[DL輪読会]Autonomous Reinforcement Learning: Formalism and Benchmarking
1. 1
DEEP LEARNING JP
[DL Papers]
http://deeplearning.jp/
論文紹介
Autonomous Reinforcement Learning: Formalism and Benchmarking
Ryoichi Takase, The University of Tokyo
2. 概要: Autonomous Reinforcement Learning (ARL) を定式化
ARLを用いた学習の利点や改善点を考察
1Stanford University
2University of California, Berkeley
3MIT
4Google Brain
*Equal contribution
書誌情報
2
題目: Autonomous Reinforcement Learning: Formalism and Benchmarking
著者: Archit Sharma*1, Kelvin Xu*2, Nikhil Sardana1, Abhishek Gupta3,
Karol Hausman4, Sergey Levine2, Chelsea Finn1
タスクの学習中に環境のリセットを(ほとんど)行わない問題設定
※注釈無しの図は本論文から抜粋
採録: ICLR2022 accepted