© aSup-2007
THE DISTRIBUTION OF SAMPLE MEANS   
1
Chapter 7
THE DISTRIBUTION
OF SAMPLE MEANS
© aSup-2007
THE DISTRIBUTION OF SAMPLE MEANS   
SAMPLING
?
© aSup-2007
THE DISTRIBUTION OF SAMPLE MEANS   
Prinsip-Prinsip Sampling
 Pada kebanyakan kasus dimana pengambilan
sampel dilakukan terjadi perbedaan antara
statistik sampel dan rata-rata populasi, yang
dianggap disebabkan oleh pemilihan unit
dalam sampel
 Contoh:
Usia A = 18 tahun, B = 20 tahun, C = 23 tahun,
D = 25 tahun. Usia rata-rata A, B, C, D adalah
21,5 tahun.
3
© aSup-2007
THE DISTRIBUTION OF SAMPLE MEANS   
Prinsip-Prinsip Sampling
 Jika kita ingin mengambil dua individu
untuk memperkirakan usia rata-rata dari
empat individu.
 4
C2= 6  AB, AC, AD, BC, BD, CD
4
nCr =
n!
r! (n-r)!
© aSup-2007
THE DISTRIBUTION OF SAMPLE MEANS   
n = 2
A = 18 B = 20 C = 23 D = 25
SAMPLE M μ M - μ
AB 19 21,5 -2,5
AC 20,5 21,5 -1,5
AD 21,5 21,5 0
BC 21,5 21,5 0
BD 22,5 21,5 1,5
CD 24 21,5 2,5
5
© aSup-2007
THE DISTRIBUTION OF SAMPLE MEANS   
Prinsip-Prinsip Sampling
 Dari ke-enam kemungkinan kombinasi
sampel, hanya dua yang tidak terdapat
perbedaan antara statistik sampel dan rata-
rata populasi.
 Perbedaan ini dianggap disebabkan sampel
dan diketahui sebagai sampling error.
6
© aSup-2007
THE DISTRIBUTION OF SAMPLE MEANS   
Principle-ONE
In majority of cases of sampling there will
be a difference between the sample
statistics and the true population mean,
which is attributable to selection of the
units in the sample
7
© aSup-2007
THE DISTRIBUTION OF SAMPLE MEANS   
Prinsip-Prinsip Sampling
 Jika kita ingin mengambil tiga individu
untuk memperkirakan usia rata-rata dari
empat individu.
 4
C3= 4  ABC, ABD, ACD, BCD
8
© aSup-2007
THE DISTRIBUTION OF SAMPLE MEANS   
n = 3
A = 18 B = 20 C = 23 D = 25
SAMPLE M μ M - μ
ABC 20,33 21,5 -1,17
ACD 21 21,5 -0,5
ACD 22 21,5 -0,5
BCD 22,67 21,5 1,17
9
© aSup-2007
THE DISTRIBUTION OF SAMPLE MEANS   
Principle-TWO
The greater sample size, the more accurate
will be estimate of the true population
mean
10
© aSup-2007
THE DISTRIBUTION OF SAMPLE MEANS   
Principle-THREE
The greater difference in the variable under
study in a population for a given sample
size, the greater will be the difference
between the sample statistics and the true
population mean
11
© aSup-2007
THE DISTRIBUTION OF SAMPLE MEANS   
Perbedaan besar variabel yang diteliti pada
populasi, besar pula perbedaan antara statistik
sampel dan rata-rata populasi.
 Contoh:
Usia A = 18 tahun, B = 26 tahun, C = 32 tahun
dan D = 40 tahun.
 Dengan prosedur yang sama, diketahui
rentang perbedaan jauh berbeda dengan
contoh-contoh sebelumnya.
 Hal ini dianggap disebabkan perbedaan usia
yang besar dalam populasi (heterogen)
12
© aSup-2007
THE DISTRIBUTION OF SAMPLE MEANS   
Faktor-faktor yang mempengaruhi
kesimpulan yang ditarik dari sampel
Prinsip-prinsip di atas menunjukkan terdapat dua
faktor yang dapat mempengaruhi tingkat
keyakinan tentang kesimpulan yang ditarik dari
sampel.
1. Ukuran sampel
Temuan yang didasarkan sampel yang besar
lebih dapat diyakini dibandingkan dengan yang
didasarkan dengan sampel yang lebih kecil. Sesuai
prinsip, semakin besar ukuran sampel semakin
akurat temuannya.
13
© aSup-2007
THE DISTRIBUTION OF SAMPLE MEANS   
Faktor-faktor yang mempengaruhi
kesimpulan yang ditarik dari sampel
Prinsip-prinsip di atas menunjukkan terdapat
dua faktor yang dapat mempengaruhi tingkat
keyakinan tentang kesimpulan yang ditarik dari
sampel.
2. Besarnya variasi populasi
Variasi besar dalam karakteristik populasi,
besar pula ketidakyakinannya (semakin besar
standar deviasi, semakin tinggi standard error).
14
© aSup-2007
THE DISTRIBUTION OF SAMPLE MEANS   
15
THE DISTRIBUTION OF SAMPLE MEANS
 Two separate samples probably will be
different even though they are taken from the
same population
 The sample will have different individual,
different scores, different means, and so on
 The distribution of sample means is the
collection of sample means for all the possible
random samples of a particular size (n) that
can be obtained from a population
© aSup-2007
THE DISTRIBUTION OF SAMPLE MEANS   
16
COMBINATION
 Consider a population that consist of 5 scores:
3, 4, 5, 6, and 7
 Mean population = ?
 Construct the distribution of sample means for
n = 1, n = 2, n = 3, n = 4, n = 5
nCr =
n!
r! (n-r)!
© aSup-2007
THE DISTRIBUTION OF SAMPLE MEANS   
17
SAMPLING DISTRIBUTION
 … is a distribution of statistics obtained by selecting
all the possible samples of a specific size from a
population
CENTRAL LIMIT THEOREM
 For any population with mean μ and standard
deviation σ, the distribution of sample means for
sample size n will have a mean of μ and a standard
deviation of σ/√n and will approach a normal
distribution as n approaches infinity
© aSup-2007
THE DISTRIBUTION OF SAMPLE MEANS   
18
The STANDARD ERROR OF MEAN
 The value we will be working with is the
standard deviation for the distribution of
sample means, and it called the σM
 Remember the sampling error
 There typically will be some error between
the sample and the population
 The σM measures exactly how much
difference should be expected on average
between sample mean M and the population
mean μ
© aSup-2007
THE DISTRIBUTION OF SAMPLE MEANS   
19
The MAGNITUDE of THE σM
 Determined by two factors:
○The size of the sample, and
○The standard deviation of the population from
which the sample is selected
© aSup-2007
THE DISTRIBUTION OF SAMPLE MEANS   
20
 A population of scores is normal with μ = 100
and σ = 15
○ Describe the distribution of sample means for
samples size n = 25 and n =100
LEARNING CHECK
© aSup-2007
THE DISTRIBUTION OF SAMPLE MEANS   
21
PROBABILITY AND THE DISTRIBUTION
OF SAMPLE MEANS
 The primary use of the standard distribution
of sample means is to find the probability
associated with any specific sample
 Because the distribution of sample means
present the entire set of all possible Ms, we can
use proportions of this distribution to
determine probabilities
© aSup-2007
THE DISTRIBUTION OF SAMPLE MEANS   
22
EXAMPLE
 The population of scores on the SAT forms a
normal distribution with μ = 500 and σ = 100.
If you take a random sample of n = 16
students, what is the probability that sample
mean will be greater that M = 540?
σM =
σ
√n
= 25 z =
M - μ
σM
= 1.6
z = 1.6  Area C  p = .0548
© aSup-2007
THE DISTRIBUTION OF SAMPLE MEANS   
23
 The population of scores on the SAT forms a
normal distribution with μ = 500 and σ = 100.
We are going to determine the exact range of
values that is expected for sample mean 95%
of the time for sample of n = 25 students
See Example 7.3 on Gravetter’s book page 207
LEARNING CHECK

More Related Content

PPTX
APG Pertemuan 4 : Multivariate Normal Distribution (2)
PPT
Pemilihan Model Terbaik
PPT
Stat prob08 distribution_discrete
DOCX
Transformasi Peubah Acak dan Distribusinya
PPTX
Perbandingan ortogonal kontras
PPTX
APG Pertemuan 5 : Inferensia Vektor Rata-rata
DOCX
Anova linda makalah
DOCX
Penjelasan analisis regresi ms excel 2007
APG Pertemuan 4 : Multivariate Normal Distribution (2)
Pemilihan Model Terbaik
Stat prob08 distribution_discrete
Transformasi Peubah Acak dan Distribusinya
Perbandingan ortogonal kontras
APG Pertemuan 5 : Inferensia Vektor Rata-rata
Anova linda makalah
Penjelasan analisis regresi ms excel 2007

What's hot (20)

PPT
19759534 statistik-run-test-satu-sampel
PPTX
Uji Run ( Keacakan )
PDF
PENDUGAAN PARAMETER
PPT
Aksioma peluang
PPT
Stat prob10 distribution_normal
PPTX
APG Pertemuan 4 : Multivariate Normal Distribution
DOC
RANCANGAN ACAK LENGKAP
DOCX
1 dan 2 ratarata statistik
PPT
Konsep dasar pendugaan parameter
PPTX
APG Pertemuan 5 : Inferences about a Mean Vector and Comparison of Several Mu...
PDF
Materi p13 nonpar_satu sampel
PPS
Barisan dan Deret ( Kalkulus 2 )
PDF
Distribusi peluang diskrit(8)
PPTX
Konsep dasar probabilitas
PDF
Akt 2-tabel-mortalitas
PPTX
Uji tukey & Uji scheffe
PPTX
Distribusi binomial dan distribusi poisson
PDF
Sampel acak sederhana
DOCX
Distr. binom & multinom
PPT
DISTRIBUSI PROBABILITAS
19759534 statistik-run-test-satu-sampel
Uji Run ( Keacakan )
PENDUGAAN PARAMETER
Aksioma peluang
Stat prob10 distribution_normal
APG Pertemuan 4 : Multivariate Normal Distribution
RANCANGAN ACAK LENGKAP
1 dan 2 ratarata statistik
Konsep dasar pendugaan parameter
APG Pertemuan 5 : Inferences about a Mean Vector and Comparison of Several Mu...
Materi p13 nonpar_satu sampel
Barisan dan Deret ( Kalkulus 2 )
Distribusi peluang diskrit(8)
Konsep dasar probabilitas
Akt 2-tabel-mortalitas
Uji tukey & Uji scheffe
Distribusi binomial dan distribusi poisson
Sampel acak sederhana
Distr. binom & multinom
DISTRIBUSI PROBABILITAS
Ad

Viewers also liked (8)

PDF
Chapter 5 part1- The Sampling Distribution of a Sample Mean
PPT
Statistik (Bab 5)
PPTX
Sampling distribution
PPTX
Sampling distribution concepts
PPTX
Sampling distribution
PPTX
Sampling Distributions
PPTX
Normal distribution and sampling distribution
DOC
Nota.statistik
Chapter 5 part1- The Sampling Distribution of a Sample Mean
Statistik (Bab 5)
Sampling distribution
Sampling distribution concepts
Sampling distribution
Sampling Distributions
Normal distribution and sampling distribution
Nota.statistik
Ad

Similar to Distribution of sampling means (20)

PDF
Probability & Samples
PPT
The Central Limit Theorem for engineering student's.ppt
PPT
Mpu 1033 Kuliah 9
PPTX
06 samples and-populations
PPT
Chapter one on sampling distributions.ppt
PPT
chapter three Sampling_distributions_1.ppt
PPTX
bbs14e_ppt_ch07.pptx
PPTX
PPT
Powerpoint sampling distribution
PDF
Business Statistics in Practice 8th Edition Bowerman Test Bank
PDF
Business Statistics in Practice 8th Edition Bowerman Test Bank
PPTX
Lecture 5 Sampling distribution of sample mean.pptx
PDF
Business Statistics in Practice 8th Edition Bowerman Test Bank
DOCX
UNIT -3 SAMPLING DISTRIBUTION .docx
PPT
05 samplingdistributions
PDF
Sampling means
PPTX
Business statistic ii
PPT
04013143010_J_15_MTk4MTA3MjkyMDA4MTIxMDAy.ppt
PDF
Chapter 7 statistics for the behavioural sciences
PPTX
Probability and Samples: The Distribution of Sample Means
Probability & Samples
The Central Limit Theorem for engineering student's.ppt
Mpu 1033 Kuliah 9
06 samples and-populations
Chapter one on sampling distributions.ppt
chapter three Sampling_distributions_1.ppt
bbs14e_ppt_ch07.pptx
Powerpoint sampling distribution
Business Statistics in Practice 8th Edition Bowerman Test Bank
Business Statistics in Practice 8th Edition Bowerman Test Bank
Lecture 5 Sampling distribution of sample mean.pptx
Business Statistics in Practice 8th Edition Bowerman Test Bank
UNIT -3 SAMPLING DISTRIBUTION .docx
05 samplingdistributions
Sampling means
Business statistic ii
04013143010_J_15_MTk4MTA3MjkyMDA4MTIxMDAy.ppt
Chapter 7 statistics for the behavioural sciences
Probability and Samples: The Distribution of Sample Means

More from Andi Koentary (7)

PPT
Statistical techniques for ordinal data
PPT
Regression
PPT
Introduction to statistics
PPT
Inference about means and mean differences
PPT
Chi square
PPT
Central tendency
PPT
Analysis of variance
Statistical techniques for ordinal data
Regression
Introduction to statistics
Inference about means and mean differences
Chi square
Central tendency
Analysis of variance

Recently uploaded (20)

PPTX
1 hour to get there before the game is done so you don’t need a car seat for ...
PPTX
Lesson-01intheselfoflifeofthekennyrogersoftheunderstandoftheunderstanded
PPTX
CYBER SECURITY the Next Warefare Tactics
PPT
DU, AIS, Big Data and Data Analytics.ppt
PPTX
statsppt this is statistics ppt for giving knowledge about this topic
PPTX
The Data Security Envisioning Workshop provides a summary of an organization...
PPTX
recommendation Project PPT with details attached
PDF
CS3352FOUNDATION OF DATA SCIENCE _1_MAterial.pdf
PDF
Tetra Pak Index 2023 - The future of health and nutrition - Full report.pdf
PDF
Systems Analysis and Design, 12th Edition by Scott Tilley Test Bank.pdf
PPTX
sac 451hinhgsgshssjsjsjheegdggeegegdggddgeg.pptx
PDF
©️ 01_Algorithm for Microsoft New Product Launch - handling web site - by Ale...
PPTX
AI AND ML PROPOSAL PRESENTATION MUST.pptx
PPTX
Tapan_20220802057_Researchinternship_final_stage.pptx
PDF
Best Data Science Professional Certificates in the USA | IABAC
PPTX
Phase1_final PPTuwhefoegfohwfoiehfoegg.pptx
PPTX
DS-40-Pre-Engagement and Kickoff deck - v8.0.pptx
PPT
lectureusjsjdhdsjjshdshshddhdhddhhd1.ppt
PPTX
MBA JAPAN: 2025 the University of Waseda
PPTX
retention in jsjsksksksnbsndjddjdnFPD.pptx
1 hour to get there before the game is done so you don’t need a car seat for ...
Lesson-01intheselfoflifeofthekennyrogersoftheunderstandoftheunderstanded
CYBER SECURITY the Next Warefare Tactics
DU, AIS, Big Data and Data Analytics.ppt
statsppt this is statistics ppt for giving knowledge about this topic
The Data Security Envisioning Workshop provides a summary of an organization...
recommendation Project PPT with details attached
CS3352FOUNDATION OF DATA SCIENCE _1_MAterial.pdf
Tetra Pak Index 2023 - The future of health and nutrition - Full report.pdf
Systems Analysis and Design, 12th Edition by Scott Tilley Test Bank.pdf
sac 451hinhgsgshssjsjsjheegdggeegegdggddgeg.pptx
©️ 01_Algorithm for Microsoft New Product Launch - handling web site - by Ale...
AI AND ML PROPOSAL PRESENTATION MUST.pptx
Tapan_20220802057_Researchinternship_final_stage.pptx
Best Data Science Professional Certificates in the USA | IABAC
Phase1_final PPTuwhefoegfohwfoiehfoegg.pptx
DS-40-Pre-Engagement and Kickoff deck - v8.0.pptx
lectureusjsjdhdsjjshdshshddhdhddhhd1.ppt
MBA JAPAN: 2025 the University of Waseda
retention in jsjsksksksnbsndjddjdnFPD.pptx

Distribution of sampling means

  • 1. © aSup-2007 THE DISTRIBUTION OF SAMPLE MEANS    1 Chapter 7 THE DISTRIBUTION OF SAMPLE MEANS
  • 2. © aSup-2007 THE DISTRIBUTION OF SAMPLE MEANS    SAMPLING ?
  • 3. © aSup-2007 THE DISTRIBUTION OF SAMPLE MEANS    Prinsip-Prinsip Sampling  Pada kebanyakan kasus dimana pengambilan sampel dilakukan terjadi perbedaan antara statistik sampel dan rata-rata populasi, yang dianggap disebabkan oleh pemilihan unit dalam sampel  Contoh: Usia A = 18 tahun, B = 20 tahun, C = 23 tahun, D = 25 tahun. Usia rata-rata A, B, C, D adalah 21,5 tahun. 3
  • 4. © aSup-2007 THE DISTRIBUTION OF SAMPLE MEANS    Prinsip-Prinsip Sampling  Jika kita ingin mengambil dua individu untuk memperkirakan usia rata-rata dari empat individu.  4 C2= 6  AB, AC, AD, BC, BD, CD 4 nCr = n! r! (n-r)!
  • 5. © aSup-2007 THE DISTRIBUTION OF SAMPLE MEANS    n = 2 A = 18 B = 20 C = 23 D = 25 SAMPLE M μ M - μ AB 19 21,5 -2,5 AC 20,5 21,5 -1,5 AD 21,5 21,5 0 BC 21,5 21,5 0 BD 22,5 21,5 1,5 CD 24 21,5 2,5 5
  • 6. © aSup-2007 THE DISTRIBUTION OF SAMPLE MEANS    Prinsip-Prinsip Sampling  Dari ke-enam kemungkinan kombinasi sampel, hanya dua yang tidak terdapat perbedaan antara statistik sampel dan rata- rata populasi.  Perbedaan ini dianggap disebabkan sampel dan diketahui sebagai sampling error. 6
  • 7. © aSup-2007 THE DISTRIBUTION OF SAMPLE MEANS    Principle-ONE In majority of cases of sampling there will be a difference between the sample statistics and the true population mean, which is attributable to selection of the units in the sample 7
  • 8. © aSup-2007 THE DISTRIBUTION OF SAMPLE MEANS    Prinsip-Prinsip Sampling  Jika kita ingin mengambil tiga individu untuk memperkirakan usia rata-rata dari empat individu.  4 C3= 4  ABC, ABD, ACD, BCD 8
  • 9. © aSup-2007 THE DISTRIBUTION OF SAMPLE MEANS    n = 3 A = 18 B = 20 C = 23 D = 25 SAMPLE M μ M - μ ABC 20,33 21,5 -1,17 ACD 21 21,5 -0,5 ACD 22 21,5 -0,5 BCD 22,67 21,5 1,17 9
  • 10. © aSup-2007 THE DISTRIBUTION OF SAMPLE MEANS    Principle-TWO The greater sample size, the more accurate will be estimate of the true population mean 10
  • 11. © aSup-2007 THE DISTRIBUTION OF SAMPLE MEANS    Principle-THREE The greater difference in the variable under study in a population for a given sample size, the greater will be the difference between the sample statistics and the true population mean 11
  • 12. © aSup-2007 THE DISTRIBUTION OF SAMPLE MEANS    Perbedaan besar variabel yang diteliti pada populasi, besar pula perbedaan antara statistik sampel dan rata-rata populasi.  Contoh: Usia A = 18 tahun, B = 26 tahun, C = 32 tahun dan D = 40 tahun.  Dengan prosedur yang sama, diketahui rentang perbedaan jauh berbeda dengan contoh-contoh sebelumnya.  Hal ini dianggap disebabkan perbedaan usia yang besar dalam populasi (heterogen) 12
  • 13. © aSup-2007 THE DISTRIBUTION OF SAMPLE MEANS    Faktor-faktor yang mempengaruhi kesimpulan yang ditarik dari sampel Prinsip-prinsip di atas menunjukkan terdapat dua faktor yang dapat mempengaruhi tingkat keyakinan tentang kesimpulan yang ditarik dari sampel. 1. Ukuran sampel Temuan yang didasarkan sampel yang besar lebih dapat diyakini dibandingkan dengan yang didasarkan dengan sampel yang lebih kecil. Sesuai prinsip, semakin besar ukuran sampel semakin akurat temuannya. 13
  • 14. © aSup-2007 THE DISTRIBUTION OF SAMPLE MEANS    Faktor-faktor yang mempengaruhi kesimpulan yang ditarik dari sampel Prinsip-prinsip di atas menunjukkan terdapat dua faktor yang dapat mempengaruhi tingkat keyakinan tentang kesimpulan yang ditarik dari sampel. 2. Besarnya variasi populasi Variasi besar dalam karakteristik populasi, besar pula ketidakyakinannya (semakin besar standar deviasi, semakin tinggi standard error). 14
  • 15. © aSup-2007 THE DISTRIBUTION OF SAMPLE MEANS    15 THE DISTRIBUTION OF SAMPLE MEANS  Two separate samples probably will be different even though they are taken from the same population  The sample will have different individual, different scores, different means, and so on  The distribution of sample means is the collection of sample means for all the possible random samples of a particular size (n) that can be obtained from a population
  • 16. © aSup-2007 THE DISTRIBUTION OF SAMPLE MEANS    16 COMBINATION  Consider a population that consist of 5 scores: 3, 4, 5, 6, and 7  Mean population = ?  Construct the distribution of sample means for n = 1, n = 2, n = 3, n = 4, n = 5 nCr = n! r! (n-r)!
  • 17. © aSup-2007 THE DISTRIBUTION OF SAMPLE MEANS    17 SAMPLING DISTRIBUTION  … is a distribution of statistics obtained by selecting all the possible samples of a specific size from a population CENTRAL LIMIT THEOREM  For any population with mean μ and standard deviation σ, the distribution of sample means for sample size n will have a mean of μ and a standard deviation of σ/√n and will approach a normal distribution as n approaches infinity
  • 18. © aSup-2007 THE DISTRIBUTION OF SAMPLE MEANS    18 The STANDARD ERROR OF MEAN  The value we will be working with is the standard deviation for the distribution of sample means, and it called the σM  Remember the sampling error  There typically will be some error between the sample and the population  The σM measures exactly how much difference should be expected on average between sample mean M and the population mean μ
  • 19. © aSup-2007 THE DISTRIBUTION OF SAMPLE MEANS    19 The MAGNITUDE of THE σM  Determined by two factors: ○The size of the sample, and ○The standard deviation of the population from which the sample is selected
  • 20. © aSup-2007 THE DISTRIBUTION OF SAMPLE MEANS    20  A population of scores is normal with μ = 100 and σ = 15 ○ Describe the distribution of sample means for samples size n = 25 and n =100 LEARNING CHECK
  • 21. © aSup-2007 THE DISTRIBUTION OF SAMPLE MEANS    21 PROBABILITY AND THE DISTRIBUTION OF SAMPLE MEANS  The primary use of the standard distribution of sample means is to find the probability associated with any specific sample  Because the distribution of sample means present the entire set of all possible Ms, we can use proportions of this distribution to determine probabilities
  • 22. © aSup-2007 THE DISTRIBUTION OF SAMPLE MEANS    22 EXAMPLE  The population of scores on the SAT forms a normal distribution with μ = 500 and σ = 100. If you take a random sample of n = 16 students, what is the probability that sample mean will be greater that M = 540? σM = σ √n = 25 z = M - μ σM = 1.6 z = 1.6  Area C  p = .0548
  • 23. © aSup-2007 THE DISTRIBUTION OF SAMPLE MEANS    23  The population of scores on the SAT forms a normal distribution with μ = 500 and σ = 100. We are going to determine the exact range of values that is expected for sample mean 95% of the time for sample of n = 25 students See Example 7.3 on Gravetter’s book page 207 LEARNING CHECK