
+
=
⎛ ⎞⎛ ⎞
= +⎜ ⎟⎜ ⎟⎜ ⎟
⎝ ⎠⎝ ⎠
∫
r
l
r
•  The	
  integral	
  can	
  be	
  approximated	
  by	
  the	
  
curve	
  shown	
  in	
  the	
  following	
  figure,	
  
according	
  to	
  the	
  vessel’s	
  Cb:	
  
	
  
Calcula9on	
  of	
  EEDI	
  for	
  all	
  vessels	
  
and	
  EEDIweather	
  for	
  “TEST_SHIP”	
  
EEDI	
  calcula9on-­‐important	
  factors	
  
•  EEDI	
  calcula9ons	
  correspond	
  to	
  the	
  
loading	
  condi9on	
  that	
  maximizes	
  
draught,	
  namely	
  Load	
  Line	
  or	
  Scantling	
  
•  PME:	
  The	
  vessel’s	
  main	
  power	
  is	
  defined	
  
as	
  a	
  75%	
  of	
  the	
  installed	
  MCR	
  
•  SFCME:	
  Specific	
  fuel	
  oil	
  consump9on	
  at	
  
75%	
  of	
  MCR	
  
•  PAE:	
  the	
  auxiliary	
  engine	
  power	
  is	
  
calculated	
  as	
  a	
  share	
  of	
  the	
  installed	
  
power	
  
•  SFCAE:	
  Specific	
  fuel	
  oil	
  consump9on	
  of	
  
the	
  auxiliary	
  engines	
  
•  CFME/AE:	
  conversion	
  factor	
  fuel	
  oil	
  to	
  CO2,	
  
dependent	
  of	
  the	
  fuel	
  type	
  
•  Capacity:	
  for	
  most	
  ship	
  types	
  is	
  
considered	
  equal	
  to	
  the	
  DWT	
  
•  Vref:	
  reference	
  speed,	
  in	
  EEDI	
  condi9ons	
  
In	
  order	
  to	
  determine	
  Vref,	
  in	
  absence	
  of	
  
tank	
  tests	
  in	
  EEDI	
  condi9on,	
  the	
  following	
  
graphical	
  method	
  proposed	
  by	
  IACS	
  was	
  
employed:	
  
Calcula9on	
  of	
  Vref	
  
0.00	
  
2000.00	
  
4000.00	
  
6000.00	
  
8000.00	
  
10000.00	
  
12000.00	
  
11	
   12	
   13	
   14	
   15	
   16	
  
P	
  (kW)	
  
Speed	
  (knots)	
  
SHIP_1	
  
holtrop@se
atrial	
  
hotrop@EE
DI	
  
sea	
  trial	
  
75%MCR	
  
0	
  
2000	
  
4000	
  
6000	
  
8000	
  
10000	
  
12000	
  
11	
   12	
   13	
   14	
   15	
   16	
  
Power,	
  P(kW)	
  
Velocity	
  V(knots)	
  
SHIP_2	
  
measured	
  
sea	
  trial	
  
corrected
@EEDIco
ndi9ons	
  
75%MCR	
  
0	
  
2000	
  
4000	
  
6000	
  
8000	
  
10000	
  
12000	
  
14000	
  
16000	
  
11	
   12	
   13	
   14	
   15	
   16	
  
P	
  (kW)	
  
V	
  (knots)	
  
SHIP_3	
  
measured	
  
sea	
  trial	
  
holtrop@
seatrial	
  
0.00	
  
2000.00	
  
4000.00	
  
6000.00	
  
8000.00	
  
10000.00	
  
12000.00	
  
9	
   10	
   11	
   12	
   13	
   14	
   15	
   16	
  
P	
  (kW)	
  
V	
  (knots)	
  
TEST_SHIP	
  Powering	
  curves	
  
Full	
  Load	
  
Departure	
  
HOLTROP
@EEDI	
  
75%MCR	
  
Agained	
  EEDI	
  of	
  studied	
  ships	
  
0	
  
2	
  
4	
  
6	
  
8	
  
10	
  
12	
  
14	
  
16	
  
18	
  
20	
  
0	
   50000	
   100000	
   150000	
   200000	
   250000	
   300000	
   350000	
   400000	
   450000	
  
EEDI	
  
DWT	
  (tons)	
  
EEDI	
  phases	
  0-­‐3	
  for	
  studied	
  ships	
  
EEDI(phase	
  0)	
  
EEDI(phase	
  1)	
  
EEDI(phase	
  2)	
  
EEDI(phase	
  3)	
  
TEST_SHIP	
  
SHIP_1	
  
SHIP_2	
  
SHIP_3	
  
•  All	
  studied	
  ships	
  complied	
  with	
  
EEDI	
  phase	
  0	
  required	
  value	
  
•  Smaller	
  ships	
  marginally	
  
complied	
  with	
  phase	
  0	
  values	
  
•  Larger	
  ships	
  more	
  easily	
  
sa9sfied	
  future	
  phases	
  required	
  
values	
  
Calcula9on	
  of	
  EEDIweather	
  for	
  
“TEST_SHIP”	
  
•  The	
  correc9on	
  factor	
  fw	
  is	
  expressed	
  as	
  the	
  ra9o	
  of	
  speed	
  in	
  adverse	
  condi9ons	
  
(BF	
  6)	
  	
  to	
  the	
  ship’s	
  speed	
  in	
  calm	
  water	
  
•  In	
  order	
  to	
  determine	
  the	
  ship’s	
  speed	
  in	
  adverse	
  condi9ons,	
  the	
  added	
  
resistance	
  in	
  waves	
  had	
  to	
  be	
  calculated	
  in	
  the	
  speed	
  range	
  0.6Vref-­‐Vref	
  
•  A	
  peak	
  wave	
  period	
  of	
  Ts=6.7s	
  corresponds	
  to	
  a	
  wave	
  length	
  of	
  λ=70.1	
  m,	
  for	
  the	
  
studied	
  vessel,	
  which	
  accounts	
  for	
  less	
  than	
  half	
  of	
  her	
  length	
  (short	
  wave	
  domain)	
  
•  The	
  new	
  method	
  from	
  Zaraphoni9s	
  and	
  Papanikolaou	
  was	
  used	
  to	
  determine	
  the	
  
added	
  resistance	
  in	
  waves	
  
•  In	
  order	
  to	
  calculate	
  the	
  added	
  resistance	
  from	
  wind,	
  a	
  formula	
  proposed	
  by	
  IACS	
  
was	
  used:	
  
0.00	
  
5000.00	
  
10000.00	
  
15000.00	
  
20000.00	
  
25000.00	
  
30000.00	
  
4.00	
   6.00	
   8.00	
   10.00	
   12.00	
   14.00	
  
Added	
  wave	
  Resistance	
  Raw(κP)	
  
V	
  (knots)	
  
Ts=6.7s,	
  χ=180	
  
ARISW_FAL	
  
ARISW_new	
  
ARISW_JAP	
  
0	
  
5000	
  
10000	
  
15000	
  
20000	
  
25000	
  
30000	
  
35000	
  
40000	
  
45000	
  
0	
   0.5	
   1	
   1.5	
  
Added	
  wave	
  Resistance	
  Raw	
  (kP)	
  
λ/L	
  
Fn=0.163,	
  χ=180,	
  ζw=1.5	
  m	
  
LIU	
  
ARISW_new	
  
ARISW_FAL	
  
ARISW_JAP	
  
NEWDRIFT	
  
λ=70.1	
  m	
  
•  A	
  new	
  powering	
  curve	
  was	
  
constructed,	
  which	
  takes	
  into	
  
account	
  the	
  added	
  resistance	
  in	
  
waves	
  and	
  wind:	
  
Calcula9on	
  of	
  EEDIweather	
  for	
  
“TEST_SHIP”	
  
0.00	
  
2000.00	
  
4000.00	
  
6000.00	
  
8000.00	
  
10000.00	
  
12000.00	
  
7	
   9	
   11	
   13	
   15	
  
P	
  (kW)	
  
V	
  (knots)	
  
TEST_SHIP	
  Powering	
  curves	
  
Full	
  Load	
  
Departure	
  
HOLTROP@EEDI	
  
75%MCR	
  
ΔRwave+ΔRair	
  
Rela9on	
  of	
  Added	
  Resistance	
  in	
  Waves	
  
to	
  Total	
  Resistance	
  
0.00	
  
20000.00	
  
40000.00	
  
60000.00	
  
80000.00	
  
100000.00	
  
120000.00	
  
6	
   7	
   8	
   9	
   10	
   11	
   12	
   13	
   14	
  
Resistance	
  (kp)	
   Velocity	
  (knots)	
  
Components	
  of	
  total	
  Resistance	
  
Rt(kP)	
  
Ra	
  
Rtr	
  
Rw	
  
Rapp	
  
(1+k1)Rf	
  
Rwave	
  
0.00%	
  
5.00%	
  
10.00%	
  
15.00%	
  
20.00%	
  
25.00%	
  
6	
   8	
   10	
   12	
   14	
  
V	
  (knots)	
  
Raw/Rtotal	
  
Raw	
  
•  In	
  increasingly	
  larger	
  Froude	
  
numbers	
  RAW	
  increases,	
  but	
  with	
  
a	
  decreasingly	
  gradient	
  rate:	
  
•  Significant	
  in	
  rela9vely	
  low	
  speeds,	
  as	
  it	
  
accounts	
  for	
  almost	
  a	
  20%	
  of	
  the	
  
vessel’s	
  RT	
  
•  In	
  greater	
  speeds,	
  fric9on	
  resistance	
  
proves	
  to	
  be	
  the	
  main	
  component	
  of	
  RT	
  
Applica9on	
  of	
  the	
  Interim	
  
Guidelines	
  for	
  determining	
  
minimum	
  propulsion	
  power	
  to	
  
maintain	
  the	
  maneuverability	
  of	
  
ships	
  in	
  adverse	
  condi:ons	
  	
  	
  
Applica9on	
  of	
  Minimum	
  Power	
  Lines	
  
•  “SHIP_1”	
  and	
  “TEST_SHIP”	
  (the	
  two	
  smaller	
  vessels)	
  manage	
  to	
  successfully	
  pass	
  
the	
  assessment,	
  with	
  the	
  second	
  doing	
  so	
  marginally	
  
•  “SHIP_2”	
  and	
  “SHIP_3”	
  fail	
  to	
  pass	
  the	
  assessment,	
  and	
  according	
  to	
  the	
  method	
  
are	
  found	
  seriously	
  underpowered	
  	
  
	
  
•  The	
  Greek	
  Proposal	
  stated	
  that	
  MPR	
  lower	
  values	
  should	
  be	
  increased	
  –	
  but	
  this	
  
may	
  lead	
  to	
  a	
  large	
  number	
  of	
  vessels	
  being	
  considered	
  underpowered	
  
Applica9on	
  of	
  Simplified	
  Method	
  
•  Reference	
  Environment	
  for	
  
“TEST_SHIP”	
  and	
  RAW	
  results:	
  
0	
  
20000	
  
40000	
  
60000	
  
80000	
  
100000	
  
120000	
  
140000	
  
160000	
  
0	
   0.5	
   1	
   1.5	
   2	
   2.5	
   3	
  
Added	
  wave	
  Resistance	
  Raw	
  (kP)	
  
λ/L	
  
Fn=0.115,	
  χ=180,	
  ζw=2.00m	
  
LIU	
  
ARISW_new	
  
ARISW_FAL	
  
ARISW_JAP	
  
NEWDRIFT	
  
0	
  
50000	
  
100000	
  
150000	
  
200000	
  
250000	
  
300000	
  
0	
   0.5	
   1	
   1.5	
   2	
   2.5	
   3	
  
Added	
  wave	
  Resistance	
  Raw	
  (kP)	
  
λ/L	
  
Fn=0.115,	
  χ=180,	
  ζw=2.75m	
  
LIU	
  
ARISW_new	
  
ARISW_FAL	
  
ARISW_JAP	
  
NEWDRIFT	
  
0	
  
100000	
  
200000	
  
300000	
  
400000	
  
500000	
  
600000	
  
700000	
  
0	
   0.5	
   1	
   1.5	
   2	
   2.5	
   3	
  
Added	
  wave	
  Resistance	
  Raw	
  (kP)	
  
λ/L	
  
Fn=0.115,	
  χ=180,	
  ζw=4.00m	
  
LIU	
  
ARISW_new	
  
ARISW_FAL	
  
ARISW_JAP	
  
NEWDRIFT	
  
Applica9on	
  of	
  Simplified	
  Method	
  
•  Reference	
  Environment	
  (opera9on	
  in	
  
Mediterranean)	
  	
  for	
  “SHIP_1”,	
  
“SHIP_2”	
  	
  and	
  “SHIP_3”	
  and	
  RAW	
  
results:	
  
0	
  
5000	
  
10000	
  
15000	
  
20000	
  
25000	
  
30000	
  
0.00	
   0.10	
   0.20	
   0.30	
   0.40	
   0.50	
  
Added	
  wave	
  resistance	
  Raw	
  (kP)	
  
λ/L	
  
Raw	
  (kP),	
  χ=180,	
  Tp=7.0s,	
  
ζw=4.0m	
  
SHIP_1	
  
SHIP_2	
  
SHIP_3	
  
0	
  
1000	
  
2000	
  
3000	
  
4000	
  
5000	
  
6000	
  
7000	
  
8000	
  
0.00	
   0.10	
   0.20	
   0.30	
   0.40	
   0.50	
  
Added	
  wave	
  resistance	
  Raw	
  (kP)	
  
λ/L	
  
Raw	
  (kP),	
  χ=180,	
  Tp=7.0s	
  
SHIP_1	
  
SHIP_2	
  
SHIP_3	
  
Results	
  from	
  applica9on	
  of	
  Simplified	
  
Method	
  
•  For	
  all	
  ships	
  a	
  required	
  
advance	
  speed,	
  namely	
  
course-­‐keeping	
  speed,	
  was	
  
calculated	
  
•  The	
  needed	
  thrust	
  to	
  
maintain	
  this	
  speed	
  was	
  
determined	
  from	
  the	
  
Resistance	
  components	
  
•  For	
  each	
  case,	
  the	
  ΚT(J)=C·∙J2	
  
curve	
  was	
  produced	
  which	
  
was	
  then	
  matched	
  with	
  the	
  
propeller	
  open	
  water	
  
characteris9cs	
  	
  
0.00%	
  
200.00%	
  
400.00%	
  
600.00%	
  
800.00%	
  
1000.00%	
  
1200.00%	
  
ORIGINAL	
   IG	
   IG	
  peak	
  values	
   ISC2008	
  
Comments	
  on	
  the	
  results	
  	
  
•  The	
  formula	
  proposed	
  in	
  Interim	
  Guidelines	
  for	
  calcula9ng	
  the	
  Lateral	
  Submerged	
  
Area	
  yielded	
  results	
  as	
  much	
  as	
  40%	
  greater	
  than	
  the	
  actual	
  value	
  between	
  all	
  
ships	
  inves9gated	
  –	
  for	
  “TEST_SHIP”	
  the	
  devia9on	
  was	
  about	
  8.0%	
  
•  For	
  the	
  same	
  ship,	
  it	
  is	
  observed	
  that	
  even	
  for	
  the	
  reference	
  environment	
  assigned	
  
by	
  Simplified	
  Assessment	
  the	
  power	
  needs	
  are	
  almost	
  190%	
  of	
  the	
  installed	
  power	
  
–	
  this	
  may	
  be	
  agributed	
  to	
  the	
  computed	
  rela9vely	
  large	
  course-­‐keeping	
  speed	
  
which	
  is	
  affected	
  by	
  the	
  hull	
  form,	
  the	
  freeboard	
  and	
  rudder	
  area	
  
•  The	
  ship	
  ”TEST_SHIP”	
  successfully	
  passed	
  the	
  MPR	
  assessment	
  but	
  failed	
  to	
  pass	
  
the	
  Simplified	
  Assessment	
  (any	
  of	
  the	
  three	
  cases	
  explored);	
  this	
  result	
  is	
  
contradictory	
  -­‐	
  higher	
  levels	
  on	
  a	
  mul5-­‐level	
  assessment	
  should	
  be	
  stricter	
  than	
  
lower	
  ones	
  	
  
•  When	
  tested	
  against	
  the	
  ISC	
  2008	
  criteria	
  (Greek	
  Proposal),	
  she	
  fails	
  to	
  comply	
  
with	
  a	
  far	
  greater	
  margin	
  
•  harmonizing	
  the	
  proposed	
  condi9ons	
  with	
  that	
  described	
  in	
  the	
  Greek	
  Proposal	
  is	
  
an	
  excessive	
  measure	
  –	
  it	
  would	
  lead	
  to	
  installa9on	
  of	
  much	
  bigger	
  engines	
  and	
  
compliance	
  with	
  both	
  EEDI	
  and	
  Interim	
  Guidelines	
  would	
  be	
  impossible	
  
Comments	
  on	
  the	
  results	
  	
  
•  adop9on	
  of	
  the	
  Greek	
  Proposal	
  means	
  that	
  shipyards	
  have	
  to	
  consider	
  the	
  design	
  
changes	
  such	
  as	
  not	
  only	
  main	
  engine	
  but	
  also	
  propeller	
  sha],	
  steering	
  capacity,	
  main	
  
spec.	
  and	
  hull	
  structure	
  	
  
	
  
•  all	
  three	
  vessels	
  that	
  were	
  tested	
  for	
  intended	
  opera5on	
  in	
  the	
  Mediterranean	
  
(Tp=7.0s),	
  successfully,	
  and	
  by	
  a	
  great	
  margin,	
  meet	
  the	
  requirements	
  for	
  available	
  
propulsion	
  power	
  
	
  
•  for	
  the	
  case	
  of	
  wind	
  and	
  waves	
  characteris9cs	
  according	
  to	
  the	
  Greek	
  Proposal(which	
  
are	
  highly	
  unlikely	
  to	
  come	
  across	
  in	
  Mediterranean	
  shipping	
  routes	
  )	
  regula9on,	
  
“SHIP_2”	
  fails	
  to	
  meet	
  the	
  requirements,	
  “SHIP_1”	
  complies	
  marginally,	
  and	
  
“SHIP_3”	
  complies	
  with	
  a	
  sufficient	
  margin	
  
•  it’s	
  unclear	
  if	
  the	
  same	
  ships	
  would	
  successfully	
  pass	
  the	
  assessment	
  if	
  the	
  proposed	
  
by	
  Simplified	
  Method	
  range	
  of	
  peak	
  wave	
  periods	
  to	
  be	
  tested	
  in	
  were	
  inves9gated	
  
(applies	
  to	
  both	
  cases	
  considered)	
  
•  SHIP_2	
  and	
  SHIP_3	
  were	
  not	
  successful	
  in	
  level	
  1	
  assessment,	
  they	
  were	
  found	
  to	
  
have	
  sufficient	
  installed	
  power	
  to	
  retain	
  their	
  maneuverability	
  from	
  level	
  2	
  
assessment;	
  this	
  kind	
  of	
  results	
  show	
  how	
  this	
  mul5-­‐level	
  method	
  is	
  supposed	
  to	
  
func5on	
  –	
  although	
  conserva9veness	
  is	
  advised	
  for	
  these	
  results	
  due	
  to	
  the	
  
limita5ons	
  of	
  the	
  opera5onal	
  scenario	
  considered	
  
Theore9cal	
  approach	
  to	
  op9mize	
  the	
  
performance	
  characteris9cs	
  for	
  “SHIP_1”	
  	
  
The	
  objec9ve	
  was	
  to	
  reduce	
  the	
  value	
  of	
  the	
  anained	
  EEDI	
  while	
  
retaining	
  a	
  posi5ve	
  assessment	
  from	
  the	
  Interim	
  Guidelines	
  
Finding	
  a	
  suitable	
  trim	
  that	
  
minimizes	
  the	
  wave	
  making	
  
resistance	
  (and	
  hence	
  RT)	
  
•  HOLTROP	
  method	
  was	
  used	
  
for	
  different	
  trims	
  	
  
•  The	
  change	
  of	
  trim	
  had	
  
effec5vely	
  no	
  impact	
  on	
  
the	
  vessel’s	
  powering	
  needs	
  	
  
•  Partly	
  due	
  to	
  the	
  
insensi9vity	
  of	
  HOLTROP’s	
  
method	
  in	
  this	
  respect	
  	
  
	
  
Installa9on	
  if	
  a	
  Wake	
  
Equalizing	
  Duct	
  (W.E.D)	
  in	
  
order	
  to	
  enhance	
  propeller	
  
performance	
  
•  a	
  reduc9on	
  of	
  almost	
  five	
  9mes	
  greater	
  is	
  
needed	
  to	
  achieve	
  the	
  required	
  EEDI	
  value	
  
for	
  phase	
  1	
  	
  
Conclusions	
  
•  Vessels	
  that	
  were	
  designed	
  prior	
  to	
  the	
  introduc9on	
  of	
  the	
  EEDI	
  will	
  struggle	
  
to	
  comply	
  with	
  the	
  required	
  EEDI	
  values	
  of	
  future	
  phases	
  without	
  a	
  
significant	
  decrease	
  in	
  speed	
  	
  
•  The	
  introduc9on	
  of	
  	
  Interim	
  Guidelines	
  for	
  determining	
  minimum	
  propulsion	
  
power	
  to	
  maintain	
  the	
  maneuverability	
  of	
  ships	
  in	
  adverse	
  condi:ons	
  is	
  a	
  
posi5ve	
  first	
  step	
  towards	
  the	
  guarantee	
  of	
  safety	
  for	
  ships	
  sailing	
  in	
  lower	
  
than	
  indented	
  speeds	
  
•  Ageing	
  and	
  fouling	
  of	
  the	
  vessels’	
  hulls	
  should	
  be	
  accounted	
  for	
  in	
  the	
  
method	
  	
  
•  This	
  case	
  study	
  showed	
  that	
  the	
  Greek	
  Proposal	
  for	
  stricter	
  limits	
  regarding	
  
the	
  Minimum	
  Power	
  Lines	
  assessment	
  	
  as	
  well	
  as	
  the	
  proposed	
  weather	
  
criteria	
  used	
  in	
  Simplified	
  Method	
  has	
  some	
  basis	
  but	
  needs	
  to	
  be	
  further	
  
inves5gated	
  
Conclusions	
  
•  The	
  proper	
  defini5on	
  of	
  the	
  severeness	
  of	
  the	
  weather	
  condi9ons	
  (wave	
  
height	
  and	
  wind	
  speed)	
  is	
  crucial	
  for	
  the	
  ra9onale	
  of	
  the	
  guidelines;	
  this	
  
should	
  be	
  based	
  on	
  accident	
  analysis	
  and	
  related	
  weather	
  sta5s5cs	
  
•  The	
  applica9on	
  of	
  different	
  environmental	
  criteria	
  should	
  be	
  based	
  on	
  
indented	
  opera5ng	
  routes	
  of	
  individual	
  vessels,	
  if	
  not	
  become	
  uniform	
  for	
  
all	
  	
  
	
  
•  Correctly	
  norming	
  maneuverability	
  standards	
  in	
  adverse	
  condi5ons	
  is	
  
very	
  important,	
  as	
  ships	
  with	
  required	
  minimum	
  propulsion	
  power	
  that	
  
are	
  badly	
  designed	
  can	
  turn	
  out	
  to	
  be	
  adverse	
  weather	
  inadequate	
  –	
  
different	
  hull	
  forms	
  experience	
  different	
  forces	
  
•  Its	
  important	
  for	
  the	
  shipping	
  industry	
  to	
  find	
  a	
  balance	
  between	
  safe	
  and	
  
environmentally	
  friendly	
  
Ευχαριστώ	
  για	
  τη	
  προσοχή	
  σας	
  
	
  
Τhank	
  you	
  for	
  your	
  agen9on	
  

More Related Content

PDF
Shipboard High Voltage- Safeties & Applications
PDF
Technology Innovations for Cost- effective Energy Efficiency Measures
PDF
Paper: The Norwegian Lifeboat Project
PPTX
Jd 12 sea & othetr transportation system
PDF
Webinar presentation subsea manifold installation tcm4 602978
PPT
Mass and Balance
PDF
Presentation: Power & Eenrgy for Unmanned Undersea Vehicles (UUVs)
PDF
Propulsion%20system %203rd[1]
Shipboard High Voltage- Safeties & Applications
Technology Innovations for Cost- effective Energy Efficiency Measures
Paper: The Norwegian Lifeboat Project
Jd 12 sea & othetr transportation system
Webinar presentation subsea manifold installation tcm4 602978
Mass and Balance
Presentation: Power & Eenrgy for Unmanned Undersea Vehicles (UUVs)
Propulsion%20system %203rd[1]

What's hot (20)

PPT
Seismic Risk Assessment of Buried Pipelines in City Regions, Hamzeh SHAKIB
PPT
Ship design rules han
PDF
Integrated hydrodynamic and structural analysis webinar presentation tcm4 601490
PPTX
Basic Design Of Unmanned Submersible
PPTX
Stream Gauging
DOCX
Seawater to Fuel Viability Report
PPTX
Enhancing Pilot Ability to Perform Continuous Descent Approach with Descript...
PPT
Hydrology and hydraulics for design design
PDF
PREDICTING SHIP SQUAT IN NIGERIAN WATERWAYS (CASE STUDY: NIGER DELTA)
PPTX
URC Poster
PPTX
Compilation of package of practices for energy conservation fisheries
PDF
Sea-launched TacSats for Responsive Space (STaRS)
PPTX
AIRCRAFT WEIGHT AND BALANCE BASIC FOR LOAD CONTROL
PDF
Media Object File Flt Ops Ops Env Seq02
PPS
آشنایی با انواع شناورها
PDF
Unit iv - Rockets and Misiles
PPTX
High Agility Flight Dynamics and Control of Aircraft
PPTX
Progress and Challenges in Foundational Hypersonics Research
PDF
Environmentally-Adaptive Deployment of Lagrangian Instrumentation using a Sub...
PPT
Ocean Research Vessels
Seismic Risk Assessment of Buried Pipelines in City Regions, Hamzeh SHAKIB
Ship design rules han
Integrated hydrodynamic and structural analysis webinar presentation tcm4 601490
Basic Design Of Unmanned Submersible
Stream Gauging
Seawater to Fuel Viability Report
Enhancing Pilot Ability to Perform Continuous Descent Approach with Descript...
Hydrology and hydraulics for design design
PREDICTING SHIP SQUAT IN NIGERIAN WATERWAYS (CASE STUDY: NIGER DELTA)
URC Poster
Compilation of package of practices for energy conservation fisheries
Sea-launched TacSats for Responsive Space (STaRS)
AIRCRAFT WEIGHT AND BALANCE BASIC FOR LOAD CONTROL
Media Object File Flt Ops Ops Env Seq02
آشنایی با انواع شناورها
Unit iv - Rockets and Misiles
High Agility Flight Dynamics and Control of Aircraft
Progress and Challenges in Foundational Hypersonics Research
Environmentally-Adaptive Deployment of Lagrangian Instrumentation using a Sub...
Ocean Research Vessels
Ad

Viewers also liked (9)

PPTX
Introduction to mathematical control theory - Dr. Purnima Pandit
PPSX
Masson Marine 2011
PPT
CONTROL THEORY- LAUREN ROSE
PPSX
Coupled motions in turning and sea trials
PPTX
Optimal Control Theory
PPT
Ship Rudders
PDF
Motion Control Theory. servomotor
PPT
Propeller and Rudder
PDF
MANEUVERING & COLLISION AVOIDANCE
Introduction to mathematical control theory - Dr. Purnima Pandit
Masson Marine 2011
CONTROL THEORY- LAUREN ROSE
Coupled motions in turning and sea trials
Optimal Control Theory
Ship Rudders
Motion Control Theory. servomotor
Propeller and Rudder
MANEUVERING & COLLISION AVOIDANCE
Ad

Similar to Diploma_Thesis_Presentation (20)

PDF
Ship's Energy Efficiency Management
PDF
Ship Energy Efficiency Management-2016
PDF
Stakeholders' Influence and Barriers to Energy Efficiency Operational Measure...
PDF
Marpol Annex VI Chapter IV- GHG Emissions and Energy Efficiency Regulations
PDF
MARPOL Annex VI Chapter 4
PDF
Ship powering performance – learning from the challenges faced by owners
PPTX
Further Fuel Efficiency - Fuel Optimization - Deep Sea Ships
PPTX
Barriers of energy efficiency operational measures
PDF
Motion stability and control in marine surface vessels
PPTX
Sea-Keeping-Lecturgggggggggggggggge-blue.pptx
PDF
API RP 2P RP for analysis of spread mooring sys for floating.pdf
PPTX
GROUP-1-SHIP-HANDLING.pptx
PDF
Cable ship - DP- Capability - Comparison
PDF
Ce delft -_historical_trends_in_ship_design_efficiency[1]
PDF
CFD for Floating Systems.pdf
PDF
Energy Efficiency Measures for Ships and Potential Barriers for Adoption
PDF
Pianc hawser force for lock case study
PDF
Pianc hawser force for lock case study
PDF
Analyzing the Sea Weather Effects to the Ship Maneuvering in Vietnam’s Sea fr...
PDF
Investigating the implications of a new-build hybrid power system for RoRo ca...
Ship's Energy Efficiency Management
Ship Energy Efficiency Management-2016
Stakeholders' Influence and Barriers to Energy Efficiency Operational Measure...
Marpol Annex VI Chapter IV- GHG Emissions and Energy Efficiency Regulations
MARPOL Annex VI Chapter 4
Ship powering performance – learning from the challenges faced by owners
Further Fuel Efficiency - Fuel Optimization - Deep Sea Ships
Barriers of energy efficiency operational measures
Motion stability and control in marine surface vessels
Sea-Keeping-Lecturgggggggggggggggge-blue.pptx
API RP 2P RP for analysis of spread mooring sys for floating.pdf
GROUP-1-SHIP-HANDLING.pptx
Cable ship - DP- Capability - Comparison
Ce delft -_historical_trends_in_ship_design_efficiency[1]
CFD for Floating Systems.pdf
Energy Efficiency Measures for Ships and Potential Barriers for Adoption
Pianc hawser force for lock case study
Pianc hawser force for lock case study
Analyzing the Sea Weather Effects to the Ship Maneuvering in Vietnam’s Sea fr...
Investigating the implications of a new-build hybrid power system for RoRo ca...

Diploma_Thesis_Presentation

  • 1. On  the  EEDI  and  Minimum   Propulsion  Power   A  case  study  of  Interim  Guidelines  for   determining  minimum  propulsion  power  to   maintain  the  manoeuvrability  of  ships  in   adverse  condi:ons         Diploma  Thesis  Final  Presenta9on   Supervising  professor:  Dr.  Apostolos  Papanikolaou   Na9onal  Technical  University  of  Athens   Georgios  N.  Antonopoulos   R.N:  08107044  
  • 2. The  Energy  Efficiency  Design   Index  (EEDI)  
  • 3. What  is  the  Energy  Efficiency  Design   Index  (EEDI)?   •  EEDI  is  a  performance  based  indicator  that  expresses  ship’s   carbon  dioxide  emissions  (in  grams)  per  ship’s  transporta9on   work,  given  as  capacity-­‐mile   •  EEDI  takes  into  account  the  involuntary  loss  of  speed  due  to   adverse  weather  condi9ons  (considered  BF6),  which  is   expressed  by  the  fw  correc9on  coefficient  and  may  be     referred  to  as  EEDIweather.  
  • 4. What  is  the  required  EEDI?   •  Ships  bigger  than  400  GT,  with  building   contracts  as  from  1st  of  January  2013   and  the  delivery  of  which  is  on  or  a]er   1  July  2015,  will  have  to  meet  an  EEDI   marginal  value  criterion  (or  not   surpass  the  relevant  EEDI  reference   line),  which  depends  on  ship  type  and   size.     •  Following  the  two-­‐year  phase  zero  period,  the   reference  level  will  be  9ghtened  incrementally   every  five  years,  in  2015,  2020  and  2025  (via   10%  EEDI  value  reduc9on  each  9me)  to  keep   pace  with  technological  developments  related   to  new  efficiency  and  powering  reduc9on   measures.     •  This  required  price  (Required  EEDI)   comes  from  a  baseline  created  from   different  exis9ng  ships  build  from  1998   to  2007  (Reference  Line)  with  data   form  IHS-­‐Fairplay  data  base.   •  Concerns  about  the  validity  of  the   exis9ng  database  are  expressed  
  • 5. Agained  EEDI  and  compliance   measures   •  Ships  whose  agained   EEDI  is  greater  than  the   required,  need  to  take   measures  in  order  to   comply   •  There  are  various   op9ons  regarding  the   way  one  will  choose  to   decrease  a  ship’s   agained  EEDI  value    
  • 6. Op9ons  regarding  EEDI  compliance   •  Slow-­‐steaming,   meaning  the  voluntary   reduc5on  of  a  ships   MCR  and  consequently   its  fuel  consump9on,   speed  and  its  carbon   dioxide  emissions   •  Shi]ing  the  powering   curve  to  the  right,  by   means  of   hydrodynamic   op5miza5on   •  Making  realis5c   predic5ons  for  the   power  requirements  of   a  vessel,  based  on  its   intended  trading  routes   and  expected  weather   condi9ons     •  Use  of  alterna5ve  fuels     •  Installa9on  of   innova5ve  efficiency   technologies  
  • 7. Slow-­‐steaming   + A  method  already  widespread  in  the  shipping  industry  since   2007,  when  a  drama9c  increase  in  the  price  of  crude  oil   occurred     + Enabled  the  shipping  industry  to  both  reduce  opera9onal   costs  and  comply  with  the  new  regula9ons     -  Opera9ng  ships  at  a  lower  speed,  than  originally  planned,  is   not  op9mal  in  many  respects     -  With  the  introduc9on  of  slow  steaming  and  of   underpowered  ships,  ships'  manoeuvrability  will  be   affected,  especially  when  ships  operate  in  extreme  weather   phenomena    
  • 8. IMO  Standards  for  Ship  Manoeuvrability  in   2002,  Res.  MSC.137(76)     Currently  Manoeuvrability  is  evaluated  with  specific  trial  manoeuvres   in  calm  water,  in  full  load  condi5on  and  in  deep  water,  addressing  the   following  ship  abili9es:     •  turning  using  hard-­‐over  rudder     •  ini9al  turning  (course-­‐changing)       But  Manoeuvrability  is  also    influenced  by:   •  Adverse  weather  condi9ons  (dri]  forces  due  to  waves  and  wind)   •  Loading  Condi9ons  that  maximize  the  lateral  windage  area  and/or   lead  to  rudder  surfacing   •  Low  speed   •  Shallow  waters  (squakng  effect)     •  yaw-­‐checking     •  course-­‐keeping     •  emergency  stopping    
  • 9. Minimum  Propulsion  Power   The  IACS  study  on  Minimum  Power  suggested  that  the  ship  should  be  able  to:   1.  keep  speed  through  water  of  at  least  4.0  knots  in  waves  and  wind  from   any  direc9on     –  ship  must  be  able  to  leave  coastal  area  in  sufficiently  short  5me,  before   the  weather  condi9ons  become  even  more  severe  that  the  ship  will  not  be   able  to  sail  in  the  open  sea  –  includes  margin  for  currents   2.  Keep  course  in  waves  and  wind  from  any  direc9on     –  Course-­‐keeping  is  used  as  a  conserva5ve  criterion  to  ensure   maneuverability   •  To  address  this  issue,  IMO  developed  (on  the  basis  this  study)  the  Interim   Guidelines  for  determining  minimum  propulsion  power  to  maintain  the   maneuverability  of  ships  in  adverse  condi:ons       •  These    Interim  Guidelines  include  a  three-­‐level  assessment  (the  third  level   has  been  removed  for  now)  aimed  to  determine  if  a  ship  has  the  available   propulsion  power  to  maintain  her  maneuverability  in  adverse  weather   condi5ons     •  If  a  vessel  complies  with  any  one  of  the  assessment  levels,  it  means  that  its   installed  propulsion  power  is  deemed  sufficient    
  • 10. Interim  Guidelines  for  determining  minimum  propulsion   power  to  maintain  the  maneuverability  of  ships  in   adverse  condi:ons     Assessment  level  1:  Minimum   power  lines     •  Installed  power  must  be   greater  than  Minimum   installed  power=  ax(DWT)-­‐b   [kW]   •  a,  b  defined  per  ship  type   Assessment  level  1:  Simplified   Assessment   •  Consists  of  Excel-­‐level   arithme9c  calcula9ons   •  Requires  the  calcula9on  of   added  resistance  in  waves  in   respec9ve  environmental   condi9ons   •  RAW  Needs  to  be  determined   through  tank-­‐tests  or  computer   codes  
  • 11. Greek  Document  in  MSC  23.91.5:  Safety  evalua:on  of  the  interim   guidelines  for  determining  minimum  propulsion  power  to  maintain   the  manoeuvrability  of  ships  under  adverse  weather  condi:ons     •  Proposed  an  increase  in  the  lower  values  of  Minimum   Power  Lines  by  10-­‐15%  in  an  agempt  to  correct   revealed  conflicts  between  the  two  assessment  levels   •  Proposed  that  a  more  suitable  adverse  weather   criterion  for  safe  maneuverability  is  minimum  speed     •  Proposed  the  use  of  10Bf  weather  criteria  as  a  result  of   serious  concerns  expressed  regarding  the  adequacy  of   the  current  weather  criteria  (which  were  considered   not  sufficiently  severe)    
  • 12. Scope  of  this  Thesis   •  inves9gate  the  viability  of  these  sample  ships  in  regard  to   compliance  with  both  the  EEDI  and  the  Interim  Guidelines     •  further  inves9ga9on  on  some  of  the  proposals  made  in  MSC   23.91.5     And,  also  for  one  of  the  ships:   •  the  coefficient  fw  is  determined  and  the  EEDIweather  value  is   calculated   •   the  rela9on  between  added  resistance  in  waves  to  total   resistance  is  explored     A  case  study  on  4  ships  of  incrementally  bigger  size  and  installed   power  aimed  to:    
  • 13. Approach  of  Added  Resistance  in   Waves   NewDriT  v.7   •  3D  frequency  domain  panel  code   based  on  near-­‐field  poten5al   method   •  used  to  solve  the  basic  sea-­‐ keeping  problem  and  to  calculate   the  first  order  poten9al  and  the   linear  ship  responses     •  computes  the  added  wave   resistance  as  the  steady  second   order  force  obtained  by  direct   integra5on  of  the  hydrodynamic,   steady  second  order  pressure   ac9ng  on  the  hull’s  weged   surface,  which  can  be  calculated   exactly  from  first  order  poten9al   func9ons  and  their  deriva9ves   LIU   •  3D  9me  domain  panel  code   based  on  far-­‐field  poten5al   method   •  is  based  on  considera9ons  of   the  diffracted  and  radiated   wave  energy  and   momentum  flux  at  infinity,   leading  to  the  steady  added   wave  resistance  force  by  the   total  rate  of  momentum   change  
  • 14. Construc9on  of  panelized  surface  for   “TEST_SHIP”   •  for  the  applica5on  of  the  computer  codes   used  for  our  calcula9ons,  a  panelized   surface  of  sufficient  accuracy  of  the  hull   needed  to  be  produced  (1080  panels)   •  the  surface  was  described  by  quadrilateral   elements  (panels),  which  are  formed  based   on  four  points   •  Based  on  the  geometric  complexity,  the   hull  was  divided  into  groups  of  different   density  
  • 15. Approach  of  added  resistance  in  short   waves   •  Short  waves:  waves  which  are  less  than  0.5  of  the  ship’s  length   •  High  prac9cal  interest:  most  encountered  waves  are  of  short  wave  size   •  Zaraphoni9s  and  Papanikolaou  method:   •  Inputs:  nodes  from  known  waterline  and  assigned  flare  angles,  Cb,  Fn   •  Liu  and  Papanikolaou  simplified  formula:   ( ) 1 cos 1 4 2 2 sin 1 0.87 sin 1 5 2 n L Fn n a d B F F d L F g Fn C α θ ρ ζ α θ λ + = ⎛ ⎞⎛ ⎞ = +⎜ ⎟⎜ ⎟⎜ ⎟ ⎝ ⎠⎝ ⎠ ∫ r l r •  The  integral  can  be  approximated  by  the   curve  shown  in  the  following  figure,   according  to  the  vessel’s  Cb:    
  • 16. Calcula9on  of  EEDI  for  all  vessels   and  EEDIweather  for  “TEST_SHIP”  
  • 17. EEDI  calcula9on-­‐important  factors   •  EEDI  calcula9ons  correspond  to  the   loading  condi9on  that  maximizes   draught,  namely  Load  Line  or  Scantling   •  PME:  The  vessel’s  main  power  is  defined   as  a  75%  of  the  installed  MCR   •  SFCME:  Specific  fuel  oil  consump9on  at   75%  of  MCR   •  PAE:  the  auxiliary  engine  power  is   calculated  as  a  share  of  the  installed   power   •  SFCAE:  Specific  fuel  oil  consump9on  of   the  auxiliary  engines   •  CFME/AE:  conversion  factor  fuel  oil  to  CO2,   dependent  of  the  fuel  type   •  Capacity:  for  most  ship  types  is   considered  equal  to  the  DWT   •  Vref:  reference  speed,  in  EEDI  condi9ons   In  order  to  determine  Vref,  in  absence  of   tank  tests  in  EEDI  condi9on,  the  following   graphical  method  proposed  by  IACS  was   employed:  
  • 18. Calcula9on  of  Vref   0.00   2000.00   4000.00   6000.00   8000.00   10000.00   12000.00   11   12   13   14   15   16   P  (kW)   Speed  (knots)   SHIP_1   holtrop@se atrial   hotrop@EE DI   sea  trial   75%MCR   0   2000   4000   6000   8000   10000   12000   11   12   13   14   15   16   Power,  P(kW)   Velocity  V(knots)   SHIP_2   measured   sea  trial   corrected @EEDIco ndi9ons   75%MCR   0   2000   4000   6000   8000   10000   12000   14000   16000   11   12   13   14   15   16   P  (kW)   V  (knots)   SHIP_3   measured   sea  trial   holtrop@ seatrial   0.00   2000.00   4000.00   6000.00   8000.00   10000.00   12000.00   9   10   11   12   13   14   15   16   P  (kW)   V  (knots)   TEST_SHIP  Powering  curves   Full  Load   Departure   HOLTROP @EEDI   75%MCR  
  • 19. Agained  EEDI  of  studied  ships   0   2   4   6   8   10   12   14   16   18   20   0   50000   100000   150000   200000   250000   300000   350000   400000   450000   EEDI   DWT  (tons)   EEDI  phases  0-­‐3  for  studied  ships   EEDI(phase  0)   EEDI(phase  1)   EEDI(phase  2)   EEDI(phase  3)   TEST_SHIP   SHIP_1   SHIP_2   SHIP_3   •  All  studied  ships  complied  with   EEDI  phase  0  required  value   •  Smaller  ships  marginally   complied  with  phase  0  values   •  Larger  ships  more  easily   sa9sfied  future  phases  required   values  
  • 20. Calcula9on  of  EEDIweather  for   “TEST_SHIP”   •  The  correc9on  factor  fw  is  expressed  as  the  ra9o  of  speed  in  adverse  condi9ons   (BF  6)    to  the  ship’s  speed  in  calm  water   •  In  order  to  determine  the  ship’s  speed  in  adverse  condi9ons,  the  added   resistance  in  waves  had  to  be  calculated  in  the  speed  range  0.6Vref-­‐Vref   •  A  peak  wave  period  of  Ts=6.7s  corresponds  to  a  wave  length  of  λ=70.1  m,  for  the   studied  vessel,  which  accounts  for  less  than  half  of  her  length  (short  wave  domain)   •  The  new  method  from  Zaraphoni9s  and  Papanikolaou  was  used  to  determine  the   added  resistance  in  waves   •  In  order  to  calculate  the  added  resistance  from  wind,  a  formula  proposed  by  IACS   was  used:  
  • 21. 0.00   5000.00   10000.00   15000.00   20000.00   25000.00   30000.00   4.00   6.00   8.00   10.00   12.00   14.00   Added  wave  Resistance  Raw(κP)   V  (knots)   Ts=6.7s,  χ=180   ARISW_FAL   ARISW_new   ARISW_JAP   0   5000   10000   15000   20000   25000   30000   35000   40000   45000   0   0.5   1   1.5   Added  wave  Resistance  Raw  (kP)   λ/L   Fn=0.163,  χ=180,  ζw=1.5  m   LIU   ARISW_new   ARISW_FAL   ARISW_JAP   NEWDRIFT   λ=70.1  m   •  A  new  powering  curve  was   constructed,  which  takes  into   account  the  added  resistance  in   waves  and  wind:   Calcula9on  of  EEDIweather  for   “TEST_SHIP”   0.00   2000.00   4000.00   6000.00   8000.00   10000.00   12000.00   7   9   11   13   15   P  (kW)   V  (knots)   TEST_SHIP  Powering  curves   Full  Load   Departure   HOLTROP@EEDI   75%MCR   ΔRwave+ΔRair  
  • 22. Rela9on  of  Added  Resistance  in  Waves   to  Total  Resistance   0.00   20000.00   40000.00   60000.00   80000.00   100000.00   120000.00   6   7   8   9   10   11   12   13   14   Resistance  (kp)   Velocity  (knots)   Components  of  total  Resistance   Rt(kP)   Ra   Rtr   Rw   Rapp   (1+k1)Rf   Rwave   0.00%   5.00%   10.00%   15.00%   20.00%   25.00%   6   8   10   12   14   V  (knots)   Raw/Rtotal   Raw   •  In  increasingly  larger  Froude   numbers  RAW  increases,  but  with   a  decreasingly  gradient  rate:   •  Significant  in  rela9vely  low  speeds,  as  it   accounts  for  almost  a  20%  of  the   vessel’s  RT   •  In  greater  speeds,  fric9on  resistance   proves  to  be  the  main  component  of  RT  
  • 23. Applica9on  of  the  Interim   Guidelines  for  determining   minimum  propulsion  power  to   maintain  the  maneuverability  of   ships  in  adverse  condi:ons      
  • 24. Applica9on  of  Minimum  Power  Lines   •  “SHIP_1”  and  “TEST_SHIP”  (the  two  smaller  vessels)  manage  to  successfully  pass   the  assessment,  with  the  second  doing  so  marginally   •  “SHIP_2”  and  “SHIP_3”  fail  to  pass  the  assessment,  and  according  to  the  method   are  found  seriously  underpowered       •  The  Greek  Proposal  stated  that  MPR  lower  values  should  be  increased  –  but  this   may  lead  to  a  large  number  of  vessels  being  considered  underpowered  
  • 25. Applica9on  of  Simplified  Method   •  Reference  Environment  for   “TEST_SHIP”  and  RAW  results:   0   20000   40000   60000   80000   100000   120000   140000   160000   0   0.5   1   1.5   2   2.5   3   Added  wave  Resistance  Raw  (kP)   λ/L   Fn=0.115,  χ=180,  ζw=2.00m   LIU   ARISW_new   ARISW_FAL   ARISW_JAP   NEWDRIFT   0   50000   100000   150000   200000   250000   300000   0   0.5   1   1.5   2   2.5   3   Added  wave  Resistance  Raw  (kP)   λ/L   Fn=0.115,  χ=180,  ζw=2.75m   LIU   ARISW_new   ARISW_FAL   ARISW_JAP   NEWDRIFT   0   100000   200000   300000   400000   500000   600000   700000   0   0.5   1   1.5   2   2.5   3   Added  wave  Resistance  Raw  (kP)   λ/L   Fn=0.115,  χ=180,  ζw=4.00m   LIU   ARISW_new   ARISW_FAL   ARISW_JAP   NEWDRIFT  
  • 26. Applica9on  of  Simplified  Method   •  Reference  Environment  (opera9on  in   Mediterranean)    for  “SHIP_1”,   “SHIP_2”    and  “SHIP_3”  and  RAW   results:   0   5000   10000   15000   20000   25000   30000   0.00   0.10   0.20   0.30   0.40   0.50   Added  wave  resistance  Raw  (kP)   λ/L   Raw  (kP),  χ=180,  Tp=7.0s,   ζw=4.0m   SHIP_1   SHIP_2   SHIP_3   0   1000   2000   3000   4000   5000   6000   7000   8000   0.00   0.10   0.20   0.30   0.40   0.50   Added  wave  resistance  Raw  (kP)   λ/L   Raw  (kP),  χ=180,  Tp=7.0s   SHIP_1   SHIP_2   SHIP_3  
  • 27. Results  from  applica9on  of  Simplified   Method   •  For  all  ships  a  required   advance  speed,  namely   course-­‐keeping  speed,  was   calculated   •  The  needed  thrust  to   maintain  this  speed  was   determined  from  the   Resistance  components   •  For  each  case,  the  ΚT(J)=C·∙J2   curve  was  produced  which   was  then  matched  with  the   propeller  open  water   characteris9cs     0.00%   200.00%   400.00%   600.00%   800.00%   1000.00%   1200.00%   ORIGINAL   IG   IG  peak  values   ISC2008  
  • 28. Comments  on  the  results     •  The  formula  proposed  in  Interim  Guidelines  for  calcula9ng  the  Lateral  Submerged   Area  yielded  results  as  much  as  40%  greater  than  the  actual  value  between  all   ships  inves9gated  –  for  “TEST_SHIP”  the  devia9on  was  about  8.0%   •  For  the  same  ship,  it  is  observed  that  even  for  the  reference  environment  assigned   by  Simplified  Assessment  the  power  needs  are  almost  190%  of  the  installed  power   –  this  may  be  agributed  to  the  computed  rela9vely  large  course-­‐keeping  speed   which  is  affected  by  the  hull  form,  the  freeboard  and  rudder  area   •  The  ship  ”TEST_SHIP”  successfully  passed  the  MPR  assessment  but  failed  to  pass   the  Simplified  Assessment  (any  of  the  three  cases  explored);  this  result  is   contradictory  -­‐  higher  levels  on  a  mul5-­‐level  assessment  should  be  stricter  than   lower  ones     •  When  tested  against  the  ISC  2008  criteria  (Greek  Proposal),  she  fails  to  comply   with  a  far  greater  margin   •  harmonizing  the  proposed  condi9ons  with  that  described  in  the  Greek  Proposal  is   an  excessive  measure  –  it  would  lead  to  installa9on  of  much  bigger  engines  and   compliance  with  both  EEDI  and  Interim  Guidelines  would  be  impossible  
  • 29. Comments  on  the  results     •  adop9on  of  the  Greek  Proposal  means  that  shipyards  have  to  consider  the  design   changes  such  as  not  only  main  engine  but  also  propeller  sha],  steering  capacity,  main   spec.  and  hull  structure       •  all  three  vessels  that  were  tested  for  intended  opera5on  in  the  Mediterranean   (Tp=7.0s),  successfully,  and  by  a  great  margin,  meet  the  requirements  for  available   propulsion  power     •  for  the  case  of  wind  and  waves  characteris9cs  according  to  the  Greek  Proposal(which   are  highly  unlikely  to  come  across  in  Mediterranean  shipping  routes  )  regula9on,   “SHIP_2”  fails  to  meet  the  requirements,  “SHIP_1”  complies  marginally,  and   “SHIP_3”  complies  with  a  sufficient  margin   •  it’s  unclear  if  the  same  ships  would  successfully  pass  the  assessment  if  the  proposed   by  Simplified  Method  range  of  peak  wave  periods  to  be  tested  in  were  inves9gated   (applies  to  both  cases  considered)   •  SHIP_2  and  SHIP_3  were  not  successful  in  level  1  assessment,  they  were  found  to   have  sufficient  installed  power  to  retain  their  maneuverability  from  level  2   assessment;  this  kind  of  results  show  how  this  mul5-­‐level  method  is  supposed  to   func5on  –  although  conserva9veness  is  advised  for  these  results  due  to  the   limita5ons  of  the  opera5onal  scenario  considered  
  • 30. Theore9cal  approach  to  op9mize  the   performance  characteris9cs  for  “SHIP_1”     The  objec9ve  was  to  reduce  the  value  of  the  anained  EEDI  while   retaining  a  posi5ve  assessment  from  the  Interim  Guidelines   Finding  a  suitable  trim  that   minimizes  the  wave  making   resistance  (and  hence  RT)   •  HOLTROP  method  was  used   for  different  trims     •  The  change  of  trim  had   effec5vely  no  impact  on   the  vessel’s  powering  needs     •  Partly  due  to  the   insensi9vity  of  HOLTROP’s   method  in  this  respect       Installa9on  if  a  Wake   Equalizing  Duct  (W.E.D)  in   order  to  enhance  propeller   performance   •  a  reduc9on  of  almost  five  9mes  greater  is   needed  to  achieve  the  required  EEDI  value   for  phase  1    
  • 31. Conclusions   •  Vessels  that  were  designed  prior  to  the  introduc9on  of  the  EEDI  will  struggle   to  comply  with  the  required  EEDI  values  of  future  phases  without  a   significant  decrease  in  speed     •  The  introduc9on  of    Interim  Guidelines  for  determining  minimum  propulsion   power  to  maintain  the  maneuverability  of  ships  in  adverse  condi:ons  is  a   posi5ve  first  step  towards  the  guarantee  of  safety  for  ships  sailing  in  lower   than  indented  speeds   •  Ageing  and  fouling  of  the  vessels’  hulls  should  be  accounted  for  in  the   method     •  This  case  study  showed  that  the  Greek  Proposal  for  stricter  limits  regarding   the  Minimum  Power  Lines  assessment    as  well  as  the  proposed  weather   criteria  used  in  Simplified  Method  has  some  basis  but  needs  to  be  further   inves5gated  
  • 32. Conclusions   •  The  proper  defini5on  of  the  severeness  of  the  weather  condi9ons  (wave   height  and  wind  speed)  is  crucial  for  the  ra9onale  of  the  guidelines;  this   should  be  based  on  accident  analysis  and  related  weather  sta5s5cs   •  The  applica9on  of  different  environmental  criteria  should  be  based  on   indented  opera5ng  routes  of  individual  vessels,  if  not  become  uniform  for   all       •  Correctly  norming  maneuverability  standards  in  adverse  condi5ons  is   very  important,  as  ships  with  required  minimum  propulsion  power  that   are  badly  designed  can  turn  out  to  be  adverse  weather  inadequate  –   different  hull  forms  experience  different  forces   •  Its  important  for  the  shipping  industry  to  find  a  balance  between  safe  and   environmentally  friendly  
  • 33. Ευχαριστώ  για  τη  προσοχή  σας     Τhank  you  for  your  agen9on