The document discusses the technique of dynamic programming. It begins with an example of using dynamic programming to compute the Fibonacci numbers more efficiently than a naive recursive solution. This involves storing previously computed values in a table to avoid recomputing them. The document then presents the problem of finding the longest increasing subsequence in an array. It defines the problem and subproblems, derives a recurrence relation, and provides both recursive and iterative memoized algorithms to solve it in quadratic time using dynamic programming.