SlideShare a Scribd company logo
Distanțe în cub
Fie cubul ABCDA’B’C’D’ de latură a.
  Aflați:
  a) d(A’; D);
  b) d(A;BB’);d(A’;CC’);d(C;AC’);d(A’;BD);
  c) d(D’; (ABC)); d(A; (A’BD));
  d) d(A’D’;AD); d(A’D’;BC); d(A’D; B’C);
  e) d(A’B’; (DCC’));
  f) d((A’AD); (B’C’C)).
1.a)




       d(A’; D) = ?
1.a)




d(A’; D) = A’D =   a 2 + a 2 = 2a 2 = a 2
1.b1)




        d(A; BB’) = ?
1.b1)




AB ⊥ BB’ => d(A; BB’) = AB = a
1.b2)




        d(A’; CC’) = ?
1.b2)




CC’ ⊥ (A’B’C’), A’C’ ⊂ (A’B’C’) => CC’ ⊥ A’C’


             d(A’; CC’) = A’C’
1.b2)




∆A’B’C’, (m<(B’) = 90o) => A’C’ = a 2


        d(A’; CC’) = A’C’ = a 2
1.b3)




        d(C; AC’) = ?
1.b3)




   CE ⊥ AC’ => d(C; AC’) = CE
1.b3)




  CE = h∆ACC’; ∆ACC’ = dreptunghic

                                     a 6
d(C; AC’) = CE = (AC . CC’)/AC’ =
                                      3
1.b4)




        d(A’; BD) = ?
1.b4)




   A’O ⊥ DB => d(A’; DB) = A’O
1.b4)




DB=A’D=A’B= a 2 => ∆A’BD = echilateral

                                 a 6
     d(A’;BD) = A’O = h∆A’BD =
                                  2
1.c1)




        d(D’; (ABC)) = ?
1.c1)




D’D ⊥ (ABC) => d(D’; (ABC)) = D’D = a
1.c2)




        d(A; (A’BD)) = ?
1.c2)




AH ⊥ (A’BD) => d(A; (A’BD)) = AH
1.c2)




    AH = h∆A’AO; ∆A’AO = ∆ dreptunghic

                                         a 3
d(A; (A’BD)) = AH = (AO . AA’)/OA’ =
                                          3
1.d1)




        d(A’D’; AD) = ?
1.d1)




 A’D’ | | AD; AA’ ⊥ AD; AA’ ⊥ A’D’


        d(A’D’; AD) = AA’ = a
1.d2)




        d(A’D’; BC) = ?
1.d2)




 A’D’ | | BC; A’B ⊥ BC; A’B ⊥ A’D’


   d(A’D’; BC) = A’B = a 2
1.d3)




        d(A’D; B’C) = ?
1.d3)




 A’D | | B’C; A’B’ ⊥ A’D; A’B’ ⊥ B’C


    d(A’D; B’C) = A’B’ = a
1.e)




       d(A’B’; (DCC’)) = ?
1.e)




A’B’ | | (DCC’); B’C’ ⊥ A’B’; B’C’ ⊥ (DCC’)


     d(A’B’; (DCC’) = B’C’ = a
1.f)




       d((A’AD); (B’C’C)) = ?
1.f)




(A’AD) | | (B’C’C); AB ⊥ (A’AD); AB ⊥ (B’C’C)


      d(A’AD); (B’C’C)) = AB = a

More Related Content

PDF
13736556 kumpulan-soal-matematika-kelas-x-5-tipe
PPT
Bab 15 alat alat optik
PPT
15. fungsi-komposisi.ppt materi komposisi fungsi, contoh soal, latihan soal d...
PPTX
Koordinat
PPTX
ppt Aritmetika sosial Untung dan Rugi.pptx
PPT
1. BENTUK ALJABAR(s) - Matematika SMP Kelas VIII [www.defantri.com].ppt
PDF
Pangkat tak sebenarnya
PPTX
Kelas x bab 4
13736556 kumpulan-soal-matematika-kelas-x-5-tipe
Bab 15 alat alat optik
15. fungsi-komposisi.ppt materi komposisi fungsi, contoh soal, latihan soal d...
Koordinat
ppt Aritmetika sosial Untung dan Rugi.pptx
1. BENTUK ALJABAR(s) - Matematika SMP Kelas VIII [www.defantri.com].ppt
Pangkat tak sebenarnya
Kelas x bab 4

What's hot (20)

PDF
TATA SURYA KELAS 7.pdf
PDF
SEGIEMPAT & SEGITIGA (Jenis & Sifat Segiempat) - P2
PPT
IPA KELAS 9 Gerak Lurus .ppt
PPTX
Limas tegak segi empat beraturan
DOCX
Latihan transformasi geometri
PDF
_PPT FUNGSI KUADRAT (4).pdf
PPTX
PPT UNSUR-UNSUR LINGKARAN.pptx
PPTX
PPT
Garis dan-sudut
PPTX
BUNGA TUNGGAL DAN BUNGA MAJEMUK ppt.pptx
PDF
Rangkuman materi isometri lanjutan
PPT
Cahaya dan Alat Optik Pelajaran IPA untuk Kelas 8
PDF
52355877 1-soal-soal-perpangkatan-dan-bentuk-akar
DOCX
Ulangan Harian Bilangan Berpangkat dan Bentuk Akar
PPTX
Fungsi rasional
PPTX
Fungsi Logaritma
PDF
Materi Koordinat Kartesius
PDF
LEMBAR KERJA SISWA MATERI FUNGSI KOMPOSISI DAN FUNGSI INVERS KD 5.1
DOC
Kesebangunan
DOCX
4. latihan soal matematika peluang kelas 9 smp
TATA SURYA KELAS 7.pdf
SEGIEMPAT & SEGITIGA (Jenis & Sifat Segiempat) - P2
IPA KELAS 9 Gerak Lurus .ppt
Limas tegak segi empat beraturan
Latihan transformasi geometri
_PPT FUNGSI KUADRAT (4).pdf
PPT UNSUR-UNSUR LINGKARAN.pptx
Garis dan-sudut
BUNGA TUNGGAL DAN BUNGA MAJEMUK ppt.pptx
Rangkuman materi isometri lanjutan
Cahaya dan Alat Optik Pelajaran IPA untuk Kelas 8
52355877 1-soal-soal-perpangkatan-dan-bentuk-akar
Ulangan Harian Bilangan Berpangkat dan Bentuk Akar
Fungsi rasional
Fungsi Logaritma
Materi Koordinat Kartesius
LEMBAR KERJA SISWA MATERI FUNGSI KOMPOSISI DAN FUNGSI INVERS KD 5.1
Kesebangunan
4. latihan soal matematika peluang kelas 9 smp
Ad

Similar to Distante in cub clasa 8 (20)

PDF
Part-02 (absin)-1 (1).pdfwuejejeenheehheeee
PPTX
Congruent Triangles
PPTX
Perimeter and area
PPTX
Perimeter and area
PPT
Parallel + collinear vectors
PPT
PPT
The scalar and Vector presentation for 11th class students
PPT
vectors.ppt......................................
PPTX
Mathematics
PDF
Ejercicios grafos
PDF
Propeties of-triangles
DOCX
ทฤษฎีบทพีทาโกรัส
PPTX
Quadrilaterals
PDF
ITA 2017 - fechada
PDF
Solutions manual for logic and computer design fundamentals 5th edition by ma...
PDF
Engineering Physics- Compilation of Equations and Corollaries.pdf
PDF
Triangles class 9
PPT
Math quiz
PPT
Congruent triangles
Part-02 (absin)-1 (1).pdfwuejejeenheehheeee
Congruent Triangles
Perimeter and area
Perimeter and area
Parallel + collinear vectors
The scalar and Vector presentation for 11th class students
vectors.ppt......................................
Mathematics
Ejercicios grafos
Propeties of-triangles
ทฤษฎีบทพีทาโกรัส
Quadrilaterals
ITA 2017 - fechada
Solutions manual for logic and computer design fundamentals 5th edition by ma...
Engineering Physics- Compilation of Equations and Corollaries.pdf
Triangles class 9
Math quiz
Congruent triangles
Ad

Distante in cub clasa 8

  • 1. Distanțe în cub Fie cubul ABCDA’B’C’D’ de latură a. Aflați: a) d(A’; D); b) d(A;BB’);d(A’;CC’);d(C;AC’);d(A’;BD); c) d(D’; (ABC)); d(A; (A’BD)); d) d(A’D’;AD); d(A’D’;BC); d(A’D; B’C); e) d(A’B’; (DCC’)); f) d((A’AD); (B’C’C)).
  • 2. 1.a) d(A’; D) = ?
  • 3. 1.a) d(A’; D) = A’D = a 2 + a 2 = 2a 2 = a 2
  • 4. 1.b1) d(A; BB’) = ?
  • 5. 1.b1) AB ⊥ BB’ => d(A; BB’) = AB = a
  • 6. 1.b2) d(A’; CC’) = ?
  • 7. 1.b2) CC’ ⊥ (A’B’C’), A’C’ ⊂ (A’B’C’) => CC’ ⊥ A’C’ d(A’; CC’) = A’C’
  • 8. 1.b2) ∆A’B’C’, (m<(B’) = 90o) => A’C’ = a 2 d(A’; CC’) = A’C’ = a 2
  • 9. 1.b3) d(C; AC’) = ?
  • 10. 1.b3) CE ⊥ AC’ => d(C; AC’) = CE
  • 11. 1.b3) CE = h∆ACC’; ∆ACC’ = dreptunghic a 6 d(C; AC’) = CE = (AC . CC’)/AC’ = 3
  • 12. 1.b4) d(A’; BD) = ?
  • 13. 1.b4) A’O ⊥ DB => d(A’; DB) = A’O
  • 14. 1.b4) DB=A’D=A’B= a 2 => ∆A’BD = echilateral a 6 d(A’;BD) = A’O = h∆A’BD = 2
  • 15. 1.c1) d(D’; (ABC)) = ?
  • 16. 1.c1) D’D ⊥ (ABC) => d(D’; (ABC)) = D’D = a
  • 17. 1.c2) d(A; (A’BD)) = ?
  • 18. 1.c2) AH ⊥ (A’BD) => d(A; (A’BD)) = AH
  • 19. 1.c2) AH = h∆A’AO; ∆A’AO = ∆ dreptunghic a 3 d(A; (A’BD)) = AH = (AO . AA’)/OA’ = 3
  • 20. 1.d1) d(A’D’; AD) = ?
  • 21. 1.d1) A’D’ | | AD; AA’ ⊥ AD; AA’ ⊥ A’D’ d(A’D’; AD) = AA’ = a
  • 22. 1.d2) d(A’D’; BC) = ?
  • 23. 1.d2) A’D’ | | BC; A’B ⊥ BC; A’B ⊥ A’D’ d(A’D’; BC) = A’B = a 2
  • 24. 1.d3) d(A’D; B’C) = ?
  • 25. 1.d3) A’D | | B’C; A’B’ ⊥ A’D; A’B’ ⊥ B’C d(A’D; B’C) = A’B’ = a
  • 26. 1.e) d(A’B’; (DCC’)) = ?
  • 27. 1.e) A’B’ | | (DCC’); B’C’ ⊥ A’B’; B’C’ ⊥ (DCC’) d(A’B’; (DCC’) = B’C’ = a
  • 28. 1.f) d((A’AD); (B’C’C)) = ?
  • 29. 1.f) (A’AD) | | (B’C’C); AB ⊥ (A’AD); AB ⊥ (B’C’C) d(A’AD); (B’C’C)) = AB = a