Mobile Telecommunications and Health
 

Review of the current scientific research
in view of precautionary health protection
 
 
 
 
 
 
 
 
 
 
 

April 2000
ECOLOG-Institut
 
 
 
 
 
 
 
Translated by  
Andrea Klein  
Mobile Telecommunications and Health
 

Review of the Current Scientific Research
in view of Precautionary Health Protection
 
 
Commissioned by 
T‐Mobil 
DeTeMobil Deutsche Telekom MobilNet GmbH 
 
 
 
 
 
 
Authors 
Dr Kerstin Hennies 
Dr H.‐Peter Neitzke 
Dr Hartmut Voigt 
 
With the support of  
Dr Gisa‐Kahle Anders 
 
ECOLOG‐Institut 
für sozial‐ökologische Forschung und Bildung gGmbH 
Nieschlagstrasse 26 
30449 Hannover 
Tel. 0511‐92456‐46 
Fax 0511‐92456‐48 
Email mailbox@ecolog‐institut.de 
Hannover, April 2000 
Contents
1

1

1.1
1.2
2

Introduction 

1
3

New Technologies and Precautionary Health Protection 
Terms of Reference and Structure of the Review 

5

2.1
2.2
3

Collating and Interpreting the Scientific Data (Methodology) 

5
5

Primary  Reciprocal  Effects  between  High  Frequency  Electromagnetic  Fields 
and Biological Systems (Biophysical and Biochemical Processes) 
3.1

3.2

3.3
3.4
3.5
4

Thermal Effects 
3.1.1
Effects of Homogenous Warming 
3.1.2
Microthermal Effects 
Direct Field Effects 
3.2.1
Effects from the Electrical Component of the Electromagnetic Field 
3.2.2
Effects from the Magnetic Component of the Electromagnetic Field 
Quantum Effects 
Other Effects 
Particular Properties of Pulsed Electromagnetic Fields 

Biological Primary Effects of High  Frequency Electromagnetic Fields Effects 
on Cellular Level 
4.1
4.2

4.3

5

Criteria for the Selection of Papers 
Assessment Criteria 

Gene Toxicity 
Cellular Processes 
4.2.1
Gene‐Transcription and Gene‐Translation 
4.2.2
Membrane Function 
4.2.3
Signal Transduction 
4.2.4
Cell Cycle 
Cell Transformation and Cell Proliferation 
4.3.1
Cell Transformation 
4.3.2
Cell Communication 
4.3.3
Cell Proliferation 

8
8
8
8
9
9
10
10
10
11
12
12
13
13
14
14
16
16
17
17
17

Patho‐Physiological Effects 

19

5.1
5.2

19
19
19
20
20
22
23
23
24

5.3

Immune System 
Central Nervous System 
5.2.1
Blood Brain Barrier 
5.2.2
Neurotransmitters 
5.2.3
Electroencephalogram (EEG) 
5.2.4
Cognitive Functions 
Hormone Systems 
5.3.1
Stress Hormones 
5.3.2
Melatonin 
iii
Pathological Effects 

26

6.1

6

26
26
27
28

6.2
7
8

Results of Experimental Studies 
6.1.1
Cancer 
6.1.2
Infertility and Teratogenic Effects 
Results of Epidemiological Studies 

Health  Risks  to  Humans  Resulting  from  Exposure  to  the  Electromagnetic 
Fields of Mobile Telecommunications 

33

Recommendations 

37

8.1
8.2

Precautionary Health Protection in Relation to Exposures to 
Electromagnetic Fields of Mobile Telecommunications 
Scientific Studies Regarding the Health Risk of Mobile 
Telecommunications 

37
38

Literature 

40

Appendix A 

56

Studies of the effects of high frequency electromagnetic fields on the cellular level  56
Table A.1  Genotoxic Effects of High Frequency Electromagnetic Fields 
Table A.2  Effects of High Frequency Electromagnetic Fields on Cellular Processes 
Table A.3  Effects of High Frequency Electromagnetic Fields on Cell 
Transformation and Cell Proliferation 
Appendix B 

66

Studies of the effects of high frequency electromagnetic fields on the central 
nervous system (Blood‐Brain‐Barrier) 
Table B.1  Effects of High Frequency Electromagnetic Fields on the Blood‐Brain‐
Barrier 
Appendix C 

66

68

Studies of the Carcenogenic Effects of High Frequency Electromagnetic Fields in 
Animal Experiments 
Table C.1  Animal Experiments Regarding the Carcinogenic Effects of High 
Frequency Electromagnetic Fields 
Appendix D 

68

71

Epidemiological Studies of the health Risks of HF EMFs 
Table D.1  Overview of the results of epidemiological studies regarding 
exposures in the high frequency spectrum and health risks 
Appendix E (only available in German) 

71

82

Extracts of our database (EMFbase) 
Important  research  papers  relevant  to  the  assessment  of  health  risks  resulting  from 
exposure to the electromagnetic fields of mobile telecommunications under the aspect of 
precautionary health protection 

iv
1 Introduction
1.1 New Technologies and Precautionary Health Protection
No technology covering virtually entire countries with its emissions has ever been rolled 
out as quickly as mobile telecommunications. At the same time, there are only few direct 
studies of the potential health risks of typical mobile telecommunications frequencies and 
modulations for the exposed population. Also, many of the existing studies worked with 
high  intensities,  which  will  only  be  found  in  rare  cases  in  the  real  environment.  High 
intensities  of  high  frequency  electromagnetic  fields  can  heat  the  absorbing  tissue  and 
trigger  stress  reactions  in  the  body  and  thus  with  rising  temperatures  lead  to  thermal 
damage.  Effects  from  high  intensity  high  frequency  EMFs,  also  know  as  thermal  effects, 
on  the  central  nervous  system,  the  immune  system,  the  cardio‐vascular  system  and  the 
reproductive system including teratogenic effects, have been proven for mammals with a 
multitude of experiments. 
The results of studies of the thermal effects of high frequency EMFs form the basis of the 
recommendations of the International Commission on Non‐Ionizing Radiation Protection 
(ICNIRP), which, in the past, were the basis for the guidelines set by the government in 
Germany and many other countries. The base guideline was an upper limit on the Specific 
Absorption  Rate  (SAR),  i.e.  the  amount  of  energy  absorbed  by  the  body  from  the  field 
within a given unit of time. 
According to ICNIRP, thermal damage will not occur at SAR values of under 4 W/kg and 
exposure  levels  of  0.4  W/kg  for  professional  exposures  and  0.08W/kg  for  the  general 
population are considered safe. 
Parallel to the experiments examining thermal effects, there have been a growing number 
of  studies  examining  the  effects  on  the  body  of  HF  EMFs  at  sub‐thermal  intensities.  We 
now have a plethora of experimental studies examining a variety of effects on all levels of 
the organism, ranging from effects on single cells to effects which manifest themselves as 
reactions  of  the  entire  body.  In  addition  to  the  experimental  studies,  there  have  been  a 
number  of  epidemiological  studies  in  order  to  establish  the  possible  causal  correlations 
between  higher  exposures  to  HF  EMFs,  for  example  as  found  near  base  stations,  and 
health damage amongst the population groups with higher exposures. 
The mobile telecommunications situation reflects, once again, the dilemma already known 
from chemical toxicology: The study of potential health effects cannot generally compete 
with  the  speed  of  technical  development  and  the  roll  out  of  the  product.  The  extremely 
fast  roll  out  of  the  mobile  telecommunications  technology  and  the  accompanying public 
fear of the potential danger of this technology have stimulated research insofar that now 
we  have  more  studies  examining  the  effects  of  frequencies  and  modulations  as  used  in 
mobile  telecommunications  on  biological  systems.  There  are  also  a  growing  number  of 
experiments  using  lower  intensities,  reflecting  the  real  conditions  of  exposure  in  the 
vicinity  of  base  stations  and  equipment,  so  that  effects  found  in  the  studies  can  be 
extrapolated  into  real  life  conditions.  The  number  of  studies  which  examine  the 

Mobile Telecommunications and Health

1
physiological effects of real mobile exposures is still very low, compared to the degree of 
penetration achieved by the technology and the number of (potentially) exposed persons. 
The  WHO  amongst  others,  have  only  recently  begun  to  develop  targeted  strategies  to 
examine the potential health risk from mobile telecommunications and results can earliest 
be expected within several years. 
In  the  meantime,  it  is  only  possible  to  assess  the  potential  dangers  of  mobile 
telecommunications using the results generated by uncoordinated research, which is still 
mainly  orientated  towards  topics  and  criteria  of  relevant  to  science  only,  rather  than 
addressing the requirements of society as a whole. 
Faced  with a  state  of  incomplete  scientific  research  it  is  necessary  to  chose  between  two 
fundamentally different assessment theories when planning to assess the potential health 
risks of new technologies: 
The  first  theory  is  based  on  the  (without  doubt  correct)  scholarly  understanding  that  is 
practically impossible to prove the ‘non‐harmfulness’ to human health or the environment 
of a technology, a material or a product. This understanding is interpreted in such a way 
that  a  presupposition  of  ‘not  guilty’  is  adopted  and  any  risks  have  to  be  unequivocally 
proven. 
‘Unequivocal  proof’  in  this  context  means  the  consistent  evidence  for  a  biological‐
physiological  or  an  ecological  chain  of  effects,  from  the  biophysical  or  biochemical 
primary  effect  through  to  the  physiological  effects  and  the  resulting  illness  or,  if 
applicable, the ecological damage. 
This theory, which is firmly based in scientific conservatism, has the advantage that it will 
stand  up  in  court  and  will  not  hinder  the  introduction  of  new  technologies.  It  is 
methodologically simple, since it is sufficient to examine studies which are presented as 
‘proof’ with regards to their methodological correctness and their validity and then to put 
all  these  reviewed  pieces  of  evidence  together  like  a  jigsaw  to  produce  a  whole  picture. 
The  complete  whole  picture  finally  constitutes  the  scientific  proof  required  by  the 
legislators and courts. 
The  disadvantage  of  this  theory  is  obviously  the  length  of  time  necessary  to  obtain 
enough  knowledge  for  a  completed  chain  of  proof,  during  which  many  facts  will  be 
created,  which  may  later  prove  irreversible  or  only  reversible  with  very  high  costs 
attached, such as investments and irreversible damage to health and the environment. 
The second theory solves the dilemma of the time delay. It is based on the assessment of 
the  potential  risks  of  a  technology  on  the  basis  of  existing  knowledge.  If  there  are 
sufficient indications that there may be damaging effects, the precautionary principle for 
the protection of health and the environment will apply and avoidable exposures will be 
avoided until such time when there is enough knowledge for a wider introduction of the 
technology in question. This theory draws its justification not least from the experiences 
with  the  introduction  of  technologies  and  products  (such  as  asbestos,  DDT,  CFCs, 
formaldehyde, wood preservatives, mass X‐ray screenings etc.), which were widely used, 
even  many  years  after  the  first  clear  indications  of  health  and  ecological  damage  had 
appeared.  When  finally  sufficient  scientific  proof  for  the  health  and  ecological  damage 

2

Mobile Telecommunications and Health
was  provided,  it  took  many  more  years  until  the  further  use  was  finally  reduced  and 
banned through the courts and international negotiations. 
The  advantage  of  the  precautionary  principle  is  of  course  primarily  medical  and 
ecological,  since  exposures  are  initially  limited  to  a  level  recognised  as  safe  under  the 
precautionary  principle.  But  it  can  also  offer  economical  advantages,  because  firstly,  it 
may  prevent  potentially  highly  risky  investments,  but  also  secondly,  because  the 
commitment to and observance of the precautionary principle will create trust within the 
general population and thus increase acceptance for the placing of emitting equipment. 
On the other hand, it will be the industry – as the owner of emitting equipment – who has 
to  bear  the disadvantage  of  this  principle,  when  it  becomes  clear  that, for  precautionary 
reasons, an economically and technically perfectly‐suited site can’t be approved, or maybe 
even an entire technology has to be abandoned.  
Furthermore,  the  methodological  difficulties  of  this  theory  must  not  be  underestimated, 
since  it  is  not  enough  to  prove  the  reliability  of  single  scientific  studies,  which  is  just  as 
essential under this premise as under the first theory. The ultimate goal however is – to 
remain with the jigsaw analogy – to put the existing jigsaw pieces together and recognise 
early on which pictures might appear once the work is completed. 

1.2 Terms of Reference and Structure of the Review
The aim of this study was the assessment of the potential risks of electromagnetic fields as 
they  are  used  for  mobile  telecommunications  with  respect  to  precautionary  health 
protection. To this aim, the scientific literature was reviewed with regards to study results 
which  might  be  of  importance  to  the  assessment  of  potential  health  risks  from  mobile 
telecommunications. 
To  create  a  base  for  later  scientific  discussion,  a  list  of  studies  which  are  particularly 
important in this respect should be created. On the basis of these papers, the health risk 
from  exposure  to  electromagnetic  fields  from  mobile  telecommunications  should  be 
assessed. Finally, recommendations for future scientific studies should be formulated. 
The  methodological  aspects  of  this  examination  are  presented  in  Chapter  2.  This  is 
followed by a review of the current scientific knowledge of the effects of high frequency 
electromagnetic fields. This review is structured according to the different levels of effects: 
■ biophysical and biochemical primary effects of HF fields on organic matter as a whole 
or at the level of cells and membranes (Chapter 3) 
■ primary  biological  effects  on  the  cellular  level,  i.e.  on  the  genetic  substance  and  on 
intracellular processes as well as cell transformation and cell proliferation (Chapter 4) 
■ patho‐physiological  effects,  i.e.  physiological  effects  with  possible  but  not  certain 
negative health implications (Chapter 5) 
■ pathological  effects,  which  means  manifested  illness  and  other  effects  such  as  the 
damage  of  cognitive  functions,  which  have  been  found  in  epidemiological  or 
experimental studies (Chapter 6). 

Mobile Telecommunications and Health

3
The  conclusions  of  all  findings  are  drawn  in  Chapter  7.  In  Chapter  8,  we  make 
recommendations  for  precautionary  health  protection  with  regards  to  exposures  to  the 
electromagnetic  fields  of  mobile  telecommunications  and  for  focal  points  for  further 
research. 

4

Mobile Telecommunications and Health
2 Collating and Interpreting the Scientific Data
(Methodology)
2.1 Criteria for the Selection of Papers
In order to include a maximum of relevant literature, we analysed the literature we have 
catalogued in our own database, EMFbase, as well as exploring the three following paths: 
■ research in other relevant scientific databases 
■ complete  sifting  of  at  least  the  last  two  full  years’  issues  of  all  relevant  scientific 
journals  available  in  the  Central  Library  of  Medicine  in  Cologne,  the  Technical 
Information Library in Hanover, and the Library of the Medical University of Hanover 
■ evaluation  of  all  existing  monographs,  reviews  and  conference  reports  related  to  the 
subject matter 
The basic literature research was finished in February 2000. 
Literature  databases  are  a  convenient  research  tool,  but  their  value  in  assessing  the 
current  scientific  knowledge  in  a  subject  matter  is  limited  by  the  number  of  registered 
publications,  inconsistent  use  of  keywords,  the  changing  understanding  of  certain 
procedures, effects etc. and last but not least, due to long time delays between the time of 
publication  and  availability  in  the  database.  Furthermore,  databases  usually  only  keep 
abstracts  of  papers,  and  those  differ  often  from  the  full  text  with  regards  to  the 
presentation and interpretation of the results. Our research for this review confirmed this 
observation,  reflecting  the  results  of  a  study  of  Pitkin  et  al.  (1999)  according  to  which 
almost  40%  of  all  papers  published  in  the  six  largest  medical  journals  contained 
inaccuracies  and  mistakes  in  the  abstracts.  To  be  at  the  cutting  edge  of  scientific 
knowledge, it is necessary to research current scientific journals and find older papers via 
monographs  and  reviews.  Reviews  are  only  useful  to  gain  an  overview  over  a  subject 
matter  and  as  a  source  for  literature  leads.  It  is  inappropriate  to  use  assessments  or 
interpretations  of  a  review  study  since  some  authors  of  reviews  will  have  based  their 
conclusion on abstracts rather than the full texts of the papers they discuss. 

2.2 Assessment Criteria
One  sub‐goal  of  the  present  paper  was  to  identify  those  scientific  papers  which  are 
particularly  interesting  for  the  assessment  of  potential  health  risks  caused  by  the 
electromagnetic  emissions  of  mobile  telecommunications.  (Extracts  from  our  database 
EMFbase with a summary of the results of these papers can be found in Annex E. In the 
source references, these papers carry an asterisk*). Only peer reviewed papers published 
in scientific journals were included in our review. We also accorded weight to the ‘Impact 
Factor’, which is calculated by the Institute for Scientific Information in Philadelphia. This 
factor  is  a  rough  measure  for  the  amount  of  importance  and  reputation  attributed  to  a 
scientific journal in its subject matter. 
Mobile Telecommunications and Health

5
The  papers  able  to  pass  this  first  filter  were  subsequently  interpreted  according  to  the 
following criteria: 
■ carrier frequency or frequency range 
■ manner of modulation 
■ modulation frequency or frequency range 
■ power flux density 
■ specific Absorption Rate 
■ electric filed strength 
■ duration of exposure 
■ other parameters of exposure (such as other fields [incl. ELF], ambient and if applicable 
body temperature, particular forms of modulation) 
■ source  of  exposure  or  environment  of  the  exposure  (such  as  antenna  emitting  freely, 
anechoic chamber, transmission line) 
■ object of experiments (human, animal, cell system) 
■ examined pathological results (manifested illness and other effects on the whole body) 
■ examined patho‐physiological effects (physiological effects with a potential for health 
damage) 
■ examined biological effects (mostly on the cellular level) 
■ examined  biophysical  and  biochemical  processes  (primary  effects  on  the  level  of 
molecules, membranes etc.) 
■ methodology of the experiments (procedures used) 
■ results (including a mention if our own interpretations differ from those of the author) 
■ statistical significance of the results 
■ appropriateness  of  the  model  (with  regards  to  the  statements  made  about  effects  on 
humans) 
■ appropriateness of the methodology (methodical weakness analysis) 
■ documentation of the conditions of the experiments (completeness, reproducibility) 
■ context of other experiments (mention of experiments with the same or contradicting 
results) 
■ meaning (Main conclusions drawn from the results, importance for the assessment of 
health risks for humans) 
Because of the delay of science with regards to the electromagnetic frequencies emitted by 
mobile  telecommunications,  a  risk  analysis  cannot  be  limited  to  the  frequencies  and 
6

Mobile Telecommunications and Health
modulations  actually  used  by  this  technology.  Therefore,  we  have  included  all  papers 
examining  carrier  frequencies  from  100MHz  to  10GHz.  In  the  experiments  at  cellular 
level, but also in animal experiments, effects have been found that only appear at certain 
modulations or are a lot stronger at these modulations (chapter 3 and 4). At this point in 
time it is not possible to determine whether the majority of the found effects are caused by 
the  HF  carrier  wave  or  the  modulation.  This  is  why  we  have  included  all  forms  of 
modulation  into  this  review.  Because  of  the  nature  and  the  importance  of  the  so‐called 
‘thermal  effects’  (chapter  3.1)  we  have  not  set  an  exclusion  limit  for  power  flux  density 
and  Specific  Absorption  Rate.  However,  we  did  not  include  papers,  in  which  the  EMF 
exposure led to a considerable rise in body temperature (>1ºC) of the animals or human 
subjects. 
When evaluating the papers, we kept making the following observations: 
■ important single results are ‘masked’ for example when data are ‘pooled’ 
■ certain  observations  are  dismissed  by  the  authors  as  ‘blips’  if  they  don’t  fit  the 
(expected/otherwise  observed)  general  trend,  without  sufficient  explanation  being 
offered for this dismissal 
■ single results are not taken into account for statistical reasons, but a common trend is 
not recognised or not sufficiently acknowledged. 
In  such  cases,  whenever  this  was  possible  based  on  the  existing  data,  we  proceeded  to 
make our own interpretations. Where our evaluation differed from the main statements of 
the authors, it will be noted. 

Mobile Telecommunications and Health

7
3 Primary Reciprocal Effects between High
Frequency Electromagnetic Fields and Biological
Systems (Biophysical and Biochemical Processes)
3.1 Thermal Effects
3.1.1 Effects of Homogenous Warming
HF  electromagnetic  fields  are  absorbed  depending  on  the  frequency  and  polarisation  of 
the  fields  on  the  one  hand  and  the  dimensions  and  material  characteristics  of  the 
biological system on the other hand. They cause electric currents (dominant in the range 
under  1  MHz),  polarisation  effects  and  potential  differences  on  cell  membranes  (in  the 
range between 1 MHz and 100 MHz) or trigger rotational oscillations of polar molecules 
(mainly within the GHz range). All these processes can lead to a warming of the biological 
material  if  the  intensity  is  sufficient  (Ohmic  losses  in  the  low  frequency  range  and 
dielectrical  losses  in  the  GHz  range).  The  avoidance  of  health‐damaging  warming  is  the 
base of the concept of SAR, expressed by limiting the specific absorption rate, measured 
as the energy absorption per unit, to a rate which will exclude overheating based on the 
body’s own thermo‐regulative processes. For humans, a whole body exposure of 0.4 W/kg 
corresponds approximately to half the metabolic base rate. In absence of heat conduction 
or other thermal dissipation, a SAR of 0.4 W/kg will lead to a temperature rise of 10‐4K/sek 
(Foster 1996) in soft tissue like muscles or the brain. 

3.1.2 Microthermal Effects
The warming through microwaves is fundamentally different from the warming through 
a  water  bath  for  example.  In  the  latter  case  the  energy  is  transmitted  by  stochastic 
collisions. In microwave heating it is in the simplest case the electrical component which 
puts  polar  molecules  within  the  medium  collectively  in  vibration  (3.2.1).  Because  of 
‘friction’  with  the  dense  ambient  medium,  the  energy  is  quickly  transmitted  to  this 
medium  and  further  dissipated  by  collisions.  When  corresponding  inner  molecular 
degrees of freedom exist, the microwave energy can also be absorbed as a quantum and, 
in a large molecule, stored (3.3.). Compared to conventional warming, the absorption of a 
microwave  quantum  is  a  singular  process,  which  can  lead  to  localised  warming  if  the 
absorbing  molecules  are  suitably  distributed.  Liu  &  Cleary  (1995)  show  in  a  theoretical 
model that at the cellular level, membrane‐bound water can lead to frequency dependent 
spatial discrepancies in dissipation of the SAR and the induced HF fields. 
Microthermal effects can also be caused by the non‐uniformity of thermal conductivity of 
tissue at microscopic level, especially when the warming is short, strong and local. This is 
of importance mainly for the evaluation of pulsed fields, because in such fields, even at a 
low  average  power  flux  density,  the  energy  absorbed  during  a  pulse  can  be  very  high. 
Radiation  in  the  form  of  short  pulses  can  lead  to  a  very  high  rate  of  temperature  rise, 
which  can  itself  trigger  thermoelastic  waves,  a  phenomenon,  which  is  inked  to  the 
8

Mobile Telecommunications and Health
acoustic perception of microwaves. A high peak‐SAR can also trigger thermally‐induced 
membrane phenomena (Foster 1996). 

3.2 Direct Field Effects
3.2.1 Effects from the Electrical Component of the Electromagnetic
Field
The  electric  component  of  the  electromagnetic  field  exerts  a  force  on  electrical  charges, 
permanent  dipole  moments,  induced  dipole  moments  and  higher  multipole  moments. 
The  forces  on  charges  create  currents,  however  these  only  play  a  role  in  the  lower  HF 
range,  causing  changes  in  membrane  potentials  (stimulation)  or  thermal  effects  (see 
above). 
Permanent  charge  distributions  in  biomolecules  and  cells  lead  to  permanent  dipole  (or 
higher multipole) moments. The electrical field exerts a torque on dipoles, which tries to 
align  the  dipole  moment  parallel  to  the  field.  In  alternating  fields  with  not  too  high 
frequencies,  the  interactions  lead  to  oscillations  of  the  dipoles.  In  dense  media,  these 
oscillations  are  hindered  by  interactions  with  the  surrounding  particles,  which  lead  to 
heating (see above). If the particles are too large or the surrounding particle density is too 
high or if the frequency of the field is too high, the oscillations cannot develop.  
The  threshold  field  strengths  for  the  orientation  of  dipolar  cells  and  other  objects  of 
similar  size  (radius  of  approx.  1  μm)  are  at  100  V/m,  the  cut‐off  frequencies  in  water 
(temperature 300K) are at circa 0.05Hz, hence far outside the HF range. DNA molecules and 
other bio‐polymers can be put into oscillation by fields with frequencies in the kHz range. 
Spherical protein molecules (radius approx. 5nm) can still follow fields with frequencies 
up  to  400  kHz,  however  this  requires  field  strengths  of  106V/m  (Foster  1996).  Such  field 
strengths are not usually reached in the environment. 
The interaction between a field and a particle with an induced dipole moment depends on 
the  field  strength  to  the  power  of  2,  that  means,  a  continuous  electrical  alternating  field 
influences  the  particle  via  a  constant  torque,  however  the  torque  of  a  modulated  field 
follows  the  modulation.  There  is  no  limitation  through  a  cut‐off  frequency  for  the 
interaction between a field and an induced dipole moment, however for frequencies over 
1  MHz,  the  forces  exerted  on  the  cells  are  very  small  unless  field  strengths  of  several 
thousand  V/m  are  used.  With  such  field  strengths  however,  strong  dielectrophoretic 
forces appear, which can lead to cell deformations, to the orientation of non‐spherical cells 
and to the so‐called coin roll effect, a stringing together of cells. Since the induced dipole 
moment  depends  on  the  polarizability  of  the  particle  and  the  latter  on  the  size  of  the 
particle,  even  higher  field  strengths  are  needed  for  smaller  bodies  than  cells 
(biopolymers). 
Electric  fields  can  induce  electrical  potentials  on  cell  membranes.  The  size  of  these 
potentials depends on the electric field strength, the dimensions of the cell, the frequency 
of  the  field,  the  electrical  conductivity  within  and  outside  of  the  cell  as  well  as  the 
capacitance of the cell membrane. 

Mobile Telecommunications and Health

9
With  frequencies  above  1  MHz  the  membrane  is  practically  short‐circuited  and  the 
induced  membrane  potentials  become  very  small.  However,  theoretical  rectification 
processes  and  non‐linear  phenomena  at  the  cell  membrane  have  been  discussed,  and 
these could lead to an intensification of the effect and to membrane potentials that have 
an effect on cell physiology. 

3.2.2 Effects from the Magnetic Component of the Electromagnetic
Field
With  some  exceptions,  biological  tissue  is  not  magnetic  and  the  mutual  effects  between 
the  magnetic  component  of  an  electromagnetic  field  and  tissue  are  generally  small. 
However, the presence of magnetite crystals, which have a strong capacity to absorb the 
frequency  range  of  0.5  to  10  GHz  which  is  relevant  for  mobile  telecommunications,  has 
been  found  in  the  human  brain  as  well  as  in  the  tissue  of  many  animals  (*Kirschvink 
1996).  Under  exposure  to  amplitude  modulated  or  pulse  modulated  microwaves,  the 
frequency of the crystal vibrations varies according to the modulation frequency, and thus 
transmits it, for example in the form of an acoustic wave onto the ambient medium and 
the cell membrane, which possibly leads to changes of the permeability of the membrane 
(*Kirschvink  1996).  Theoretical  calculations  show  that  magnetite  transmitted  effects  can 
only occur at high densities of superparamagnetic particles (*Dobson & St. Pierre 1998). 

3.3 Quantum Effects
The  quantum  energy  from  radio  and  microwaves  in  the  frequency  range  between  100 
MHz  to  10  GHz  is  far  too  low  to  break  ionic,  covalent  or  hydrogen  bonds.  Bohr  et  al. 
(*1997)  have  however  shown  theoretically,  that  wring  resonances  can  be  triggered  in 
chain molecules. The frequencies of these resonances are in the range from 1 to 10 GHz for 
proteins  and  10  MHz  to  10  GHz  for  DNA  molecules.  The  wring  modes  of  molecules 
manifest  themselves  as  ‘torsions’  in  the  molecule  chain,  which  can  lead  to  structural 
changes. 
The  influences  of  microwaves  on  structural  changes  in  molecules  have  been  found  in 
experiments  using  the  protein  ß‐Lactoglobuline  (*Bohr  &  Bohr  2000).  The  triggering  of 
resonant  wring  modes  can  even  lead  to  chain  breaks,  since  due  to  White’s  Theory,  the 
added energy can be concentrated in a very limited part of the molecule during structural 
changes (*Bohr et al.). In this part, the chain can break. 

3.4 Other Effects
Resonance Phenomena 
When the frequency of the electromagnetic wave meets the natural vibrations in the cell 
structures  or  in  tissue,  it  can  lead  to  resonances.  Rhythmical  fluctuations  of  signal 
substances,  matter‐exchange‐processes  and  Ion‐conductivity  can  be  found  in  many 
neurones,  receptors  and  cell  types.  These  oscillations  can  influence  the  membrane 
potentials and switch certain stimuli on and off. An external field – according to theory – 
can imprint an external oscillation frequency onto these structures. Neurones which have 

10

Mobile Telecommunications and Health
been modified in this way can even synchronise the following neurones in the same way. 
This external synchronisation would even remain after the disappearance of the external 
stimulus. 
Indirect Effects 
In  addition  to  the  previously  described  triggering  of  wring  resonances,  microwaves  can 
possibly damage the genetic substance via the formation of hydroxyl radicals. The input 
energy  of  microwaves  is  sufficient  to  raise  the  ratio  of  oxidants  to  anti‐oxidants,  a  self‐
accelerating chain reaction of free radicals can lead to damage of the DNA (Scott 1992, see 
also Maes et al. 1995). 

3.5 Particular Properties of Pulsed Electromagnetic Fields
In  an  evaluation  of  circa  40  studies,  in  which  the  biological  effects  of  pulsed  high 
frequency fields were directly compared to those of continuous fields of the same median 
power  density,  Postow  &  Swicord  (1996)  concluded  that  in  half  of  the  studies,  the 
biological  effectiveness  of  pulsed  fields  was  significantly  higher.  Only  in  a  few  studies 
were  the  continuous  fields  more  effective  and  in  the  remainder  of  the  studies  the 
effectiveness of both was practically the same. The studies which are mainly discussed in 
chapter 4 and 5 convey a similar picture. 
At  first  glance,  the  higher  biological  effectiveness  of  pulsed  electromagnetic  fields  in 
comparison to continuous fields at the same median power flux densities could have an 
almost trivial cause: 
The  individual  pulses  of  pulse  modulated  fields  have  a  higher  amplitude  than  the 
continuous  fields;  the  possible  threshold  for  the  triggering  of  biological  reactions  could 
therefore be passed in these fields during the duration of the pulse. 
However,  numerous  experiments  found  that  the  biological  response  depends  in  a 
complicated  manner  on  the  duration  of  the  pulse  and  its  frequency.  Given  that  some 
effects have only been observed at certain pulse frequencies, we presume that in addition 
to  the  described  effect,  there  are  others  which  can  be  originally  attributed  to  the  low 
frequency modulation (see also chapter 4). 

Mobile Telecommunications and Health

11
4 Biological Primary Effects of High Frequency
Electromagnetic Fields Effects on Cellular Level
At the cellular level, it is possible that there may be direct effects of the EM field on the 
genetic material, which we have collated under the heading Gene Toxicity and which will 
manifest as mutations if the cell’s own repair mechanisms fail. On the other hand, it is also 
possible  that  the  fields  influence  cellular  processes  such  as  gene‐transcription  and  gene‐
translation.  Furthermore  it  is  possible  that  the  fields  can  impact  on  the  cell  membranes, 
the  intracellular  processes  of  signal  transmission  and  not  least  the  cell  cycle.  Just  like 
direct  damage  of  the  genetic  substance,  a  disruption  of  these  processes  can  lead  to  a 
transformation of the cell, to disruptions of inter‐cellular communication and to a changed 
rate  of  cell  division,  which  can  lead  to  a  slower  –  or  very  importantly  with  respect  to  a 
potential carcinogenic effect – faster growth. 

4.1 Gene Toxicity
A basic question for the evaluation of the potential dangers of mobile telecommunication 
is whether the electromagnetic fields used are genotoxic. If the fields had the potential to 
damage  genetic  substance  directly,  they  would  not  only  amplify  the  effects  of  other 
carcinogenic  teratogenic  or  mutagenic  substances,  but  they  would  induce  these  effects 
themselves. A direct genotoxic effect of electromagnetic fields with frequencies as they are 
used for mobile telecommunications has been thought to be not likely in the past (Brusick 
et  al.  1998,  Moulder  et  al.  1999,  Repacholi  1997,  Repacholi  1998,  Saunders  et  al.1991, 
Verschaeve 1995, Verschaeve & Maes 1998). The reasons for this assumption were on the 
one  hand  that  the  quantum  energy  contained  in  EM  field  in  the  radio  and  microwave 
range was not sufficient to break molecular bonds. This assumption is no longer tenable 
after the experiments of Bohr et al. (*1997) and Bohr & Bohr (*2000) (see also chapter 3.3). 
On the other hand, it was argued that there was a large number of experiments showing 
no  genotoxic  effects.  Our  list  of  papers  in  Annex  A,  Table  A.1  shows  however,  that  the 
much debated findings of the work of Lai & Singh (*1995), in which the direct damage of 
DNA (single strand and double strand breaks) has been proven, have been confirmed by 
a  whole  range  of  other  studies,  some  by  the  same  laboratory,  but  also  by  other  groups 
(*Lai  &  Singh  1996,  1997,  *Phillips  1998,  *Sarkar  1994).  A  study  by  Varma  &  Traboulay 
(1977)  on  the  effect  of  HF  fields  on  pure  DNA  had  already  resulted  in  hints  of  direct 
genotoxic effects, however, this experiment used a relatively high power flux density and 
therefore  significant  warming  may  have  occurred,  at  least  locally.  Lai  and  Singh  (*1997) 
found  that  the  dispensation  of  melatonin  and  N‐Tert‐Butylalpha‐Phenylnitron  (PBN) 
before  the  EMF  exposure  prevented  the  occurrence  of  DNA  breaks.  Melatonin  captures 
free radicals and for PBN it has been proven that it protects cells from cell death induced 
by free radicals.  
In Appendix Table A.1 we also list the experiment of Meltz et al. (*1987) and Stagg et al. 
(*1997) which examined the influences of EMF fields on the DNA repair mechanisms and 
the DNA synthesis. 

12

Mobile Telecommunications and Health
The term chromosome aberration sums up all anomalies of the DNA double strand level 
with  respect  to  chromatids  and  chromosomes.  Examples  for  structural  chromosome 
aberrations  are:  chromatid  and  chromosome  breaks,  chromatid  gaps,  acentric  fragments 
as well as di‐ and tetracentric chromosomes. 
Chromosome aberrations have been observed in a multitude of experimental conditions, 
in  vivo  as  well  as  in  vitro  (Table  A.1).  Maes  et  al.(*1997)  found  a  rise  of  chromosome 
aberrations  in  human  lymphocytes  in  workers  who  were  professionally  exposed  to 
radiation  from  mobile  equipment,  but  also  in  experiments  with  human  blood  under 
controlled  exposure  conditions  (GSM  base  station,  15  W/m²,  exposure  time  of  2  hours). 
However, this was the only study so far which used the actual fields of a real base station. 
The incidence of micronuclei indicates whether the distribution of chromosomes into the 
daughter nuclei after a cell division has been normal and complete. A number of studies 
have  proven  a  higher  incidence  of  micronuclei  under  the  influence  of  HF  EMF  fields, 
which  is  interpreted  as  an  indication  for  chromosome  damage  (Table  A.1).  With  one 
exception,  the  frequencies  were  all  over  1  GHz  and  in  most  cases  the  intensities  were 
relatively high. 
For  the  incidence  of  sister  chromatid  exchange  as  a  measure  for  damage  at  DNA  single 
strand level, only very few studies using typical mobile frequencies and intensities have 
been  done  so  far  (Table  A.1).  Maes  et  al.(*1996)  found  that  the  radiation  of  a  GSM  base 
station  (954  MHz,  217  Hz,  duration  of  exposure:  2  hours)  raises  the  genotoxic  effects  of 
Mitomycin C significantly, demonstrated via the sister chromatid exchange. 
Genetic  damage  can  lead  to  cell  mutation  with  possibly  damaging  effects  for  the  living 
organism. Mutations which promote faster cell division will be discussed in chapter 4.3. 
Table A.1 shows in its last block some studies which focussed on the evidence of changes 
in  the  genetic  materials  which  manifest  themselves  as  changed  properties  within  the 
organism. 

4.2 Cellular Processes
4.2.1 Gene-Transcription and Gene-Translation
The  code  of  the  DNA  controls  protein  synthesis  in  the  ribosomes  via  the  RNA.  The 
creation  of  RNA,  i.e.  the  imprinting  of  genetic  information  happens  in  the  cell  nucleus 
(transcription). The encoded information is transported via messenger‐RNA (M‐RNA) to 
the ribosomes and is read there with the help of Transfer RNA (t‐RNA). According to the 
transmitted  code,  proteins  are  subsequently  synthesized.  This  process  of  synthesis  is 
called translation. Since one m‐RNA chain can be used by several ribosomes, the rate of 
synthesis  of  the  corresponding  protein  can  be  a  lot  higher  than  that  of  the  m‐RNA. 
Mistakes made during the genetic transcription can thus be ‘raised to a higher power’ at 
the protein level. 
In  the  first  block  of  Appendix  Table  A.2,  we  list  several  recent  studies  which 
demonstrated  changes  of  gene  transcription  and  translation  under  the  influence  of 
electromagnetic  fields  of  mobile  telecommunications.  Fritze  et  al.  (*1997)  observed 

Mobile Telecommunications and Health

13
changed gene transcription in certain areas of the brains of rats which had been exposed 
to the field of a GSM phone for four hours.  
In  an  in  vitro  experiment,  Ivaschuk  et  al.  (*1997)  exposed  cells  to  a  pulse  modulated  HF 
field (836.55 MHz, TDMA 50Hz) and afterwards extracted and analysed the entire cellular 
RNA. 
This  showed  statistically  significant  changes  with  regards  to  the  transcription  of  the 
response  gene  c‐jun  (90W/m²,  duration  of  exposure:  20  minutes),  however  no  changes 
with  regards  to  c‐fos.  The  results  of  the  experiments  by  Goswami  et  al.  (*1999)  found  a 
evidence for an influence on the transcription of the response gene c‐fos by a similar field, 
whilst for c‐jun and c‐myc, no statistically significant effect was observed. The intensities 
at  which  effects  on  gene  translation  had  been  observed  were  well  below  the  values  at 
which thermal effects would occur in mammals. 

4.2.2 Membrane Function
There is a large number of experimental evidence that high frequency fields, non‐pulsed 
and  pulsed  can  affect  different  properties  of  the  ion  channels  in  cell  membranes,  for 
example  in  the  form  of  a  lowering  of  the  rate  of  channel  formation  or  the  reduction  of 
frequency  of  the  opening  of  individual  channels  (Repacholi  1998).  The  frequency  of 
openings of ion channels which are activated by acetylcholine was significantly lowered 
by a microwave field (10.75 GHz) with a power flux density of a few μW/cm². (*D’Inzeo et 
al.1988).  Changes  of  the  membranes  as  a  whole  have  also  been  observed  under  the 
influence of weak fields. Thus, Phelan et al. (*1992) observed that a 2.45 GHz field, with a 
pulse  modulation  of  100  Hz  could  trigger  a  phase  transition  from  liquid  to  solid  in 
melatonin containing cells after an exposure of 1 hour at a SAR of 0.2 W/kg. 

4.2.3 Signal Transduction
Ca2+ 
The  divalent  Calcium  cation  Ca2+  plays  an  important  role  in  the  cell‐signal‐transduction: 
regulating the energy output, the cellular metabolism and the phenotypical expression of 
cell characteristics.   
The signal function of the Ca2+ is based on a complicated network of cellular channels and 
transport mechanisms, which maintains the Ca2+ concentration within the cell at a lower 
level  than  outside,  but  which  is  also  linked  to  dynamic  reservoirs.  This  allows  the 
transduction  of  extracellular  signals  (hormones,  growth  factors)  as  Ca2+  peaks  in  the 
cytosol,  transmitting  information  encoded  in  their  intensity  and  frequency.  It  is  known 
that  this  signal  process  can  be  disrupted  by  a  variety  of  toxic  chemicals  in  the 
environment, which can lead to cell damage and even cell death (Kass & Orrenius 1999). 
Studies by Bawin et al. (*1975) and Blackman et al. (*1979) showed very early on in vitro 
experiments that the Ca2+ balance of nerve cells and brain tissue can be disrupted by HF 
fields with low frequency amplitude modulations. 

14

Mobile Telecommunications and Health
Both studies worked with amplitude modulated 147 MHz fields (with intensities ranging 
from  5  to  20  W/m2).  The  maximum  effect  occurred  at  a  modulation  frequency  of  16  Hz. 
Experiments  conducted  by  Dutta  et  al.  (*1984  *1989)  and  Lin‐Liu  &  Adey  (*1982)  also 
showed significant dependence on the modulation frequencies, in some cases at Specific 
Absorption Rates of as low as 0.5 W/kg. Equally, Somosy et al. (*1993) found that an effect 
on the distribution of Ca in intestinal cells is only possible within a field modulated with a 
low  frequency.  Wolke  et  al.  (*1996)  observed  in  their  experiment  on  myocytes  that 
exposure to fields with mobile‐like carrier frequencies of 900 MHz and 1800 MHz resulted 
in lower intracellular concentrations of Ca2+  for all modulation frequencies (16 Hz, 50 Hz, 
217 Hz, 30 KHz) compared to exposures to a continuous 900 MHz field or no exposure at 
all. A statistically significant effect was only found with the combination of a carrier wave 
of  900MHz  and  a  modulation  frequency  of  50  Hz.  The  Specific  Absorption  Rate  for  this 
experiment  was  between  0.01  and  0.034  W/kg,  far  below  the  range  which  might  be 
relevant for ‘thermal’ effects. 
Enzymes 
Protein  kinases  are  enzymes  with  the  property  to  phosphorylate  other  enzymes  or 
proteins.  Phosphorylation,  a  covalent  modification  by  addition  of  a  phosphate  group, 
changes the activity or function of a protein. The protein kinases play an important role in 
the  transmission  of  information  from  the  membrane  receptors  for  hormones  and 
cytokines  into  the  interior  of  the  cell,  and  thus  in  the  regulation  of  many  intracellular 
processes  such  as  glucose  and  lipid  metabolisms,  protein  synthesis,  membrane 
permeability, enzyme intake and transformation by viruses. 
An  amplitude  modulated  450  MHz  field  is  capable  of  decreasing  the  activity  of  protein 
kinases which are not activated by cyclical Adenosine monophosphate. Byus et al. (*1984) 
showed  that  the  degree  of  inactivity  depended  on  the  exposure  time  as  well  as  the 
modulation frequency. Maximum effects occurred at exposure times of 15 to 30 minutes 
with a modulation frequency of 16 Hz. 
The  enzyme  ornithine  decarboxylase  (ODC)  determines  the  speed  of  the  biosynthesis  of 
polyamines.  Polyamines  are  needed  for  DNA  synthesis  and  cell  growth.  ODC  is  also 
activated  in  relation  to  carcinogenesis.  The  control  of  OCD  activity  from  the  exterior  is 
facilitated via processes on the cell membrane. Byus et al. (*1988) exposed three different 
cell  types  (rat  hepatoma  cells,  egg  cells  of  the  Chinese  hamster,  human  melanoma  cells) 
for  one  hour  to  a  450  MHz  field  with  a  16  Hz  amplitude  modulation  and  a  power  flux 
density  of  10W/m2.  The  exposure  raised  ODC  activity  by  a  little  more  than  50%.  The 
heightened  ODC  activity  remained  for  several  hours  after  the  exposure.  Similar  fields 
with a 60 Hz and a 100 Hz modulation had no effects. Another study (*Penafiel et al. 1997) 
observed  heightened  ODC  activity  after  the  radiation  of  L929‐cells  of  mice  with  a  835 
MHz field which had been amplitude modulated at 60Hz or pulse modulated at 50Hz. No 
effects  whatsoever  were  observed  with  an  analogue  mobile  phone,  a  frequency 
modulation at 60 Hz and a speech amplitude modulation. This last finding confirms other 
results by the same group, according to which a minimum coherence time of 10 seconds 
of  the  field  needs  to  be  present  for  an  effect  on  ODC  activity  to  manifest  (*Litovitz  et 
al.1993,  1997,  see  also  Glaser  1998  and  Litovitz  1998).  The  coherence  time  of  speech 
modulated fields however is shorter than a second. 

Mobile Telecommunications and Health

15
Further  important  proof  that  low  frequency  modulation  has  a  determining  influence  on 
the effects of electromagnetic fields on enzyme activity was found by Dutta et al. (*1994): 
They compared the effects of a low frequency modulated 147 Hz field (0.05 W/kg) and a 
combined low frequency electric and magnetic field (ELF EM, 21.2V/97nT). A continuous 
high  frequency  field  only  had  a  small  effect  (3.6  per  cent)  on  the  activity  of  enolase  in 
Escheria Coli, a 16 Hz modulated field led to an increase in activity of nearly 62 per cent, a 
60 Hz modulated field led to a decrease of activity of 28.5 per cent. At ELF‐EM a similar 
response  could  be  observed:  increase  of  enzyme  activity  by  more  than  59  per  cent  at  a 
frequency of 16 Hz and decrease of 24 per cent at 60 Hz. The results of the experiments by 
Behari  et  al.(*1998)  point  in  the  same  direction.  They  found  that  a  30  to  35  day  long 
exposure  of  rats  to  amplitude  modulated  fields  (6.11  –  9.65  W/kg)  led  to  a  significant 
increase  in  Na+‐K+‐ATPase  activity,  which  was  independent  from  the  carrier  frequency, 
but  characteristically  dependent  on  the  modulation  frequency,  because  the  effect  was 
always stronger at a 16 Hz modulation than at a 76 Hz modulation. 

4.2.4 Cell Cycle
An undisrupted signal transduction or efficient cell cycle control mechanisms which are 
capable  of  correcting  false  information  or  facilitating  repairs  are  the  prerequisite  for  cell 
cycle progression if the genomic integrity of the cell is to be maintained (Shackelford et al. 
1999).  Disturbances  of  the  DNA  replication  can  lead  to  detrimental  mutations  and  as  a 
consequence  to  cell  death  or  in  multicellular  organisms  to  cancer.  The  causes  for 
irregularities  in  the  course  of  the  cell  cycle  are  almost  always  to  be  found  in  mistakes 
during signal transduction and/or the failure of control mechanisms. 
In Appendix Table  A.2. we list studies which examined disruption of the cell cycle. The 
only in vivo experiment is the one by Mankowska et al. (*1979) which also used intensities 
as they are found in the environment of real emitting equipment. Statistically significant 
increases  of  disrupted  metaphases  with  uni‐,  quadri‐  and  hexavalencies  were 
demonstrated in this study from a power flux density of 5 W/m2. 
Cleary et al. (81996) found in their experiment that 2.45 GHz fields are roughly twice as 
effective  as  27  MHz  fields  when  it  comes  to  the  triggering  of  cell  cycle  disturbances. 
Whilst the 27 MHz fields had no influence on the G2/M phase of egg cells of the Chinese 
hamster, disturbances of all phases were observed in a 2.45 GHz field. 

4.3 Cell Transformation and Cell Proliferation
In  vitro  experiments  of  the  effects  of  high  frequency  fields  on  the  rate  or  division  or  the 
rate  of  proliferation  of  cells,  expressed  in  the  proliferation  rate  and  the  (neoplastic) 
transformation of cells can offer important findings with regards to possible carcinogenic 
effects of the fields. The adverse influences of the fields which could not be prevented by 
the cell’s own repair mechanisms manifest themselves in disrupted cell proliferation and 
cell transformation rates. 
Table A.3 gives an overview of the studies, in which the effects of high frequency fields on 
cell transformation and cell proliferation rates were the focus of the examinations. 

16

Mobile Telecommunications and Health
4.3.1 Cell Transformation
Balzer‐Kubiczek  &  Harrison  (*1985,  *1989,  *1991)  found  an  increase  in  neoplastic 
transformations in cells which had been exposed in vitro to a high frequency field with a 
low  frequency  pulse.  The  effect  depended  on  intensity,  but  was  only  observable,  if  a 
tumour promoter (TPA) was added after the exposure. 
Czerska  et  al.  (*1992)  found  that  low  frequency  pulsed  microwave  radiation  (2.45  GHz) 
increased  the  rate  of  transformation  of  small  inactive  lymphocytes  into  large  activated 
lymphoblasts. Continuous radiation could trigger this effect only at power flux densities 
that also led to measurable warming. 
However, the experiments with pulsed radiation which triggered the cell transformation 
at power flux densities, for which a homogenous warming can be ruled out, showed that 
homogenous warming cannot be responsible for this effect. 

4.3.2 Cell Communication
Disrupted communication between transformed cells and normal cells plays an important 
role  in  tumor  promotion.  Cain  et  al.  (*1997)  co‐cultivated  transformed  cells  with  normal 
cells. The co‐culture was exposed for 28 days to a TDMA (50Hz) modulated 836.55 MHz 
field  as  well  as  to  the  tumor  promoter  TPA  in  various  concentrations.  At  power  flux 
densities of 3 and 30 W/m2, which corresponded to Specific Absorption Rates of 1.5 and 15 
mW/kg, they did not find a statistically significant difference of focus formation between 
the exposed and the control cultures for any of the TPA concentrations. The data for the 
lowest intensity (0.3 W/m2/0.15 mW/kg) show for two of the three TPA concentrations that 
there was a small but statistically significant difference in the number of foci, and for the 
lowest TPA concentration also for the surface and density of the foci. 

4.3.3 Cell Proliferation
Anderstam  et  al.  (*1983)  found  in  their  experiments  with  bacteria  that  some  strains 
reacted  to  the  exposure  with  an  amplitude  modulated  2.45  GHz  field  (500Hz,  35  to  100 
W/kg)  with  an  increased  proliferation.  Also  for  some  species,  the  number  of  mutations 
and  the  frequency  of  mutations  were  increased.  These  results  were  confirmed  by 
Hamnerius et al. (*1985) amongst others. Grospietsch et al. (1995) found similar results for 
150 MHz fields with several amplitude modulations. 
Cleary et al. (*1990 a,b) demonstrated on human lymphocytes and on Glioma cells that the 
rate of cell division was increased after exposure with a continuous 2.45 GHz field. In a 
newer  experiment,  the  same  effect  could  be  observed  for  exposures  with  a  pulse 
modulated field of the same carrier frequency (*Cleary et al. 1996). 
In  the  first  of  the  two  experiments  which  were  conducted  with  fields  displaying  all  the 
characteristics  of  real  pulsed  mobile  emissions  (see  also  Table  A.3),  an  increased  DNA 
synthesis rate was observed, but no faster proliferation of the examined cells was found. 
(*Stagg  et  al.  1997).  In  the  second  experiment,  at  similarly  low  intensities  (0.0021  W/kg) 
however,  transmitted  by  a  GSM  modulated  960  MHz  wave,  an  increase  of  the  cell 

Mobile Telecommunications and Health

17
proliferation rate was found (*Velizarov et al. 1999). The EMF exposure in this experiment 
was  conducted  at  two  different  temperatures,  which  also  applied  to  the  relating  control 
cultures. The increase of the proliferation rate only happened in the exposed cell cultures. 
Similar  experiments  to  prove  that  microwaves  and  ‘conventional’  heat  have  different 
effects, were conducted by La Cara et al. (*1999) on a thermophile bacterium, in which the 
radiation  with  a  10.4  GHz  field  led  to  an  irreversible  inactivation  of  the  thermostable 
enzyme  ß‐galactosidase,  whilst  heating  in  a  water  bath  had  no  effect.  This  result 
confirmed the results of Saffer & Profenno (*1992) which had worked with frequencies in 
the lower GHz range. 

18

Mobile Telecommunications and Health
5 Patho-Physiological Effects
5.1 Immune System
The  immune  system  plays  a  central  role  in  the  protection  against  infectious  micro‐
organisms in the environment and, also, against several kinds of cancer cells. Experiments 
on hamsters, mice and rats found, amongst other things, that there was a reduction in the 
activity of natural killer cells and an increase in macrophage activity (see e.g. Yang et al. 
1983; Ramo Rao et al. 1983; Smialowicz et al. 1983). However, the majority of experiments 
on living animals were carried out at power flux density levels that produced an increase 
in body temperature of more than 1oC. On the other hand, it was observed in parallel in 
vitro  experiments,  that  in  vitro  heating  of  macrophages  did  indeed  lead  to  increased 
activity; the effect was, however, weaker than that of the in vivo radiation which produced 
the same temperature (Ramo Rao et al. 1983).  
Elekes et al. (*1996) observed that, after exposing mice for a period of 3 hours per day over 
several  days  using  microwaves  (2.45  GHz)  with  a  power  flux  density  of  1W/m2  (SAR  = 
0.14 W/kg), there was an increase in antibody‐producing cells in the spleen of about 37% 
with continuous radiation and around 55% with amplitude‐modulated radiation. 
In  contrast  to  the  in  vivo  experiments,  numerous  in  vitro  experiments  were  carried  out 
with  intensities  at  which  an  effect  due  to  warming  can  be  excluded.  Thus,  Lyle  et  al. 
(*1983) observed an inhibition of cytotoxicity of T‐Lymphocytes in the mouse with a 450 
MHz field that was amplitude modulated with various frequencies in the range between 
3Hz to 100 Hz. The effect that was demonstrated with a relatively low power flux density 
of 15 W/m2 was greatest at the 60 Hz modulation. The inhibition of cytotoxic effectiveness 
of  the  irradiated  lymphocytes  declined  continually  for  both  the  lower  and  higher 
modulation frequencies.  
The  tables  in  Appendix  A  list  further  experiments  with  (human)  leucocytes  in  which 
damaging  effects  were  proven  at  non‐thermal  power  flux  density  levels,  especially  also 
with low frequency amplitude modulated fields.  
The  work  of  Maes  et  al.(*1995)  deserves  special  consideration.  In  an  in  vitro  experiment 
with  human  leucocytes  at  a  GSM  base  station  and  also  in  the  examination  of  the 
lymphocytes in the blood of workers who were exposed to the fields of the mobile phone 
base  stations  during  maintenance  work,  they  found  that  there  was  an  increase  in 
chromosome  damage  (chromatid  breakage,  acentric  fragments  and  some  chromosome 
breaks).  

5.2 Central Nervous System
5.2.1 Blood Brain Barrier
The brain of mammals is protected from potentially dangerous materials in the blood by 
the  blood  brain  barrier,  a  specialized  neurovascular  complex.  The  blood  brain  barrier 
Mobile Telecommunications and Health

19
functions as a selective hydrophobic filter that can only be easily passed through by small 
fat‐soluble molecules. Other non fat‐soluble molecules, e.g. glucose, can pass through the 
filter with the help of carrier proteins that have a high affinity for specific molecules. 
It is known that a large number of disorders of the central nervous system are caused by 
disturbances of the barrier function of the blood brain barrier (*Salford et al. 1994). 
Severe  warming  of  the  brain  can  lead  to  an  increased  permeability  of  the  blood‐brain 
barrier  for  those  materials  whose  passage  should  actually  be  prevented.  The  results  of 
first  experiments  with  high  frequency  fields  of  high  intensity,  which  led  to  a  higher 
permeability  of  the  blood  brain  barrier,  were  then  interpreted  as  a  consequence  of 
warming by the HF radiation. 
However, Appendix Table B.1 lists a whole series of studies in which a greatly increased 
permeability  of  the  blood  brain  barrier  was  produced  through  pulsed  high  frequency 
fields  of  very  low  intensity  (*Oscar  &  Hawkins  1977,  *Neubauer  et  al.  1990,  *Salford  et 
al.1994,  *Fritze  et  al.1997)  amongst  others  with  carrier  frequencies  and  modulation 
frequencies which corresponded to those of mobile telephony (GSM). 

5.2.2 Neurotransmitters
Pulsed  and  continuous  high  frequency  fields  of  low  intensity  may  lead  to  chemical 
changes in the brain. Inaba et al. (*1992) exposed rats to a continuous 2.45 GHz field with 
a power flux density of between 50 to 100 W/m2 and found a significant reduction in the 
Noradrenalin  content  of  the  Hypothalamus,  whilst  the  two  other  neurotransmitters 
Dihydroxyphenylacetic  acid  and  5‐Hydroxyindolacetic  acid  were  found  in  the  pons  and 
medulla  oblongata  in  significantly  increased  concentrations.  The  radiation  did  not 
produce significant changes in the dopamine or serotonin concentrations. 
Lai et al. (*1987, 1989 a, b, see above Lai et al. 1988) found also in experiments using rats 
that a 2.45 GHz field modulated with 500 Hz pulse‐modulation influences brain activity, 
especially  in  the  frontal  cortex  and  the  hippocampus,  via  the  most  important 
parasympathetic neurotransmitter acetylcholine. It could be demonstrated that the effect 
was  related  to  the  exposure  duration.  A  45  minute  exposure  duration  led  to  significant 
reductions in choline‐uptake, the reduction to 20 minutes exposure produced a significant 
increase. A similar behaviour was found in animals also as a reaction to stress through the 
reduction of the freedom of movement and through acoustic white noise. 

5.2.3 Electroencephalogram (EEG)
In  contrast  to  the  neuroendocrine  effects,  which  can  barely  be  measured  directly  in  the 
brain of humans, EEG studies can be carried out relatively easily. Several valid studies of 
that kind do now exist. 
Most animal experiments have limited validity, since they were carried out with relatively 
high  power  flux  density  values  (see  e.g.  Chizhenkova  1988:  2.397  MHz,  cw,  400  W/m2, 
Chizhenkova & Safroshkina 1996: 799 MHz, cw, 400 W/m2, Thuroczy et al. 1994; 2.45 GHz, 
AM 16 Hz, 100 W/m2). 

20

Mobile Telecommunications and Health
One  of  the  few  exceptions  are  the  studies  by  Vorobyov  et  al.  (*1997),  who  observed  an 
increase  on  the  left‐right  symmetry  in  the  EEG  in  rats  that  were  exposed  to  a  945  MHz 
field (AM, 4Hz, 1 to 2 W/m2, within the first 20 seconds after the start of the exposure. 
Early  experiments  by  von  Klitzing  (1995)  with  EEG  recording  during  the  exposure  of 
subjects  to  pulsed  high  frequency  fields,  that  were  similar  to  those  of  mobile  telephone 
fields  (150  MHz,  217  Hz,  power  flux  density  in  the  pulse  in  the  brain  at  a  6  cm  depth 
below  10‐2  W/m2),  found  changes  in  the  awake  EEG,  these  were  called  into  question 
because of insufficient documentation.  
In later experiments however, a clear effect was demonstrated in the awake and sleeping 
EEGs. 
Reiser  et  al.  (*1995)  observed,  both  with  exposures  to  a  150  MHz  field  (modulated 
frequency  9.6  Hz,  peak  power  0.5  mW,  4  cm  distance,  near‐field  conditions)  and  also  in 
the field of a mobile telephone (902 MHz, modulation frequency 217 Hz, peak power 8W, 
40 cm distance), a significant increase in the energy in the EEG frequency bands ‐ Alpha, 
Beta 1 and Beta 2. 
Experiments by Röschke & Mann (*1997) resulted in no significant difference in the EEGs 
for exposed and sham‐exposed subjects under short exposure conditions (3.5 minutes, 900 
MHz,  GSM,  0.5  W/m2).  However,  the  peak  of  approx.  9Hz  in  the  presented  averaged 
power density spectra of exposed subjects was clearly lower and narrower than for non‐
exposed subjects. The same authors (*Mann & Röschke 1996) demonstrated again in the 
field  of  a  GSM  mobile  telephone  (8W,  distance  40  cm  power  flux  density  0.5  W/m2),  a 
reduction  of  the  time  taken  to  fall  asleep  and  a  statistically  significant  reduction  of  the 
duration and the proportion of the REM sleep. Furthermore, the spectral analysis revealed 
an increased power density of the EEG signal during REM sleep above all in the ‘Alpha’ 
frequency  band.  The  REM  suppressive  effect  and  the  reduction  of  the  time  taken  to  fall 
asleep were also confirmed by the same research team (*Mann et al.1997, *Wagner et al. 
1998).  The  study  carried  out  in  1997  also  found  a  significant  increase  in  the  cortisol 
concentration  in  the  blood  of  humans  exposed to  a 900  MHz/217  Hz  field  with  a power 
flux density value of 0.2 W/m2. Systematic deviations were also observed for the Growth 
Hormone and Melatonin levels, but these did not reach significance level. 
Whilst  in  the  previously  cited  studies,  changes  in  the  sleep  EEG  could  be  demonstrated 
only  as  a  consequence  of  the  influence  of  mobile  telecommunications  fields  for  several 
hours, Borbély et al. (1999) were able to demonstrate that changes in sleep were already 
occurring after 15 to 30 minutes exposure. This research team used also a 900 MHz field, 
which  could  be  selectively  pulse‐modulated  with  either  2,  8,  217  or  1736  Hz.  As  in  the 
other experiments, a statistically significant reduction in the proportion of REM sleep was 
found at a Specific Absorption Rate of less than 1W/kg. In addition, the waking‐up phase 
was noticeably reduced. 
Freude  et  al.  (*1998,  see  also  Henschel  et  al.  1999)  examined  the  effect  of  the  radiation 
from mobile telephones on slow brain potentials. 
Slow  brain  potentials  are  event‐correlated  brain  potentials  that  arise  during  the 
preparation  for  motor  action  and/or  information  processing.  Changes  in  the  slow  brain 

Mobile Telecommunications and Health

21
potentials  give  an  indication  about  the  influences  on  specific  aspects  of  human 
information  processing.  Freude  et  al.  found  that  the  fields  of  a  mobile  telephone  (916.2 
MHz,  217  Hz,  SAR  0.882‐1.42  W/kg,  exposure  time  3  to  5  minutes)  led  to  a  statistically 
significant  decrease  of  the  slow  readiness  potentials  for  specific  tasks,  in  specific  brain 
areas.  

5.2.4 Cognitive Functions
Impairments  of  the  brain,  e.g.  by  modification  of  the  choline‐uptake,  can  be  expected  to 
cause learning deficits. These were demonstrated in many learning experiments, in which 
rats were previously exposed to pulsed microwave fields (*Lai et al. 1989, 1994; *Wong & 
Lai 2000, see above D’Andrea 1999 for older studies). In the study by Lai et al. (*1994), rats 
were exposed for 45 minutes to a 500 Hz pulsed 2.45 GHz field with a power flux density 
of 10 W/m2. This intensity resulted in a mean whole body SAR of 0.6 W/kg. Following the 
exposure, the starved rats were placed in a labyrinth with several arms in which food was 
placed.  The  researchers  measured  how  effectively  the  ‘exposed  rats’  and  the  ‘sham‐
exposed rats’ searched the labyrinth for food. For the ‘exposed’ group, significantly more 
failed attempts were observed, i.e. searching already emptied labyrinth arms. The authors 
attributed  the  low  performance  of  the  ‘exposed’  rats  to  deficits  in  spatial  memory.  The 
‘handicap’ of the EMF exposure could be levelled out in a follow‐up experiment, in which 
the rats were given either the acetylcholine agonist Physostigmin or the opiate antagonist 
Naltrexone  before  their  exposure.  According  to  the  authors,  these  findings  are 
confirmation of their results from previous studies (see above), in which they had found 
that  high  frequency  electromagnetic  fields  influence  cholinergic  and  endogenous  opioid 
neurotransmitter systems in the brain and that this effect can lead to memory deficits. In 
the meantime, the effect has been confirmed by other experiments (Mickley & Cobb 1998).  
In a further experiment (*Wang & Lai 2000), rats were trained over several sessions to find 
a platform situated just under the water surface inside a round water basin. Subsequently, 
they were exposed to pulsed microwave radiation for an hour (2.45 GHz, 500 pulses per 
second, mean power flux density 2W/m2, mean whole‐body SAR 1.2 W/kg). Testing was 
then  carried  out  to  determine  how  long  the  ‘exposed  rats’  needed  to  find  the  platform 
from  different  starting  positions,  compared  to  the  ‘non‐exposed  rats’  or  ‘sham‐exposed 
rats’.  The  ‘exposed  rats’  clearly  required  longer  for  this,  as  they  spent  significantly  less 
time  in  the  correct  quadrant  of  the  water  basin.  Finally,  the  recorded  traces  of  the 
swimming lanes used by the ‘exposed animals’ differed from those of the control groups, 
this  suggests  that  different  strategies  were  used  when  searching  for  the  platform.  This 
result  confirms  the  findings  from  other  studies  that  pulsed  high  frequency  fields  can 
influence specific aspects of memory performance.  
The effects of a 600 MHz field on the memory of rats were also demonstrated by Mickley 
et al. (*1994). In this experiment, the capacity of the animals to recognize familiar objects 
was measured in relation to the radiation they received. Whilst the ‘non‐exposed control 
animals  and  also  the  animals  who  were  exposed  to  a  SAR  of  0.1  W/kg  occupied 
themselves  for  longer  with  a  novel  object  compared  to  a  familiar  object,  the  higher 
exposed animals spent just as much time examining an actually familiar object as with a 

22

Mobile Telecommunications and Health
novel object. The limit for this exposure dependent change in behaviour was between 0.1 
and 1.0 W/kg  
The lowest SAR so far which has been shown to have an effect on cognitive functioning in 
rats  was  0.072  W/kg.  However,  in  this  experiment,  pulses with  a  peak  of  more  than  700 
MW (megawatts) were used (Raslear et al. 1993). The low SAR in this case resulted only 
from averaging over time with a very low pulse repetition rate of 0.125 pulses per second 
and a pulse width of only 80 nsec. 
It  has  been  shown  in  experiments  by  Preece  et  al.  (*1999)  that  fields  like  those  used  in 
mobile telephony can influence cognitive functions of the brain. In this study, 36 subjects 
were subjected to a 915 MHz field of a simulated mobile telephone. The field was overlaid 
either with a 217 Hz sinusoidal modulation or a 217 Hz pulse modulation. In the analogue 
simulation  the  net  forward  power  was  about  one  Watt,  and  in  the  digital  simulation  it 
was  0.125  Watt.  Under  the  conditions  ‘Exposure  to  analogue  field’,  ‘Exposure  to  digital 
field’  or  ‘Sham  exposure  without  any  field’,  each  of  the  test  persons  had  to  carry  out 
several tests to measure ability to react and various tests of memory performance. In both 
exposed  groups  there  was  a  slight  but  statistically  significant  decrease  in  reaction  time, 
which was more marked for ‘Analogue exposure’ than for ‘Digital exposure’. 

5.3 Hormone Systems
5.3.1 Stress Hormones
Environmental  pollution  can  act  as  a  stressor  on  the  body,  like  physical  and  mental 
stressors,  and  cause  ‘alarm  reactions’.  Such  reactions  are  associated  with  hormonal 
changes.  The  presence  of  a  stress‐situation  can  be  proved  by  the  presence  of  hormones 
like  adrenocorticotropin  [the  adrenocorticotrophic  hormone]  (ACTH),  cortisol  and 
corticosterone in the blood, and also to a lesser extent by changes in the concentration of 
prolactin and growth hormone. 
Electromagnetic fields can clearly cause stress reactions in animals used for experiments. 
Thus, the experiment by Imaida et al. (*1998a) on rats that were exposed for a duration of 
90 minutes daily over a period of 6 weeks to a field with a carrier frequency of 929.9MHz 
and a 50 Hz pulse modulation, showed a statistically significant increase in the ACTH and 
corticosterone levels. The whole‐body SAR value in this experiment was between 0.58 and 
0.8 W/kg. The exposure in the 1.439 GHz field, equally with a 50 Hz pulse modulation and 
a SAR value between 0.453 and 0.680 W/kg had the same effect (*Imaida et al. 1998b). 
Chou et al.(*1992) exposed rats in a long‐term experiment (25 months) to 800 MHz pulse‐
modulated  2.45  GHz  field  that  led  to  a  Specific  Absorption  Rate  of  0.15  to  0.4  W/kg. 
Alongside  other  physiological  parameters  the  corticosterone  profile  was  regularly 
measured  for  the  first  half  year  of  the  experiment.  Whilst  the  hormone  profile  of  the 
exposed  animals  and  the  non‐exposed  animals  were  practically  identical  in  the  later 
stages  of  the  experiment,  with  the  exception  of  a  slight  increase  in  the  sham‐exposed 
group of animals in the third phase of the experiment, the first examination after 6 week’s 
exposure  showed  a  statistically  significant  increase  in  the  corticosterone  profile  in  the 
blood of the exposed animals. 
Mobile Telecommunications and Health

23
The  authors  report  that  their  attempt  to  replicate  this  effect  produced  no  statistically 
significant results, however, only 20 animals were tested in this second experiment whilst 
the actual series of experiments contained 200 animals.  
A  similarly  extensive  experiment  on  rats  like  that  of  Chou  et  al.  However,  with  an 
unmodulated 435 MHz field showed no difference in the concentration of the hormones 
ACTH,  corticosterone  and  prolactin  between  the  exposed  animals  and  the  non‐exposed 
animals (Toler et al. 1988). 
The  few  experiments  previously  carried  out  on  humans  do  not  yet  produce  a  clear 
picture.  Mann  et  al.  (*1998)  exposed  24  volunteer  subjects  whilst  asleep  to  the  field  of  a 
mobile telephone that was transmitted from a separate antenna (900 MHz, 217 Hz, 0.2 W/ 
m2).  Blood  samples  were  withdrawn  via  a  catheter  whilst  the  subjects  were  asleep  and 
they  were  analysed  for,  amongst  other  things,  cortisol  and  growth  hormone 
concentrations. There were systematic differences between the ‘exposed subjects’ and the 
‘sham‐exposed  subjects’  during  the  course  of  the  night  for  both  hormones,  which  only 
reached statistical significance levels for cortisol. 
De Seze et al. (*1998) examined the effect of a GSM mobile telephone (900MHz, 217 Hz) on 
subjects  who  were  exposed  to  the  field  for  2  hours  per  day,  5  days  per  week  for  over  a 
month.  Based  on  nine  blood  sample  withdrawals  per  week;  amongst  other  things,  the 
change in the concentrations of ACTH, growth hormone and prolactin were determined 
over time. 
The authors’ evaluation of their studies was that at one month, intermittent exposure in 
the radio‐frequent field from the mobile telephone had no lasting or accumulative effects 
on the hormone secretions from the anterior lobe of the pituitary gland. In their data, it is 
however noticeable that that ACTH and prolactin follow a quite similar profile over time: 
the  concentrations  started  at  high  initial  values  at  the  start  of  the  exposure  and  then 
decreased  in  the  following  3  weeks,  and  they  then  rose  slightly  again.  The  growth 
hormone  concentrations  are  very  high  for  the  first  measurements  during  the  exposure 
period,  they  then  fall  to  the  pre‐exposure  concentration  levels  and  maintain  these  levels 
until  the  end  of  the  experiment.  Possibly,  these  measurements  show  a  temporary  stress 
reaction, which reduced in the following weeks.  

5.3.2 Melatonin
The hormone melatonin, which is produced in the pineal gland, functions as a regulating 
hormonal  signal  that  synchronizes  the  endocrine  rhythms  of  all  the  hormone  glands.  It 
regulates,  amongst  other  things,  the  daily  cycles  of  ACTH  and  the  cortisol‐release  and 
thereby regulates the daily rhythms of many metabolic processes. 
Melatonin  also  exerts  influences  (inhibitory)  on  sex  hormones  and  it  has  a  stimulatory 
effect  on  the  immune  system.  Melatonin  also  influences  specific  cancer  illnesses  via  the 
regulation  of  the  release  of  the  sex  hormones.  In  addition,  melatonin  is  a  free  radical 
scavenger,  inactivating  radicals  such  as  OH,  which  amongst  other  things  can  be 
dangerous  for  the  genetic  material.  Furthermore,  during  in  vivo  experiments,  it  was 
demonstrated that melatonin hinders changes in DNA produced by chemical carcinogens 

24

Mobile Telecommunications and Health
and it protects lymphocytes from chromosome damage in high frequency electromagnetic 
fields (*Lai & Singh 1997). 
In  the  previously  described  experiments  carried  out  by  Imaida  et  al.(*1998  a,  b),  it  was 
found  that  the  experimental  animals  that  were  exposed  to  a  pulse‐modulated  high 
frequency field had a reduced melatonin concentrations in the blood. This finding could 
not  be  confirmed  by  Heikkinen  et  al.  (1999),  who  exposed  mice  for  17  months  to  a  900 
MHz  field  with  a  217  Hz  GSM  pulse  modulation  (SAR:  0.35  to  1.5  W/kg).  Studies  by 
Vollrath  et  al.  (1997)  using  rats  and  hamsters  with  a  900  MHz  field  (217  Hz  GSM,  SAR: 
0.04 to 0.36 W/kg) could not contribute much to the clarification of the problem, since in 
several  sub‐sets  of  the  experiment  statistically  significant  differences  between  ‘exposed 
animals’  and  ‘non‐exposed  animals’  had  been  found,  but  according  to  the  authors  these 
resulted from mistakes in the experimental order. 
In experiments by Mann et al. (*1997 see above), the stress hormones were measured as 
well as the serum melatonin profile. This showed, in the case of the exposed humans, that 
for  a  period  of  between  3  to  4  hours  in  the  middle  of  the  night  there  was  an  increase 
compared to the control values, but these were not statistically significant according to the 
evaluation of the authors.  

Mobile Telecommunications and Health

25
6 Pathological Effects
6.1 Results of Experimental Studies
6.1.1 Cancer
Carcinogenesis 
Carcinogenesis is a multi‐layered process, at the beginning of which is a certain impact on 
the  level  of  the  genetic  material.  This  can  be  a  direct  impact  (for  example  ionising 
radiation) or an indirect action via the product of a reaction (for example OH radicals). A 
direct or indirect interaction with DNA can lead to damage of the DNA or the chromatin 
structures  (see  also  Chapter  3).  If  those  damages  are  not  repaired  by  endogenous 
processes,  the  damage  will  be  permanent.  Thus,  the  initiated  cell  can,  if  the 
immunological control fails, under the influence of hormones and promoters develop into 
a pre‐neoplastic focus,  which can then lead to a malignant tumor.  The different steps of 
carcinogenesis are summarised in three phases: 
■ Initiation: Triggering of damage on the DNA and mutations on critical genes 
■ Promotion: Increased rate of DNA synthesis and proliferation of transformed cells 
■ Progression: Transition of a pre‐neoplastic focus to a malignant tumor 
A  physical  or  chemical  pollutant  can  in  principle  be  effective  in  all  three  phases  of 
carcinogenesis. 
■ Initiation:  Triggering  of  direct  DNA  damage  or  of  a  substance  which  causes  DNA 
damage, disruption of repair processes of the DNA 
■ Promotion: Promotion of the proliferation of transformed cells 
■ Progression: Suppression of immune‐reactions and promotion of tumor growth 
Results from Animal Experiments 
In vivo experiments using animals with an inbred genetic predisposition for certain tumor 
illnesses or in which animals were injected with cancer cells, yielded very different results 
(see  Appendix  C,  Table  C.1).  In  the  majority  of  the  studies,  no  cancer  promoting  effect  of 
high frequency electromagnetic fields could be found, or effects were only observed under 
certain conditions of exposure (marked in the Table with ‘partly’), and even in those cases 
they were often not statistically significant. However, it needs to be noted that many studies 
with  negative  results  had  very  short  exposure  times  and  durations  of  the  study  itself  (for 
example Chagnaud et al. 1999: 2 weeks, Salford et al. 1993: 2 to 3 weeks) and hence they do 
not  have  much  relevance  to  answer  the  question  whether  high  frequency  electromagnetic 
fields have carcinogenic potential. 
Some  long‐term  studies  have  yielded  results  which  indicate  a  carcinogenic  or  co‐
carcinogenic effect of electromagnetic fields with mobile telecommunications frequencies 
26

Mobile Telecommunications and Health
if the animals are exposed over a long period of time. (*Repacholi et al. 1997, *Szmigielski 
et al. 1982 and *Szudinski et al. 1983). Important in this context is also the study of Chou 
et al. (*1992). This study did not find a statistically significant rise in tumors in a particular 
organ.  However,  the  exposed  group  developed  not  only  a  higher  number  of  tumors  in 
total, but also the number of primary malignant and metastatic malignant neoplasms was 
significantly higher in the exposed animals. In their discussion of the results, the authors 
point  to  the  fact  that  the  number  of  the  primary  malignant  neoplasms  in  the  exposed 
group  compared  to  the  control  group  is  four  times  higher  and  that  this  finding  is 
statistically  significant,  but  then  go  on  to  undermine  their  finding  by  quoting  literature, 
according  to  which  the  tumor  incidence  of  the  exposed  group  should  still  be  within  the 
normal range. 
The experiment of Toler et al. (*1997) using animals with a predisposition for chest tumors 
did  not  result  in  a  higher  incidence  of  these,  but  the  number  of  ovarian  tumors  was 
significantly higher in the exposed group compared to the controls. 
The  intensities  at  which  an  increase  in  tumors  was  found  in  animals  were  one  to  two 
powers  of  ten  below  the  values  at  which  one  would  expect  a  triggering  of  ‘thermal’ 
effects. According to the presenting results, low frequency modulation does not seem to 
be responsible for the carcinogenic effect. 

6.1.2 Infertility and Teratogenic Effects
Teratogenesis 
Teratogenic effects of a pollutant can – as with the carcinogenic effect – either be caused by 
the  triggering  of  a  genetic  defect  or  a  harmful  impact  on  the  foetal  development.  The 
formation  of  a  genetic  malformation  during  its  initiation  phase  is  analogous  to  carcino‐
genesis, i.e. teratogenic effects are also caused by direct or indirect impact on the DNA and 
disruptions of the endogenous repair mechanisms. Later damages of the foetus can either 
be  caused  by  direct  effects  of  the  pollutant  on  the  foetus  or  by  reactions  to  the  pollutant 
within the mother’s organism, which would then be passed on to the foetus. 
Results from Animal Experiments 
A multitude of studies have demonstrated that high body temperatures in mammals lead 
to a spermatotoxic and teratogenic effect. Since many studies examining such effects from 
high  frequency  electromagnetic  fields  worked  with  intensities  that  were  capable  of 
significantly  raising  body  temperature,  it  cannot  be  excluded  that  the  observed 
spermatotoxic  and  teratogenic  effects  were  caused  by  a  thermal  effect,  (see  for  example 
Berman  et  al.  1982,  1983,  Berman  &  Carter  1984,  Jensh  et  al.  1983a,b,  Kowalczuk  et  al. 
1983, Lary et al. 1983, Nawrat et al. 1985, Saunders et al. 1981, 1983, for the results of older 
studies, see O’Connor 1980). The results of these studies do not always appear consistent, 
however,  this  can  possibly  be  explained  by  a  different  thermal  susceptibility  of  the 
different animal species used. In rats for example, a loss of thermally damaged embryos is 
often  observed,  whilst  the  birth  of  malformed  animals  is  rare.  Other  mammals  show  a 
wider bandwidth between teratogenic and lethal exposures. (Verschaeve & Maes 1998). 

Mobile Telecommunications and Health

27
However, there are some indications in the literature for teratogenic effects at intensities 
that cause no (or, if at all very small) rises in temperature. Magras & Xenos (1997) exposed 
mice during six months to a real transmitter. The mice had offspring five times during this 
period and a continuous decrease in offspring was found down to irreversible infertility. 
The exposure consisted of several radio and TV transmitters in the VHF and UHF bands 
and  measured  between  0.00168  and  0.01053  W/m2.  A  repetition  of  this  study  would  be 
desirable in order to exclude that the effect was due to problems with the maintenance of 
the animals or the screening of the control group. 
Khillare and Behari (*1998) found that male rats that had been exposed to a 200 MHz field 
(power  flux  density:14.7W/m2,  SAR:1.65  to  2.0W/kg)  during  a  period  of  35  days  for  six 
days per week and two hours per exposure day and which were afterwards mated with 
unexposed females, produced significantly less offspring that the males in the unexposed 
control group. 
In an experiment by Akdag et al. (1999) male rats were exposed one hour every day to a 
9.45 GHz field (power flux density:2.5W/m2, SAR:1.8 W/kg) during different periods of 13, 
26,  39  or  52  days  corresponding  to  one,  two,  three  and  four  cycles  of  the  seminal 
epithelium. 
At the end of each exposure period the following data were measured and compared to 
an  unexposed  control  group:  number  of  sperm  in  the  epididymides,  morphology  of  the 
sperm and weight of the testicles, epididymides, seminal vesicles and prostate.  
They  found  amongst  other  effects  a  decrease  in  the  number  of  sperm  (statistically 
significant  in  the  group  exposed  for  53  days)  and  an  increase  of  abnormal  sperm 
(statistically significant in the groups exposed for 26, 39 and 52 days). 
A  co‐teratogenic  effect  under  non‐thermal  exposures  with  power  flux  densities  of  10  to 
100  W/m2  in  combination  with  cytosine  arabinoside  (CA)  was  found  in  a  study  by 
Marcickiewicz et al. (*1986). In the experiment, mice were exposed in utero for two hours 
a day to 2.45 GHz from the first to the 18th day of the pregnancy. The field, which alone 
was  not  teratogenic,  significantly  increased  the  teratogenic  effect  of  CA.  A  direct 
teratogenic effect  of  microwave  radiation  with  a  frequency  of  2.45  GHz  on  the  brains  of 
newborn rats was found by Inalösz et al. (*1997). However the authors declared that the 
SAR of 2.3W/kg led to a rise of rectal temperature of 1.0ºC. 

6.2 Results of Epidemiological Studies
Methodological Requirements 
In principle, epidemiological studies are an effective instrument to prove potential health 
risks of a pollutant under real environmental and exposure conditions. Usually, they are 
carried out by comparing statistical data about the incidence of an illness in an exposed 
population  as  opposed  to  the  incidence  of  this  illness  in  an  unexposed  population.  The 
exact classification of exposure would require the metrological recording of the pollutant 
for  all  participants  (exposed  and  unexposed)  during  the  entire  latency  period  of  the 
illness. This is often not practicable and for long latency periods, which can usually only 
be addressed via retrospective studies, inherently impossible. Under such circumstances it 
28

Mobile Telecommunications and Health
has to suffice that surrogates are used, for example having a profession which is linked to 
a certain exposure or the proximity of the home to an emitting installation. In some cases, 
if the emitting installations have been used for a long time in the same mode, it is possible 
to extrapolate past exposures from current measurements. 
The  quality  of  the  exposure  classification  determines  the  validity  of  an  epidemiological 
study. Possible weaknesses, which can lead to wrong results, are: 
■ People are classified as ‘exposed’ or ‘strongly exposed’ although in fact there is no or 
only little exposure. An example with regards to high frequency fields is the often‐used 
exposure classification on the basis of professional categories, such as radar operators 
or  telecommunications  engineers,  for  whom  it  cannot  be  excluded  that  the  main 
occupation is a desk job without exposure.  
■ It is assumed that the control group is completely unexposed, although the pollutant is 
actually  ubiquitous,  which  will  lead  to  smaller  but  still  potentially  significant 
exposures  in  the  control  group.  One  known  example  are  mains  frequency  magnetic 
fields,  which  affect  the  immediate  neighbours  of  power  supply  equipment,  but  still 
exist  at  non‐negligible  strengths  in  houses  which  are  further  away  from  such 
equipment. 
Both effects lead to a levelling out between the exposed and unexposed group and hence 
to an underestimation of the real health risk posed by the pollutant in question. 
Another  weakness  of  epidemiological  studies  can  be  the  presence  of  unrecognized 
confounders, i.e. other influences, which also affect the groups studied and influence the 
development of the illness. This can be environmental factors, such as exposures to other 
pollutants, but also socio‐economic and behavioural factors. If not all potentially relevant 
confounders are factored in, the results can be distorted, either towards an overestimation 
or an underestimation of the real risk. 
The fast development of mobile technology has lead to a double dilemma with regards to 
the study of potential risks through epidemiological studies: 
■ For illnesses like cancer with latency periods of many years it is still too early to expect 
valid results. If mobile telecommunications are indeed linked to a higher incidence of 
cancer, the illness will only have manifested in a few people so far. This should at least 
be  valid  for  the  part  of  the  population  whose  exposures  are  from  base  stations  only. 
Potentially it could be different for direct mobile phone users, since these are generally 
exposed  to  significantly  higher  intensities.  But  also  for  this  group,  at  this  moment  in 
time,  we  would  expect  results  from  epidemiological  studies  to  underestimate  the  real 
risk.  
■ In  some  years  epidemiological  studies  will  hit  a  different  obstacle:  once  base  stations 
cover the entire country and a large proportion of the population use a mobile phone, 
it will become difficult to find the necessary unexposed control groups.  
Given  this  dilemma,  epidemiological  studies  carried  out  in  the  past  have  a  certain 
validity,  even  if  the  exposures  are  not  exactly  the  same  as they  would  be  today  and  the 
studies do not always correspond to today’s quality standards. 

Mobile Telecommunications and Health

29
The Selection of Studies 
At the time of finishing this present report there were only two epidemiological studies of 
health risks in relation to actual existing mobile telecommunications exposures (*Rothman 
at  al.  1996,  *Hardell  et  al.  1999).  However  there  are  a  much  larger  number  of  studies 
available, in which the health effects of high frequency electromagnetic fields in humans 
were examined (see also Appendix D, Table D.1). Just under a quarter of all results relate 
to  exposures  with  low  frequency  pulse  or  amplitude  modulated  high  frequency  fields, 
such as they are used for mobile telecommunications, even if the carrier and modulation 
frequencies are in most cases not identical with those of mobile telecommunications. 
In  Appendix  Table  D.1,  the  examined  illnesses  are  listed  with  their  evaluated  end  point 
(incidence or mortality), data describing the exposure situation is given and the quality of 
the  exposure  classification  is  assessed.  Finally,  the  result  of  the  study  is  evaluated  as 
‘Relative  Risk’  (RR)  which  includes  the  relevant  risk  factors  in  the  form  of  standardised 
mortality  rates,  standardised  morbidity  rates  and  odds  ratios,  and  the  statistical 
significance is assessed. For each study we list the value for the highest exposure class or 
if  there  was  a  further  differentiation  of  the  examined  groups,  for  example  according  to 
occupational groups, the highest found value. 
Values  are  considered  statistically  significant  (s.s.)  if  the  value  RR=1  outside  of  the  95% 
confidence interval or if p<0.05. 
A  statistical  evaluation  of  the  results  presented  in  Table  D.1  can  be  found  in  Table  6.1. 
Here,  we  list  for  every  illness  how  many  studies  or  separate  results  are  available,  how 
many of these show a relative risk RR >1 and how many are statistically significant. 
Almost all the studies, in which the total cancer risk without any differentiation according 
to tumor form were examined, showed a risk factor of RR>1. Half of the studies resulted 
in statistically significant risk factors with a maximum value of 2.1, which corresponds to 
a  doubling  of  the  statistical  risk  to  develop  cancer  from  exposure  to  high  frequency 
electromagnetic fields. 
A similar picture was found in relation to tumors of the nervous system, especially brain 
tumors. Here, the maximum value for relative risk found was 3.4. Eleven of the total of 15 
studies yielded a positive result, more than half of which were statistically significant. 
The  incidence  of  breast  cancer  in  relation  to  high  frequency  fields  must  be  examined 
separately for men and women. All three studies relating to the breast cancer incidence in 
women yielded risk factors greater than 1, the statistically significant values were 1.15 and 
1.5.  For  men,  risk  factors  of  up  to  2.9  were  found;  however,  not  all  were  statistically 
significant. 
Of  the  total  of  16  results  for  leukaemia  without  further  differentiation  of  the  illness,  13 
were  positive  (RR>1),  more  than  half  of  these  results  were  statistically  significant.  The 
highest statistically significant value for the relative risk was 2.85. Amongst the results of 
the  differentiated  studies,  the  following  are  notable:  lymphatic  leukaemia  (7  results,  5 
positive, 4 statistically significant, RR maximum value: 2.74) and acute myeloic leukaemia 
(4 different studies, 3 positive results, 2 statistically significant, maximum RR value: 2.89). 

30

Mobile Telecommunications and Health
With  regards  to  the  correlation  of  high  frequency  electromagnetic  fields  from  radar  and 
other  sources  and  testicular  cancer,  three  studies  have  been  conducted.  All  lead  to 
statistically significant risk factors with a maximum value of 6.9. 
The studies regarding cardio‐vascular diseases did not result in a clear picture, not least 
because of the multitude of the symptoms examined. 
All  four  studies  of  fertility  problems  in  relation  to  the  exposure  of  men  to  microwaves 
indicate increased risk. In two studies statistically significant risk factors of up to 2.7 were 
found. 
With  regards  to  irregular  courses  of  pregnancies  and  malformations  in  children  of 
mothers  which  had  been  exposed  to  high  frequency  fields,  there  are  a  large  number  of 
studies  with  positive  results,  of  which  only  two  fit  into  the  frequency  range  relevant  to 
our  report.  Both  of  these  studies  found  statistically  significant  positive  results  with  risk 
factors of up to 2.36. 
Of  the  studies  of  cancer  risk  of  children  whose  fathers  had  been  exposed  to  electro‐
magnetic fields, only two correspond to the quality criteria required for inclusion into this 
report.  Both  indicate  an  increased  risk,  but  only  one  result  is  statistically  significant  at  a 
value of RR=2.3. (With regards to the cancer risk of children in correlation to the exposure 
of their parents, see also Colt & Blair 1998). 
Regarding the disruption of motor functions as well as psychological functions and well‐
being, there is only one valid study for the frequency bands relevant to this report, which 
yielded a slightly increased risk factor. However since other studies of transmitters with 
frequencies  below  100  MHz  resulted  in  serious  indications  of  increased  risk,  indicating 
that this problem should be given more attention in the future, we also included the study 
of  Zhao  et  al.  (1994),  although  it  didn’t  meet  our  quality  standards  with  regards  to  the 
statistical evaluation. 
Unfortunately,  the  majority  of  the  studies  do  not  state  the  actual  strength  of  the 
exposures. Measurements are only available for the radio and television transmitter used 
for the studies of Hocking et al. (1996) and McKenzie et al. (1998). The mean power flux 
densities for all 16 municipalities affected by this transmitter were 3.3 10‐3W/m2 within the 
range from 2.6 10‐4 to 1.46 10‐2W/m2  (McKenzie et al. 1998). The ICNIRP guidelines for the 
general  population  recommend  a  maximum  value  of  2  to  2.51  W/m2  for  the  range  of 
frequencies  emitted  by  this  transmitter  (64.25  to  527.25MHz).  This  means  that  the 
exposures in these studies were below the German guidelines by a factor of 10‐4. 

Mobile Telecommunications and Health

31
Table 6.1
Overview over the results of epidemiological studies with regards to the health risks of high
frequency electromagnetic exposures (see also Appendix D, Table D.1)
Illness

Number of
studies (results)

Studies (results)
with RR>1

Statistically
significant
results

All illnesses

2

0

0

Cancer, unspecified

6 (7)

5 (6)

3

Brain tumours unspecified and tumours of the
nervous system unspecified

14 (21)

10 (15)

6 (7)

Cancer (eyes)

1

1

1

Cancer of the respiratory organs, lung cancer

5

2

1

Chest cancer, men

2

2

0

Breast Cancer, women

3

3

2

Cancer of the lymphatic and blood forming
system unspecified

4

4

1

Leukaemia unspecified

12 (16)

9 (13)

5 (7)

Acute leukaemia unspecified

4

4

0

Lymphatic leukaemia unspecified

4 (7)

2 (5)

1 (4)

Acute lymphatic leukaemia

2

2

0

Chronic lymphatic leukaemia

4

4

1

Leukaemia, non lymph. non-myelo

1 (4)

1 (4)

1 (2)

Lymphoma, Hodgkin-Syndrome

5 (7)

3 (4)

1

Testicular cancer

3 (5)

3 (5)

3 (4)

Uterine cancer

1

1

1

Skin cancer

4

3

1

Cardio-vascular diseases

4 (5)

3 (4)

1

Infertility, reduced fertility, men

4 (7)

4 (7)

2 (4)

Infertility, reduced fertility, women

1

1

0

Miscarriages, stillbirths, malformations and
other birth defects

2 (3)

2 (3)

2

Cancer, offspring (parental exposure)

2

2

1

Neurodegenerative diseases, Alzheimer’s

1

1

0

Disruptions of motor and psychological
functions and well-being

2 (9)

2 (9)

1 (7)

 

32

Mobile Telecommunications and Health
7 Health Risks to Humans Resulting from Exposure
to the Electromagnetic Fields of Mobile
Telecommunications
The triggering of an illness caused by an (environmental) pollutant and the development 
of this illness are a multi‐phased process, which begins with a biological, biochemical or 
biophysical primary interaction of the pollutant with the biological system and ends with 
the manifestation of the illness. During the different phases of the process, the body’s own 
repair  mechanisms  can  intervene  and  impede  the  further  development  of the illness. An 
assessment  of  the  potential  health  risks  of  electromagnetic  fields  as  they  are  used  for 
mobile  telecommunications  should  therefore  be  mainly  based  on  studies  conducted 
directly on humans, because extrapolations from animal studies or even in vitro studies on 
cell  cultures  only  have  limited  validity  for  effects  in  humans,  due  to  the  difference  in 
susceptibilities  and  the lack  of  organic  interactions  in  cell  cultures.  However,  due  to  the 
ethical limits to the research on humans, it is unavoidable to use results from experiments 
with animals, single organs or cells in order to discover the biological and physiological 
mechanisms. 
Cancer 
Given  the  results  of  the  present  epidemiological  studies,  it  can  be  concluded  that 
electromagnetic fields with frequencies in the mobile telecommunications range do play a 
role in the development of cancer. This is particularly notable for tumours of the central 
nervous system, for which there is only the one epidemiological study so far, examining 
the  actual  use  of  mobile  phones.  The  most  striking  result  of  this  study  was  an  obvious 
correlation  between  the  side  at  which  the  phone  was  used  and  the  side  at  which  the 
tumour  occurred.  The  brain  tumour  incidence  however  was  only  slightly  increased.  A 
(hypothetical) explanation of such a finding could for example be that mobile fields have 
a  promoting  effect  on  previously  initiated  (multiple)  tumours,  triggering  a  defence 
mechanism in the body which is capable of suppressing unpromoted tumours. 
Higher risks were also demonstrated for several forms of leukaemia. 
Although the studies in relation to testicular cancer were examining particular exposure 
conditions (emitting equipment worn partly on the body at hip level), given the high risk 
factor found, a possible risk cannot be excluded, especially not for mobile users wearing 
the  devices  in  standby  mode  on  their  belts.  The  epidemiological  findings  for  testicular 
cancer also need to be interpreted in conjunction with the results of the studies of fertility 
problems occurring in relation to high frequency electromagnetic fields. 
The risk factors for cancers other than testicular cancer are only moderately increased, but 
not  negligible,  considering  this  technology  will  potentially  reach  full  coverage  of  the 
entire population. 

Mobile Telecommunications and Health

33
Reliable  conclusions  about  a  possible  dose‐response‐relationship  cannot  be  made  on  the 
basis  of  the  present  results  of  epidemiological  studies,  but  an  increase  of  cancer  risk 
cannot be excluded even at power flux densities as low as 0.1 W/m2. 
In  long‐term  animal  experiments,  the  carcinogenic  effect  of  pulse  modulated  high 
frequency  fields  was  demonstrated  for  power  flux  densities  of  circa  3W/m2  (mouse, 
exposure duration 18 months, 30 minutes per day, SAR (mouse) circa 0.01 W/kg). 
On  the  cellular  level,  a  multitude  of  studies  found  the  type  of  damage  from  high 
frequency  electromagnetic  fields  which  is  important  for  cancer  initiation  and  cancer 
promotion: 
Direct  damage  on  DNA  as  well  as  influences  on  DNA  synthesis  and  DNA  repair 
mechanisms  were  demonstrated  in  in  vivo  and  in  vitro  experiments  for  continuous  and 
pulsed fields at power flux densities from 10W/m2 and 9W/m2 respectively. 
Chromosome aberrations and micronuclei occurred at power flux densities from 5 W/m2. 
Neoplastic cell transformation and an enhanced cell proliferation were demonstrated for 
Specific Absorption Rates of below 0.5W/kg, and individual studies demonstrated that the 
obvious disturbance of the communication between cells, which is a prerequisite for the 
uninhibited  proliferation  of  cells  that  is  characteristic  for  cancer  development,  occurs  at 
just a few W/m2. 
Conclusion: 
The  results  of  the  studies  for  all  stages  of  cancer  development  from  the  damage  of  the 
genetic material via the uninhibited proliferation of cells and debilitation of the immune 
system  (see  below)  up  to  the  manifestation  of  the  illness  prove  effects  at  power  flux 
densities  of  less  than  1  W/m2.  For  some  stages  of  cancer  development,  intensities  of  0.1 
W/m2 or even less may suffice to trigger effects. 
Debilitation of the Immune System 
Damaging effects on the immune system which can aid the development of illnesses were 
demonstrated in animal experiments at power flux densities of 1 W/m2 (mouse, exposure 
duration  6  days,  3  hours  per  day,  SAR  (mouse)  0.14W/kg).  In  in  vitro  experiments  on 
lymphocytes, defects of the genetic material were demonstrated at power flux densities of 
circa 10 W/m2. The presence of stress hormones, which when permanent can debilitate the 
immune  system,  was  found  to  be  increased  in  human  experiments  from  power  flux 
densities  of  0.2W/m2.  In  animal  experiments  (rat)  a  similar  effect  was  observed  at  a 
Specific Absorption Rate of circa 0.2 W/kg. 
Conclusion: 
Experiments on animals prove harmful effects on the immune system from circa 1 W/m2; 
at power flux densities of 0.2 W/m2 higher secretions of stress hormones in humans have 
been demonstrated. 

34

Mobile Telecommunications and Health
Influences on the Central Nervous System and Cognitive Function 
The effects of pulsed and continuous high frequency fields on the blood‐brain‐barrier and 
the activity of neurotransmitters were demonstrated in animal experiments for power flux 
densities of 3 and 10 W/m2 respectively. 
In humans, influences on the slow brain potentials were found at SAR values of 0.882 to 
1.42W/kg, i.e. well below the current guidelines for partial body exposure of 2 W/kg. 
Changes in the sleep EEG of humans, which showed a shortening of the REM sleep phase 
occurred at intensities as low as 0.5 W/m2. 
In animal experiments, changes in the EEG were demonstrated at power flux densities of 
1 to 2W/m2. 
Impairment  of  cognitive  functions  was  found  in  animal  experiments  at  power  flux 
densities of 2W/m2. In humans, there are indications that brain functions are influenced by 
fields such as they occur when using a mobile telephone. 
An  epidemiological  study  of  children  who  had  been  exposed  to  pulsed  high  frequency 
fields, found a decrease in the capability to concentrate and an increase in reaction times. 
Conclusion: 
Effects of high frequency electromagnetic fields on the central nervous system are proven 
for intensities well below the current guidelines. Measurable physiological changes have 
been demonstrated for intensities from 0.5 W/m2. Impairments of cognitive functions are 
proven for animals from 2W/m2. 
Electrosensitivity or Electromagnetic Hypersensitivity 
The  terms  ‘electrosensitivity’  or  ‘electromagnetic  hypersensitivity’  describe  disturbances 
of  well‐being  and  impairments  of  health,  such  as  they  are  suffered  by  certain  sensitive 
people  when  working  with  or  being  in  the  presence  of  devices  and  equipment  emitting 
electrical,  magnetic  or  electromagnetic  fields.  The  sensitivity  manifests  in  a  variety  of 
symptoms including: 
■ nervous  symptoms  such  as  sleep  disturbances,  headaches,  exhaustion,  lack  of 
concentration, irritability, anxiety, stress 
■ cardio‐vascular complaints 
■ disruptions of hormones and metabolism 
■ skin complaints 
The  composition  and  strength  of  the  complaints  varies  enormously  in  different 
individuals. The correlation of the complaints with electromagnetic exposures and other 
environmental  influences  seems  to  vary  strongly  not  only  between  affected  persons  but 
also in time, a fact that has so far impeded the conclusive scientific proof of a cause‐effect‐
relationship in provocation studies. The present results of scientific studies are often not 
conclusive and partly contradictory. On the other hand, however, there is a wealth of data 

Mobile Telecommunications and Health

35
collected  by  the  self‐help  organisations  of  affected  people,  which  has  not  yet  been 
explored. 
Conclusion: 
On the basis of current knowledge it is impossible to estimate the risk of electrosensitive 
reactions or to make recommendations for guidelines designed to avoid such a risk for the 
general population, which is composed of sensitive and non‐sensitive persons.  

36

Mobile Telecommunications and Health
8 Recommendations
8.1 Precautionary Health Protection in Relation to Exposures
to Electromagnetic Fields of Mobile Telecommunications
With mobile telecommunications we have to differentiate to exposure situations: 
■ exposure of residents near base stations 
■ exposure of mobile users when using the devices 
To  limit  exposure  to  an  acceptable  degree,  if  this  is  possible  at  all,  there  need  to  be 
different strategies for the two different exposure groups.  
Exposures from Base Stations 
In  humans,  harmful  organic  effects  of  high  frequency  electromagnetic  fields  as  used  by 
mobile  telecommunications  have  been  demonstrated  for  power  flux  densities  from 
0.2W/m2 (see Chapter 7). Already at values of 0.1 W/m2 such effects cannot be excluded. If 
a  security  factor  of  10  is  applied  to  this  value,  as  it  is  applied  by  ICNIRP  and  appears 
appropriate  given  the  current  knowledge,  the  precautionary  limit  should  be  0.01W/m2. 
This  should  be  rigorously  adhered  to  by  all  base  stations  near  sensitive  places  such  as 
residential areas, schools, nurseries, playgrounds, hospitals and all other places at which 
humans are present for longer than 4 hours.  
We  recommend  the  precautionary  limit  of  0.01  W/m2  independent  of  the  carrier 
frequency.  The  rough  dependency  on  frequency  with  higher  limits  outside  of  the 
resonance range, as it is applied in the concept of SAR, is not justifiable given the results 
of  the  scientific  studies  which  conclusively  prove  non‐thermal  effects  of  high  frequency 
fields.  Also,  the  current  allowed  higher  exposures  for  parts  of  the  body,  as  long  as  they 
refer to the head or thorax are not justifiable. 
Exposures of Mobile Phone Users 
Given the state of technology now and in the foreseeable future, it is currently technically 
impossible  to  apply  the  recommended  maximum  value  for  mobile  base  stations  also  to 
the  use  of  mobile  phones.  However,  a  lowering  of  the  guidelines  to  a  maximum  of  0.5 
W/m2 should urgently be considered. 
A  particular  problem  in  this  exposure  group  is  posed  by  children  and  adolescents,  not 
only because their organism is still developing and therefore particularly susceptible, but 
also because many adolescents have come to be the most regular users of mobile phones. 
Advertising  towards  this  population  group  should  be  banned.  Furthermore,  particular 
efforts should be made to lower the exposures during calls. It would be recommendable 
to conduct (covert) advertising campaigns propagating the use of headsets. It would also 
be  important  to  develop  communications  and  advertising  aiming  at  minimising  the 
exposures created by carrying mobile phones in standby mode on the body. 

Mobile Telecommunications and Health

37
8.2 Scientific Studies Regarding the Health Risk of Mobile
Telecommunications
The precautionary limits recommended in Chapter 8.1 are based on the current scientific 
knowledge. This is, however, still incomplete and in the case of this technology, which is 
exposing  the  entire  population  to  its  emissions,  further  research  efforts  are  needed  to 
create a base for the setting of truly reliable guidelines. Based on the scientific knowledge 
presented in this report, the further research requirements are mainly for studies on living 
organisms (humans or animals): 
Epidemiological studies 
■ studies  that  metrologically  record  the  exposure  on  existing  radio  transmitters  (USW), 
TV  transmitters  and  longer‐established  radio  communications  and  paging  networks. 
(The  emissions  of  this  type  of  equipment  with  regards  to  the  modulation  frequencies 
may  not  be  directly  comparable  to  those  of  mobile  telecommunications,  but  such 
studies  could  nevertheless  offer  important  indications  for  the  assessment  of  the 
exposure  risks  of  high  frequency  electromagnetic  fields;  the  studies  should  focus  on 
cancer  and  illnesses  of  the  central  nervous  system  including  neurodegenerative 
diseases as well as cardio‐vascular diseases and any diseases caused by a disruption of 
the immune system; such studies should also address potential clusters of unspecified 
symptoms and impairments of well‐being (electrosensitivity)). 
■ a  meta‐study  with  retrospective  dosimetry  for  the  studies  which  examined  the 
residents near emitting base stations (see Appendix D) with the help of measured data 
from comparable sites 
■ a  cohort  study  examining  the  health  (see  above)  of  mobile  users  and  residents  near 
mobile base stations 
■ epidemiological animal studies on pets 
Experimental long‐term studies 
Studies of the chronic effects of the fields emitted by mobile telecommunications 
■ on the central nervous system (preferably on humans) 
■ on  the  immune  and  endocrine  system  (preferably  on  humans,  but  further  animal 
experiments at low intensities would also be helpful for example with regards to EMF‐
induced stress) 
■ on  the  cardio‐vascular  system  (variability  of  heartbeat  rates,  blood  pressure,  etc.,  on 
humans and on animals) 
Experimental short‐term studies 
Studies of the acute effects of the fields emitted by mobile telecommunications 
■ on  the  brain  in  various  rest  and  stress  situations  (preferably  making  use  of  EEG  and 
similar methods) 

38

Mobile Telecommunications and Health
Beyond these suggestions, it would be important to develop a strategy for the research of 
the  ‘electrosensitivity’  phenomenon  and  its  incidence,  which  would  acknowledge  the 
failure of traditional scientific methods to address the problem and allow the inclusion of 
the data available from the self‐help groups and associations of the affected. 
 

Mobile Telecommunications and Health

39
Literature
Adey W.R., Byus C.V., Cain C.D., Higgins R.J.,
Jones R.A., Kean C.J., Kuster N., MacMurray A.,
Stagg R.B., Zimmermann G., Phillips J.L. &
Haggren W.

1999

Spontaneous and nitrosourea-induced primary tumors in the central
nervous system in Fischer 344 rats chronically exposed to 836 MHz
modulated microwaves

Radiat. Res.

152

293302

Akdag M.Z., Celik S., Ketani A., Nergiz Y., Deniz
M. & Dasdag S.

1999

Effect of chronic low-intensity microwave radiation on sperm count,
sperm morphology, and testicular and epididymal tissues of rats

Electro- Magnetobiol.

18, 2

133145

Albert E.N.

1979

Reversibility of microwave-induced blood-brain-barrier permeability

Radio Sci.

14, 6S

323327

Alberti E.N. & Kerns J.M.

1981

Reversible microwave effects on the blood-brain barrier

Brain Res.

230

153164

Anderstam B., Hamnerius Y., Hussain S. &
Ehrenberg L.

1983

Studies of possible genetic effects in bacteria of high frequency
electromagnetic fields

Hereditas

98

11-32

Antonopoulos A., Eisenbrandt H. & Obe G.

1997

Effects of high-frequency electromagnetic fields on human lymphocytes Mutat. Res.
in vitro

Balcer-Kubiczek E.K. & Harrison G.H.

1985

Evidence for microwave carcinogenicity in vitro

Balcer-Kubiczek E.K. & Harrison G.H.

1989

Balcer-Kubiczek E.K. & Harrison G.H.

6 (6)

859864

Induction of neoplastic transformation in C3H/10T1/2 cells by 2.45 GHz Radiat. Res.
microwaves and phorbol ester

117

531537

1991

Neoplastic transformation of C3H/10T1/2 cells following exposure to
120-Hz modulated 2.45-GHz microwaves and phorbol ester tumor
promoter

Radiat. Res.

126

65-72

Balode Z.

1996

Assessment of radio-frequency electromagnetic radiation by the
micronucleus test in bovine peripheral erythrocytes

Sci Total Environ

180

81-85

Banerjee R., Goldfeder A. & Mitra J.

1983

Sister chromatid exchanges and chromosome aberrations induced by
radio sensitizing agents in bone marrow cells of treated tumor-bearing
mice

JNCI

70, 3

517521

Bawin S.M., Kaczmarek L.K. & Adey W.R.

1975

Effects of modulated VHF fields on the central nervous system

Ann. N. Y. Academ.
Sciences

247

74-80

40

Carcinogenesis

209214

Mobile Telecommunications and Health
Beall C., Delzell E., Cole P. & Brill I.

Brain tumors among electronics industry workers

Epidemiology

7, 2

125130

Beechey C.V., Brooker D., Kowalczuk D., Saunders 1986
C.I. & Searle A.G.

Cytogenic effects of microwave irradiation on male germ cells of the
mouse

Int. J. Radiat. Biol.

50, 5

909918

Behari J., Kunjilwar K.K. & Pyne S.

1998

Interaction of low level modulated RF radiation with Na+-K+-ATPase

Bioelectrochemistry

47

247252

Berman E., Carter H.B. & House D.

1980

Tests for mutagenesis and reproduction in male rats exposed to 2.45
GHz (CW) microwaves

Bioelectromagnetics

1

65-76

Berman E., Carter H.B. & House D.

1982

Reduced weight in mice offspring after in utero exposure to 2450-MHz
(CW) microwaves

Bioelectromagnetics

3

285291

Berman E..& Carter H.B.

1984

Decreased body weight in foetal rats after irradiation with 2450-MHz
(CW) microwaves

Health Phys.

46, 3

537542

Bernhardt J.H., Matthes R. & Repacholi M.H. (Ed.) 1997

Non thermal effects of RF electromagnetic fields. Proceedings
international seminar on biological effects of non-thermal pulsed and
amplitude modulated RF electromagnetic fields and related health
risks. Munich

ICNIRP

3/97

Blackman C.F., Elder J.A., Weil C.M., Benane
S.G., Eichinger D.C. & House D.E.

1979

Induction of calcium-ion efflux from brain tissue by radio-frequency
radiation: effects of modulation frequency and field strength

Radio Sci

14, 6S

93-98

Bohr H. & Bohr J.

2000

Microwave enhanced kinetics observed in ORD studies of a protein

Bioelectromagnetics

21

68-72

Bohr H., Brunak S. & Bohr J.

1997

Molecular wring resonances in chain molecules

Bioelectromagnetics

18

187189

Borbély A.A., Huber R., Graf T., Fuchs B.,
Gallmann E. & Achermann P.

1999

Pulsed high-frequency electromagnetic fields affects human sleep and
sleep electroencephalogram

Neuroscience Lett.

275

207210

Bortkiewicz A., Gadzicka E. & Zmyslony M.

1996

Heart rate variability in workers exposed to medium-frequency
electromagnetic fields

J. Auton Nerv Syst

59

91-97

Brusick D., Albertini R., McRee D., Peterson D.,
Williams G., Hanawalt P. und Preston J.

1998

Genotoxicity of Radiofrequency Radiation

Environ. Mol.
Mutagenesis

32

1-16

Byus C.V., Kartun K., Pieper S. & Adey W.R.

1988

Increased ornithine decarboxylase activity in cultured cells exposed to
low energy modulated microwave fields and phorbol ester tumor
promoters

Cancer Res

48

422426

Byus C.V., Lundak R.L., Fletcher R.M. & Adey
W.R.

1984

Alterations in protein kinase activity following exposure of cultured
human lymphocytes to modulated microwave fields

Bioelectromagnetics

5

341351

Mobile Telecommunications and Health

1996

41
Cain C.D., Thomas D.L. & Adey W.R.

1997

Focus formation of C3H/10T1/2 cells and exposure to a 836.55 MHz
modulated radiofrequency field

Bioelectromagnetics

18

237243

Cantor K.P., Stewart P.A., Brinton L.A. &
Dosemeci M.

1995

Occupational exposures and female breast cancer mortality in the
United States

J. Occup. Environ.
Med.

37 (3)

336348

Chagnaud J.-L. & Veyret B.

1999

In vivo exposure of rats to GSM-modulated microwaves: flow cytometry Int. J. Radiat. Biol.
analysis of lymphocyte subpopulations and of mitogen stimulation

75, 1

111113

Chagnaud J.-L., Moreau J.-M. & Veyret B.

1999

No effect of short-term exposure to GSM-modulated low-power
microwaves on benzo(a)pyrene-induced tumours in rat

75, 10

12511256

Chizhenkova R.A.

1988

Slow potentials and spike unit activity of the cerebral cortex of rabbits Bioelectromagnetics
exposed to microwaves

9

337345

Chizhenkova R.A. & Safroshkina A.A.

1996

Electrical reactions of brain to microwave irradiation

ElectroMagnetobiology

15, 3

253258

Chou C.-K., Guy A.W., Kunz L.L., Johnson R.B.,
Crowley J.J. & Krupp J.H.

1992

Long-term, low-level microwave irradiation of rats

Bioelectromagnetics

13

469496

Ciaravino V., Meltz M.L., & Erwin D.N.

1991

Absence of synergistic effects between moderate-power radiofrequency electromagnetic radiation and adriamycin on cell-cycle
progression and sister chromatid exchange

Bioelectromagnetics

12

289298

Ciaravino V., Meltz M.L. & Erwin D.N.

1987

Effects of radiofrequency radiation and simultaneous exposure with
Environ. Mutagen.
mitomycin C on the frequency of sister chromatid exchanges in Chinese
hamster ovary cells

9

393399

Cleary S.F., Cao G. & Liu L.-M.

1996a

Effects of isothermal 2.45 GHz microwave radiation on the mammalian Bioelectrochem
cell cycle: comparison with effects of isothermal 27 MHz
Bioenerg
radiofrequency radiation exposure

39

167173

Stress proteins are not induced in mammalian cells exposed to
radiofrequency or microwave radiation

Bioelectromagnetics

18

499505

Cleary S.F., Cao G., Liu L.M., Egel P.M. & Shelton 1997
K.R.

Int. J. Radiat. Biol.

Cleary S.F., Du Z., Cao G., Liu L. & McCrady C.

1996b Effect of isothermal radiofrequency radiation on cytolytic T
lymphocytes

FASEB J

10

913919

Cleary S.F., Liu L.-M- & Merchant R.E.

1990a

Bioelectromagnetics

11

47-56

Cleary S.F., Liu L.-M. & Merchant R.E.

1990b Glioma proliferation modulated in vitro by isothermal radiofrequency
exposure

Radiat. Res.

121

38-45

42

In vitro lymphocyte proliferation induced by radio-frequency
electromagnetic radiation under isothermal conditions

Mobile Telecommunications and Health
Cole Johnson C. & Spitz M.R.

1989

Childhood nervous system tumours: an assessment of risk associated
with paternal occupations involving use, repair or manufacture of
electrical and electronic equipment

Int. J. Epidemiol.

18, 4

756762

Colt J.S. & Blair A.

1998

Parental occupational exposure and risk of childhood cancer

Environ. Health
Perspect.

106
(Suppl.
3)

909925

Czerska E.M., Elson E.C., Davis C.C., Swicord M.L. 1992
& Czerki P.

Effects of continuous and pulsed 2450-MHz radiation on spontaneous
lymphoblastoid transformation of human lymphocytes in vitro

Bioelectromagnetics

13

247259

d’Ambrosio G., Lioi M.B., Massa R., Scarfi M.R. &
Zeni O.

1995

Genotoxic effects of amplitude-modulated microwaves on human
lymphocytes exposed in vitro under controlled conditions

ElectroMagnetobiology

14

157164

D’Andrea J.A.

1991

Microwave radiation absorption: behavioral effects

Health Physics

61, 1

29-40

D’Andrea J.A.

1999

Behavioral evaluation of microwave irradiation

Bioelectromagnetics

20

64-74

D’Inzeo G., Bernardi P., Eusebi F., Grassi F.,
Tamburello C. & Zani B.M.

1988

Microwave effects on acetylcholine-induced channels in cultured chick
myotubes

Bioelectromagnetics

9

363372

Dardalhon M., Averbeck D. & Berteaud A.J.

1981

Studies on possible genetic effects of microwaves in prokaryotic and
eukaryotic cells

Radiat Environ Biophys 20

37-51

Dardalhon M., Averbeck D., Berteaud A.J. &
Ravary V.

1985

Thermal aspects of biological effects of microwaves in Saccharomyces
cerevisiae

Int J Radiat Biol

48

987996

Dasdag S., Oflazoglu H., Kelle M. & Akdag Z.

1998

Effects of microwaves on the phagocytic activity of variously treated
rat macrophages

Electro- Magnetobiol.

17, 2

185194

Davis R.L. & Mostofi F.K.

1993

Cluster of testicular cancer in police officers exposed to hand-held
radar

Am. J. Indust. Med.

24

231233

Demers P.A., Thomas D.B., Rosenblatt K.A.,
Jimenez L.M., McTiernan A., Stalsberg H.,
Sternhagen A., Douglas W.D., McCrea Curnen
M.G., Satariano W., Austin D.F., Isacson P.,
Greenberg R.S., et al.

1991

Occupational exposure to electromagnetic fields and breast cancer in
men

Am. J. Epidemiol.

134 (4)

340347

Dobson J. & Pierre T.G.S.

1998

Thermal effects of microwave radiation on biogenic magnetite particles Electro- Magnetobiol.
and circuits: theoretical evaluation of cellular phone safety aspects

17, 3

351359

Dolk H., Elliott P., Shaddick G., Walls P. &
Thakrar B.

1997b Cancer incidence near radio and television transmitters in Great
Britain, II All high power transmitters

145, 1

10-17

Mobile Telecommunications and Health

Am. J. Epidemiol.

43
Dorp R. van, Marani E. & Boon M. E.

1998

Cell replication rates and processes concerning antibody production in
vitro are not influenced by 2.45-GHz microwaves at physiologically
normal temperatures.

Methods

15

151159

Dutta S.K., Ghosh B. & Blackman C.F.

1989

Radiofrequency radiation-induced calcium ion efflux enhancement
from human and other neuroblastoma cells in culture

Bioelectromagnetics

10

197202

Dutta S.K., Subramoniam A., Ghosh B. & Parshad
R.

1984

Microwave radiation-induced calcium ion efflux from human
neuroblastoma cells in culture

Bioelectromagnetics

5

71-78

Dutta S.K., Verma M. & Blackman C.F.

1994

Frequency-dependent alterations in enolase activity in Escheria coli
caused by exposure to electric and magnetic fields

Bioelectromagnetics

15

377383

Elekes E., Thuróczy G. & Szabó L.D.

1996

Effect on the immune system of mice exposed chronically to 50 Hz
amplitude-modulated 2.45 GHz microwaves

Bioelectromagnetics

17

246248

Finkelstein M.M.

1998

Cancer incidence among Ontario police officers

Am. J. Ind. Med.

34

157162

Foster K.R.

1996

Interaction of radiofrequency fields with biological systems as related
to modulation

Bernhardt et al. (Ed.)
1997

Frei M.R., Berger R.E., Dusch S.J., Guel V.,
Jauchem J.R., Merritt J.H. & Stedham M.A.

1998a

Chronic exposure of cancer-prone mice to low-level 2450 MHz
radiofrequency radiation

Bioelectromagnetics

19

20-31

Frei M.R., Jauchem J.R., Dusch S.J., Merritt J.H., 1998b Chronic, low-level (1.0 W/kg) exposure of mice prone to mammary
Berger R.E. & Stedham M.A.
cancer to 2450 MHz microwaves

Radiat. Res.

150

568576

Freude G., Ullsperger P., Eggert S. & Ruppe I.

1998

Effects of microwaves emitted by cellular phones on human slow brain
potentials

Bioelectromagnetics

19

384387

Freude G., Ullsperger P., Eggert S., Ruppe I. &
Eulitz C.

1999

Untersuchungen zum Einfluß elektromagnetischer Felder von
in Krause et al. 1999
Mobiltelefonen auf langsame Hirnpotentiale im Elektroenzephalogramm
des Menschen

Fritze K., Sommer C; Schmitz B; Mies G;
Hossmann KA; Kiessling M & Wiessner C.

1997b Effect of global system for mobile communication (GSM) microwave
exposure on blood-brain barrier permeability in rat

Fritze K., Wiessner C., Kuster N., Sommer C.,
Gass P., Hermann D.M., Kiessling M. & Hossmann
K.A.

1997 a Effect of global system for mobile communication microwave exposure Neuroscience
on the genomic response of the rat brain

Fucic A., Garaj-Vrhovac V., Skara M. & Dimitrovic 1992
B.

44

X-rays, microwaves and vinyl chloride monomer: their clastogenic and
aneugenic activity, using the micronucleus assay on human
lymphocytes

Acta Neuropathol.

Mutat. Res.

47-63

165176
94

465470

81

627639

282

265271

Mobile Telecommunications and Health
Garaj-Vrhovac V., Fucic A. & Horvat D.

1992

The correlation between the frequency of micronuclei and specific
chromosome aberrations in human lymphocytes exposed to microwave
radiation in vitro

Mutation Res.

281

181186

Garaj-Vrhovac V., Horvat D. & Koren Z.

1990

The effect of microwave radiation on the cell genome

Mutation Res.

243

87-93

Garaj-Vrhovac V., Horvat D. & Koren Z.

1991

The relationship between colony-forming ability, chromosome
aberrations and incidence of micronuclei in V79 Chinese hamster cells
exposed to microwave radiation

Mutation Res.

263

143149

Garland F.C., Shaw E., Gorham E.D., Garland
C.F., White M.R. & Sinsheimer P.J.

1990

Incidence of leukemia in occupations with potential electromagnetic
field exposure in United States navy personnel

Am. J. Epidemiol.

132, 2

293303

Garson O.M., McRobert T.L., Campbell L.J.,
Hocking B. & Gordon I.

1991

A chromosomal study of workers with long-term exposure to radiofrequency radiation

Med. J. Austral.

155

289292

Glaser R.

1998

Do electromagnetic fields really increase the ornithine-decarboxylase Bioelectrochem.
(ODC) activity of cells? What happens with the ‘coherence time’ effect? Bioenerget.
- A comment to the papers of T.A. Litovitz et al.

46

301302

Goldman H., Lin J.C., Murphy S. & Lin M.F.

1984

Cerebrovascular permeability to 86Rb in the rat after exposure to
pulsed microwaves

Bioelectromagnetics

5

323330

Goswami P.C., Albee L.D., Parsian A.J., Baty J.D., 1999
Moros E.G., Pickard W.F., Roti Roti J.L. & Hunt
C.R.

Proto-oncogene mRNA levels and activities of multiple transcription
factors in C3H 10T1/2 murine embryonic fibroblasts exposed to 836.62
and 847.74 MHz cellular phone communication frequency radiation

Rad. Res.

151

300309

Grayson J.K.

Radiation exposure, socioeconomic status, and brain tumor risk in the
US Air Force: A nested case-control study

Am. J. Epidemiol.

143, 5

480486

Grospietsch T., Schulz O., Hölzel R., Lamprecht I. 1995
& Kramer K.-D.

Stimulating effects of modulated 150 MHz electromagnetic fields on
the growth of Escherichia coli in a cavity resonator

Bioelectrochem.
Bioenerget.

37

17-23

Gruenau S.P., Oscar K.J., Folker M.T. & Rapoport 1982
S.I.

Absence of microwave effects on blood-brain barrier permeability to
(14C)sucrose in the conscious rat

Exp. Neurol.

75

299307

Hamnerius Y., Rasmuson A. & Rasmuson B.

1985

Biological effects of high-frequency electromagnetic fields on
Salmonella typhymurium and Drosophila melanogaster

Bioelectromagnetics

6

405414

Hardell L., Näsman A., Pahlson A., Hallquist A. &
Hansson Mild K.

1999

Use of cellular telephones and risk for brain tumours: A case-control
study

Int. J. Oncol.

15

113116

Occupation and Risk for Testicular Cancer: A Case-Control Study

Int J Epidemiology

19,4

825831

1996

Hayes R.B., Morris Brown L., Pottern L.M., Gomez 1990
M., Kardaun J.W.P.F., Hoover R.N., O’Connell
K.J., Sutzman R.E. & Javadpour N.

Mobile Telecommunications and Health

45
Heikkinen P., Kumlin T., Laitinen J.T.,
Komulainen H. & Juutilainen J.

1999

Chronic exposure to 50-Hz magnetic fields or 900-MHz electromagnetic Electrofields does not alter nocturnal 6-hydroxymelatonin sulfate secretion in Magnetobiology
CBA/S mice

18, 1

33-42

Hentschel K., Neuschulz H., Freude G., Ullsperger 1999
P., Kaul G., Ruppe I., Eggert S., Enderlein G. &
Keitel J.

Einfluss von niederfrequent gepulsten Hochfrequenzfeldern auf den
Menschen

Schriftenreihe der BAA Fb 868

Hentschel K., Neuschulz H., Ruppe I., Eggert S.,
Freude G., Kaul G., Enderlein G. & Keitel J.

Untersuchungen zum Einfluß von niederfrequent gepulsten
elektromagnetischen Feldern von GSM-Mobiltelefonen auf den
Menschen

in Krause et al. 1999

Higashikubo R., Culbreth V.O., Spitz D.R.,
1999
LaRegina M.C., Pickard W.F., Straube W.L., Moros
E.G. & Roti Roti J.L.

Radiofrequency electromagnetic fields have no effect on the in vivo
proliferation of the 9L brain tumor

Rad. Res.

152

665671

Hjollund N.H.I., Bonde J.P.E. & Skotte J.

1997

Semen analysis of personnel operating military radar equipment

Reprod. Toxicol.

11,6

897

Hocking B., Gordon I.R., Grain H.L. & Hatfield
G.E.

1996

Cancer Incidence and mortality and proximity to TV towers

Med. J. Australia

165

601605

Holly E.A., Aston D.A., Ahn D.K. & Smith A.H.

1996

Intraocular melanoma linked to occupations and chemical exposures

Epidemiology

7 (1)

55-61

ICNIRP

1998

Guidelines for limiting exposure to time-varying electric, magnetic.
And electromagnetic fields (up to 300 GHz)

Health Phys.

74

494522

Imaida K., Taki M, Yamaguchi T, Ito T, Watanabe
S, Wake K, Aimoto A, Kamimura Y, Ito N & Shirai
T.

1998a

Lack of promoting effects of the electromagnetic near-field used for
cellular phones (929.2 MHz) on rat liver carcinogenesis in a mediumterm liver bioassay

Carcinogenesis

19

311314

Imaida K., Taki M., Watanabe S. Kamimura Y., Ito 1998b The 1.5 GHz electromagnetic near-field used for cellular phones does
T., Yamaguchi T., Ito N. & Shirai T.
not promote rat liver carcinogenesis in a medium-term liver bioassay

Jpn. J. Cancer Res.

89

9951002

Inaba R., Shishido K.-I., Okada A. & Moroji T.

1992

Effects of whole body microwave exposure on rat brain contents of
biogenic amines

Eur. J. Appl. Physiol.

65

124128

Inalöz S.S., Dasdag S., Ceviz A. & Bilici A.

1997

Acceptable radiation leakage of microwave ovens on pregnant and
newborn rat brains

Clin. Exp. Obstet.
Gynecol.

24

215219

Ivaschuk O.I., Jones R.A., Ishida-Jones T.,
Haggren W., Adey W.R. & Phillips J.L.

1997

Exposure of nerve growth factor-treated PC12 rat pheochromocytoma
cells to a modulated radiofrequency field at 836.55 MHz

Bioelectromagnetics

18

223229

Jensh R.P., Vogel W.H. & Brent R.L.

1983

An evaluation of the teratogenic potential of protracted exposure of
pregnant rats to 2450 MHz microwave radiation: II Postnatal
psychophysiologic analysis

J. Toxicol. Environ.
Health

11

37-59

46

1999

11791190

Mobile Telecommunications and Health
Jensh R.P., Weinberg I. & Brent R.L.

1983a

An evaluation of the teratogenic potential of protracted exposure of
J. Toxicol. Environ.
pregnant rats to 2450-MHz microwave radiation: I. Morphologic analysis Health
at term

11

23-35

Källén B., Malmquist G. & Moritz U.

1982

Delivery outcome among physiotherapists in Sweden: is non-ionizing
radiation a fetal hazard?

Arch. Environ. Health

37 (2)

81-85

Kass G.E.N. & Orrenius S.

1999

Calcium signalling and cytotoxicity

Env. Health Perspect. 107, S1

25-35

Kerbacher J.J., Meltz M.L. & Erwin D.N.

1990

Influence of radiofrequency radiation on chromosome aberrations in
CHO cells and its interaction with DNA damaging agents

Radiat. Res.

123

311319

Khillare B. & Behari J.

1998

Effect of amplitude-modulated radiofrequency radiation on
reproduction pattern in rats

ElectroMagnetobiology

17 (1)

43-55

Kirschvink J.L.

1996

Microwave absorption by magnetite: a possible mechanism for coupling Bioelectromagnetics
nonthermal levels of radiation to biological systems

17

187194

Klitzing, L. von

1995

Low Frequency pulsed electromagnetic fields influence EEG of man

Physica Medica

11

77-80

Kolodynski A.A. & Kolodynska V.V.

1996

Motor and psychological functions of school children living in the area
of the Skrunda radio location station in Latvia

Sci Total Environ

180

87-93
(51-

Kowalczuk C.I., Saunders R.D. & Stapleton H.R.

1983

Sperm count and sperm abnormality in mice after exposure to 2.45 GHz Mutat. Res.
microwave radiation

122

155161

Krause D., Mullins J.M., Penafiel L.M., Meister R.
& Nardone R.M.

1991

Microwave exposure alters the expression of 2-5A-dependent RNAse

Rad. Res.

127

164170

La Cara F., Scarfi M.R., D’Auria S., Massa R.,
d’ambrosio G., Franceschetti G., Rossi M. & De
Rosa M.

1999

Different effects of microwave energy and conventional heat on the
activity of a thermophilic beta-galactosidase from bacillus
acidocaldarius

Bioelectromagnetics

20

172176

Lagorio S., Rossi S., Vecchia P., De Santis M.,
1997
Bastianini L., Fusilli M., Ferrucci A., Desideri E. &
Comba P.

Mortality of plastic-ware workers exposed to radiofrequencies

Bioelectromagnetics

18

418421

Lai H.

1992

Research on the neurological effects of nonionizing radiation at the
university of Washington

Bioelectromagnetics

13

513526

Lai H. & Singh N.P.

1995

Acute low-intensity microwave exposure increases DNA single-strand
breaks in rat brain cells

Bioelectromagnetics

16

207210

Lai H. & Singh N.P.

1996

Single- and double-strand DNA breaks in rat brain cells after acute
exposure to radiofrequency electromagnetic radiation

Int. J. Radiat. Biol.

69

513521

Mobile Telecommunications and Health

47
Lai H. & Singh N.P.

1997

Melatonin and a spin trap compound block radiofrequency
Bioelectromagnetics
electromagnetic radiation-induced DNA-strand breaks in rat brain cells

18

446454

Lai H., Carino M.A., Horita A. & Guy A.W.

1989a

Low-level microwave irradiation and central cholinergic activity: a
dose-response study

Bioelectromagnetics

10

203208

Lai H., Carino M.A., Horita A. & Guy A.W.

1989b Low-level microwave irradiation and central cholinergic systems

Pharmacol. Biochem.
Behav.

33

131138

Lai H., Carino M.A., Horita A. & Guy A.W.

1990

Corticotropin-releasing factor antagonist blocks microwave-induced
decreases in high-affinity choline uptake in the rat brain

Brain Res. Bull.

25

609612

Lai H., Horita A. & Guy A.W.

1988

Acute low-level microwave exposure and central cholinergic activity:
studies on irradiation parameters

Bioelectromagnetics

9

355362

Lai H., Horita A. & Guy A.W.

1994

Microwave irradiation affects radial-arm maze performance in the rat

Bioelectromagnetics

15

95104

Lai H., Horita A., Chou C.-K. & Guy A.W.

1987

Low-level microwave irradiations affect central cholinergic activity in
the rat

J. Neurochem.

48 (1)

40-45

Lancranjan I., Maicanescu M., Rafaila E., Klepsch
I. & Popescu H.I.

1975

Gonadic function in workman with long-term exposure to microwaves

Health Physics

29

381383

Larsen A.I.

1991b Congenital malformations and exposure to high-frequency
electromagnetic radiation among Danish physiotherapists

Scand. J. Environ.
Health

17

318323

Larsen A.I., Olsen J. & Svane O.

1991a

Gender specific reproductive outcome and exposure to high-frequency
electromagnetic radiation among physiotherapists

Scand. J. Environ.
Health

17

324329

Lary J.M., Conover D.L. & Johnson P.H.

1983

Absence of embryotoxic effects from low-level (non-thermal) exposure Scand. J. Work
of rats to 100 MHz radiofrequency radiation
Environ. Health

9

120129

Lin R.S., Dischinger P.C., Cond J. & Farrell K.P.

1985

Occupational exposure to electromagnetic fields and the occurrence of J. Occup. Med.
brain tumors

27, 6

413419

Lin-Liu S. & Adey W.R.

1982

Low frequency amplitude modulated microwave fields change calcium
efflux rates from synaptosomes

Bioelectromagnetics

3

309322

Litovitz T.A.

1998

Can electromagnetic fields modify the activity of ornithine
decarboxylase (ODC)? What happens with the ‘coherence time’ effect?
A reply to the comment by R. Glaser

Bioelectrochem.
Bioenerget.

46

303306

The role of coherence time in the effect of microwaves on Ornithine
Decarboxylase activity

Bioelectromagnetics

14

395403

Litovitz T.A., Krause D., Penafiel M., Elson E.C. & 1993
Mullins J.M.

48

Mobile Telecommunications and Health
Litovitz T.A., Penafiel L.M., Farrel J.M., Krause
D., Meister R. & Mullins J.M.

1997

Bioeffects induced by exposure to microwaves are mitigated by
superposition of ELF noise

Bioelectromagnetics

18

422430

Liu L.-M. & Cleary S.F.

1995

Absorbed energy distribution from radiofrequency electromagnetic
Bioelectromagnetics
radiation in a mammalian cell model: effect of membrane-bound water

16

160171

Lloyd D.C., Saunders R.D., Finnon P. & Kowalczuk 1984
C.I.

No clastogenic effect from in vitro microwave irradiation of Go human
lymphocytes

Int J Radiat Biol

46

135141

Lloyd D.C., Saunders R.D., Moquet J.E. &
Kowalczuk C.I.

Absence of chromosomal damage in human lymphocytes exposed to
microwave radiation with hyperthermia

Bioelectromagnetics

7

235237

Lyle D.B., Schechter P., Adey W.R. & Lundak R.L. 1983

Suppression of T-lymphocyte cytotoxicity following exposure to
sinusoidally amplitude-modulated fields

Bioelectromagnetics

4

281292

Maes A., Collier M., Gorp U. van, Vandoninck S. & 1997
Verschaeve L.

Cytogenetic effects of 935.2-MHz (GSM) microwaves alone and in
combination with mitomycin C

Mutat. Res.

393

151156

Maes A., Collier M., Slaets D. & Verschaeve L.

1995

Cytogenetic effects of microwaves from mobile communication
frequencies (945 MHz)

Electro- Magnetobiol.

14

91-98

Maes A., Collier M., Slaets D. & Vershaeve L.

1996

945 MHz microwaves enhance the mutagenic properties of mitomycin C Environ. Mol.
Mutagen.

28

26-30

Maes A., Verschaeve L., Arroyo A., Wagter C. De
& Vercruyssen L.

1993

In vitro cytogenetic effects of 2450 MHz waves on human peripheral
blood lymphocytes

Bioelectromagnetics

14

495501

Magras I.N. & Xenos T.D.

1997

RF radiation-induced changes in the prenatal development of mice

Bioelectromagnetics

18

455461

Malyapa R., Ahern E.W., Straube W.L., Moros
E.G., Pickard W.F. & Roti Roti J.L.

1997a

Measurement of DNA damage after exposure to 2450 MHz
electromagnetic radiation

Radiat. Res.

148

608617

Malyapa R., Ahern E.W., Straube W.L., Moros
E.G., Pickard W.F. & Roti Roti J.L.

1997b Measurement of DNA damage after exposure to electromagnetic
radiation in the cellular phone communication frequency band (835.62
and 847.74 MHz)

Radiat. Res.

148

618627

Malyapa R.S., Ahern E.W., Bi C., Straube W.L.,
LaRegina M., Pickard W.F. & Roti Roti J.L.

1998

DNA damage in rat brain cells after in vivo exposure to 2450 MHz
electromagnetic radiation and various methods of euthanasia

Radiat. Res.

149

637645

Manikowska E., Luciani J.M., Servantie B., Czerski 1979
P., Obenovitch J. & Stahl A.

Effects of 9.4 GHz microwave exposure on meiosis in mice

Experentia

35 (3)

388390

Manikowska-Czerska E, Czerski P. & Leach W.M.

1985

Effects of 2.45 GHz microwaves on meiotic chromosomes of male
CBA/CAY mice

J. Heredity

76

71-73

Mann K. & Röschke J.

1996

Effects of pulsed high-frequency electromagnetic fields on human sleep Neuropsychobiology

33

41-47

Mobile Telecommunications and Health

1986

49
Mann K. & Röschke J.

1996

REM-Suppression unter dem Einfluß digitaler Funktelefone

Wien. Med. Wschr.

146

285286

Mann K., Röschke J., Connemann B. & Beta H.

1998

No effects of pulsed high-frequency electromagnetic fields on heart
rate variability during human sleep

Neuropsychobiology

38

251256

Mann K., Wagner P., Brunn G., Hassan F., Hiemke 1997
C. & Röschke J.

Effects of pulsed high-frequency electromagnetic fields on the
neuroendocrine system

Neuroendocrinology

67

139144

Marcickiewicz J., Chazan B., Niemiec T., Sokolska 1986
G., Troszynski M., Luczak M. & Szmigielski S.

Microwave radiation enhances teratogenic effect of cytosine
arabinoside in mice

Biol. Neonate

50

75-82

Marec F., Ondracek J. & Brunnhofer V.

1985

The effect of repeated microwave irradiation on the frequency of sexlinked recessive lethal mutations in Drosophila melanogaster

Mutat. Res.

157

163167

McKenzie D.R., Yin Y. & Morrell S.

1998

Childhood incidence of acute lymphoblastic leukemia and exposure to
broadcast radiation in Sydney - a second look

Aust. N. Z. J. Public
Health

22

360367

Meltz M., Eagan P. & Erwin D.N.

1989

Absence of mutagenic interaction between microwaves and mitomycin
C in mammalian cells

Environ. Molec.
Mutagen.

13

294303

Meltz M.L., Eagan P. & Erwin D.N.

1990

Proflavin and microwave radiation: absence of mutagenic interaction

Bioelectromagnetics

11

149157

Meltz M.L., Walker K.A. & Erwin D.N.

1987

Radiofrequency (microwave) radiation exposure of mammalian cells
during UV-induced DNA-repair synthesis

Radiat. Res.

110

255266

Mickley A., Cobb B.L., Mason P. & Farrel S.

1998

Thermal tolerance reduces hyperthermia-induced disruption of working Physiol. Behav.
memory: a role for endogenous opiates?

63 (5)

855865

Mickley G.A. & Cobb B.L.

1998

Thermal tolerance reduces hyperthermia-induced disruption of working Physiology & Behavior 63
memory: a role for endogenous opiates?

855865

Mickley G.A., Cobb B.L., Mason P.A. & Farrell S.

1994

Disruption of a putative working memory task and selective expression
of brain c-fos following microwave-induced hyperthermia

Physiol. Behav.

55 (6)

10291038

Milham S.

1985

Mortality in workers exposed to electromagnetic fields

Environ. Health
Perspect.

62

297300

Milham S.

1985

Silent keys: leukemia mortality in amateur radio operators

Lancet

6. April

812

Milham S.

1988

Increased mortality in amateur radio operators due lymphatic and
hematopoietic malignancies

Am. J. Epidemiol.

127 (1)

50-54

Milhem S.

1982

Mortality from leukemia in workers exposed to electrical and magnetic New Engl. J. Med.
fields

307

249

50

Mobile Telecommunications and Health
Moriyama E., Salcman M. & Broadwell R.D.

1991

Blood-brain barrier alterations after microwave-induced hyperthermia
is purely a thermal effect: I Temperature and power measurements

Surg. Neurol.

35

177182

Moulder J.E., Erdreich L.S., Malyapa R.S., Merritt 1999
J., Pickard W.F & Vijayalaxmi

Cell Phones and Cancer: What is the Evidence for a Connection

Radiat. Res.

151

513531

Nawrot P.S., McRee D.I. & Galvin M.J.

1985

Teratogenic, biochemical, and histological studies with mice prenatally Radiat. Res.
exposed to 2.45-GHz microwave radiation

102

35-45

Neubauer C., Phelan A.M., Kues H. & Lange D.G.

1990

Microwave irradiation of rats at 2.45 GHz activates pinocytotic-like
uptake of tracer by capillary endothelial cells of cerebral cortex

Bioelectromagnetics

11

261268

Novoselova E.G., Fesenko E.E., Makar V.R. &
Sadovnikov V.B.

1999

Microwaves and cellular immunity II. Immunostimulating effects of
microwaves and naturally occurring antioxidant nutrients

Bioelectrochem.
Bioenerget.

49

37-41

Oscar K.J. & Hawkins T.D.

1977

Microwave alteration of the blood-brain barrier system of rats

Brain Res.

126

281293

Ouellet-Hellstrom R. & Stewart W.F.

1993

Miscarriages among female physical therapists who report using radioand microwave-frequency electromagnetic radiation

Am. J. Epidemiol.

138

775786

Pazmany T., Szkladanyi A. und Szabo L.D.

1990

The Effect of 2.45 GHz Microwave Irradiation on Human Peripheral
Lymphocytes

Acta Biochim.
Biophys. Hung.

25

157163

Penafiel L.M., Litovitz T., Krause D., Desta A. &
Mullins J.M.

1997

Role of modulation on the effect of microwaves on ornithine
decarboxylase activity in L929 cells

Bioelectromagnetics

18

132141

Phelan A.M., Lange D.G., Kues H.A. & Lutty G.A.

1992

Modification of membrane fluidity in melanin-containing cells by low
level microwave radiation.

Bioelectromagnetics

13

131146

Phillips J.L., Ivaschuk O., Ishida-Jones T., Jones
R. A, Campbell-Beachler M. & Haggren W.

1998

DNA damage in Molt-4 T-lymphoblastoid cells exposed to cellular
telephone radiofrequency fields in vitro

Bioelectrochem.
Bioenerget.

45

103110

Postow E. & Swicord M.L.

1996

Modulated fields and ‘window’ effects. In: Polk C. & Postow E.:
Handbook of Biological Effects of Electromagnetic Fields, 2nd. Ed.

CRC Press, Boca Raton

Prato F.S., Wills J.M., Roger J., Frappier H., Drost 1994
D.J., Lee T.-Y., Shivers R.R. & Zabel P.

Blood-brain barrier permeability in rats is altered by exposure to
magnetic fields associated with magnetic resonance imaging at 1.5 T

Microscopy Res.
Techn.

27

528534

Preece A.W., Iwi G., Davies-Smith A, Wesnes K.,
Butler S., Lim E & Varey A.

1999

Effect of a 915-MHz simulated mobile phone signal on cognitive
function in man

Int. J. Radiat. Biol

75

447456

Preston E., Vavasour E.J. & Assenheim H.M.

1979

Permeability of the blood-brain barrier to mannitol in the rat following Brain Research
2450 MHz microwave irradiation

174

109117

Effects of microwave exposure on the hamster immune system. II.
Peritoneal macrophage function

4

141155

Rama Rao G., Cain C.A., Lockwood J. & Tompkins 1983
W.A.F.

Mobile Telecommunications and Health

Bioelectromagnetics

535580

51
Raslear T.G., Akyel Y., Bates F., Belt M. & Lu S.T. 1993

Temporal bisection in rats: the effects of high-peak-power pulsed
microwave irradiation

Bioelectromagnetics

14 (5)

459478

Reiser H., Dimpfel W. & Schober F.

1995

The influence of electromagnetic fields on human brain activity

Eur. J. Med. Res. 1:
27-32

1

27-32

Repacholi M.H.

1997

Radiofrequency field exposure and cancer: what do the laboratory
studies suggest?

Environ. Health
Perspectives

105
(Suppl
6)

15651568

Repacholi M.H.

1998

Low-level exposure to radiofrequency electromagnetic fields: health
effects and research needs

Bioelectromagnetics

19

1-19

Repacholi M.H., Basten. A., Gebski V., Noonan D., 1997
Finnie J. & Harris A.W.

Lymphomas in eµ-Pim 1 transgenic mice exposed to pulsed 900 MHz
electromagnetic fields

Radiat. Res.

147

631640

Robinette C.D., Silverman C. & Jablon S.

1980

Effects upon health of occupational exposure to microwave radiation
(radar)

Am. J. Epidemiol.

112

39-53

Röschke J. & K. Mann

1997

No short-term effects of digital mobile radio telephone on the awake
human electroencephalogram

Bioelectromagnetics

18

172176

Rothman K.J., Loughlin J.E., Funch D.P. & Dreyer 1996
N.A.

Overall mortality of cellular telephone customers

Epidemiology

7,3

303305

Saffer J.D. & Profenno L.A.

1992

Microwave-specific heating affects gene expression

Bioelectromagnetics

13

75-78

Sagripanti J.-L. & Swicord M.L.

1986

DNA structural changes caused by microwave radiation

Int. J. Radiat. Biol.

50

47-50

Sagripanti J.-L., Swicord M.L. & Davis C.C.

1987

Microwave effects on plasmid DNA

Rad. Res.

110

219231

Salford L.G., Brun A., Eberhardt J.L. & Persson
B.R.R.

1993

Permeability of the blood brain barrier induced by 915 MHz
Bioelectrochem.
electromagnetic radiation, continuous wave and modulated at 8, 16, 50 Bioenerg.
and 200 Hz

30

293301

Salford L.G., Brun A., Persson B.R.R. & Eberhardt 1993
J.

Experimental studies of brain tumour development during exposure to
continuous and pulsed 915 MHz radiofrequency radiation

30

313318

Salford L.G., Brun A., Sturesson K., Eberhardt J.L. 1994
& Persson B.R.R.

Permeability of the blood brain barrier induced by 915 MHz
Micros. Res. Tech.
electromagnetic radiation, continuous wave and modulated at 8, 16, 50
and 200 Hz

27

535542

Santini R., Hosni M., Deschaux P. & Packeon H.

B16 melanoma development in black mice exposed to low-level
microwave radiation

9

105107

52

1988

Bioelectrochem.
Bioenerg.

Bioelectromagnetics

Mobile Telecommunications and Health
Sarkar S., Ali S. & Behari J.

1994

Effect of low power microwave on the mouse genome: a direct DNA
analysis

Mutation Res.

320

141147

Saunders R.D. & Kowalczuk C.I.

1981

Effects of 2.45 GHz microwave radiation and heat on mouse
spermatogenic epithelium

Int. J. Radiat. Biol.

40

623632

Saunders R.D., Darby S.C. & Kowalczuk C.I.

1983

Dominant lethal studies in male mice after exposure to 2.45 GHz
microwave radiation

Mutat. res.

117

345356

Saunders R.D., Kowalczuk C.I., Beechey C.V. &
Dunford R.

1988

Studies on the induction of dominant lethals and translocations in male Int. J. Radiat. Biol.
mice after chronic exposure to microwave radiation

53

983992

Saunders R.D., Sienkiewicz Z.J. & Kowalczuk C.I.

1991

Biological effects of electromagnetic fields and radiation

J. Radiol. Prot.

11, 1

27-42

Savitz D.A., Loomis D.P. & Tse C.K.J.

1998

Electrical occupations and neurodegenerative disease: analysis of U.S.
mortality data

Arch. Environ. Health

Scarfi M.R., Lioi M.B., d’Ambrosio G., Massa R.,
Zeni O., Di Pietro R. & Di Berardino D.

1996

Genotoxic effects of mitomycin-C and microwave radiation on bovine
lymphozytes

Electro- and Magneto

15 (2)

99107

Scott G.

1992

Free radicals provide a mechanism for EMFs to promote cancer

Electromagn. News

3

6-8

Shackelford R.E., Kaufmann W.K. & Paules R.S.

1999

Cell cycle control, checkpoint mechanisms, and genotoxic stress

Environ. Health
Perspect.

107, S1

5-24

Smialowicz R.J., Kinn J.B. & Elder J.A.

1979

Perinatal exposure of rats to 2450-MHz CW microwave radiation:
Effects on lymphocytes

Radio Sci.

14, 6S

147153

Smialowicz R.J., Rogers R.R., Garner R.J., Riddle 1983
M.M., Luebke R.W. & Rowe D.G.

Microwaves (2.450 MHz) suppress murine natural killer cell activity

Bioelectromagnetics

4

371381

Smulevich V.B., Solionova L.G. & Belyakova S.V.

1999

Parental occupation and other factors and cancer risk in children: II
occupational factors

Int. J. Cancer

83 (7)

718722

Somosy Z., Thuroczy G. & Kovacs J.

1993

Effects of modulated and continuous microwave irradiation on
pyroantimonate precipitable calcium content in junctional complex of
mouse small intestine

Scanning Microscopy

7

12551261

71-74

Stagg R.B., Thomas W.J., Jones R.A. & Adey W.R. 1997

DNA synthesis and cell proliferation in C6 glioma and primary glial cells Bioelectromagnetics
exposed to a 836.55 MHz modulated radiofrequency field

18

230236

Szmigielski S.

1996

Cancer morbidity in subjects occupationally exposed to high frequency Sci. Total Environ.
(radiofrequency and microwave) electromagnetic

180

9-17

Szmigielski S., Szudinski A., Pietraszek A., Bielec
M. & Wrembel J.K.

1982

Accelerated development of spontaneous and benzopyrene-induced
skin cancer in mice exposed to 2450-MHz microwave radiation

3

179191

Mobile Telecommunications and Health

Bioelectromagnetics

53
Szudzinski A., Pietraszek A., Janiak M., Wrembel
J., Kalczak M. & Szimgielski S.

1982

Acceleration of the development of benzopyrene-induced skin cancer
in mice by microwave radiation

Arch. Dermatol. Res.

274

303312

Thomas T.L., Stolley P.D., Stemhagen A.,
Fontham E.T.H., Bleecker M.L., Stewart P.A. &
Hoover R.N.

1987

Brain tumor mortality risk among men with electrical and electronics
jobs: a case-control study

JNCI

79

233238

Thuroczy G., Kubinyi G., Bodo M., Bakos J. &
Szabo L.D.

1994

Simultaneous response of brain electrical activity (EEG) and cerebral
circulation (REG) to microwave exposure in rats

Rev. Environ. Health

10, 2

135148

Toler J., Shelton W.W., Frei M.R., Merritt J.H. &
Stedham M.A.

1997

Long-term, low-level exposure of mice prone to mammary tumors to a
435 MHz radiofrequency radiation

Radiat. Res.

148

227234

Törnqvist S., Knave B., Ahlbom A. & Persson T.

1991

Incidence of leukemia and brain tumors in some ‘electrical
occupations’

Br. J. Ind. Med.

48

597603

Tynes T., Andersen A. & Langmark F.

1992

Incidence of cancer in Norwegian workers potentially exposed to
electromagnetic fields

Am. J. Epidemiol.

136 (1)

81-88

Tynes T., Hannevik M., Anderson A., Visnes A.I. & 1996
Haldorsen T.

Incidence of breast cancer in Norwegian female radio and telegraph
operators

Cancer Causes Contr.

7

197204

Vaagerö D., Ahlbom A., Olin R. & Sahlsten S.

1985

Cancer morbidity among workers in the telecommunications industry

Br. J. Ind. Med.

42 (3)

191195

Varma M.M. & Traboulay E.A.

1977

Comparison of native and microwave irradiated DNA

Experientia

33

16491650

Velizarov S., Raskmark P. & Kwee S.

1999

The effects of radiofrequency fields on cell proliferation are nonthermal

Bioelectrochemistry

48

177180

Verschaeve L & Maes A.

1998

Genetic, carcinogenic and teratogenic effects of radiofrequency fields

Mutat. Res.

410

141165

Verschaeve L.

1995

Can non ionizing radiation induce cancer?

Cancer Journal 8:237

8

237249

Frequency of micronuclei in the peripheral blood and bone marrow of
cancer-prone mice chronically exposed to 2450 MHz radiofrequency
radiation

Rad. Res.

147

495500

Vijayalaxmi, Mohan N., Meltz M.L. & Wittler M.A. 1997 b Proliferation and cytogenetic studies in human blood lymphocytes
exposed in vitro to 2450-MHz radiofrequency radiation

Int. J. Radiat. Biol.

72

751757

Vollrath L., Spessert R., Kratzsch T., Keiner M. &
Hollmann H.

Bioelectromagnetics

18

376387

Vijayalaxmi, Frei M.R., Dusch S.J., Guel V., Meltz 1997a
M.L. & Jauchem J.R.

54

1997

No short-term effects of high-frequency electromagnetic fields on the
mammalian pineal gland

Mobile Telecommunications and Health
Vorobyov V.V., Galchenko A.A., Kukushkin N.I. &
Akoev I.G.

1997

Effects of weak microwave fields amplitude modulated at ELF on EEG
of symmetric brain areas in rats

Bioelectromagnetics

18

293298

Wagner P., Röschke J., Mann K., Hiller W. & Frank 1998
C.

Human sleep under the influence of pulsed radiofrequency
electromagnetic fields: a polysomnographic study using standardized
conditions

Bioelectromagnetics

19

199202

Wang B. & Lai H.

2000

Acute exposure to pulsed 2450-MHz microwaves affects water-maze
performance of rats

Bioelectromagnetics

21

52-56

Weyandt T.B., Schrader S.M., Turner T.W. &
Simon S.D.

1996

Semen analysis of military personnel associated with military duty
assignments

Reprod. Toxicol.

10,6

521528

Williams W.M., Lu S.-T., Cerro M. del &
Michaelson S.M.

1984b Effect of 2450 MHz microwave energy on the blood-brain barrier to
hydrophilic molecules. D. Brain temperature and blood-brain barrier
permeability to hydrophilic tracers

Brain Res. Rev.

7

191212

Wolke S., Neibig U., Elsner R., Gollnick F. und
Meyer R.

1996

Calcium homeostasis of isolated heart muscle cells exposed to pulsed
high-frequency electromagnetic fields

Bioelectromagnetics

17

144153

Wu R.Y., Chiang H., Shao B.J., Li N.G. & Fu Y.D.

1994

Effects of 2.45 GHz microwave radiation and phorbol ester 12-otetradecanoylphorbol-13-acetate on dimethylhydrazine-induced colon
cancer in mice

Bioelectromagnetics

15

531538

Yang H.K., Cain C.A., Lockwood J. § Tompkins
W.A.F.

1983

Effects of microwave exposure on the hamster immune system. I.
Natural killer cell activity

Bioelectromagnetics

4

123139

Yao K.T.S.

1978

Microwave radiation-induced chromosomal aberrations in corneal
epithelium of Chinese hamsters

J. Hered.

69

409412

Yao K.T.S.

1982

Cytogenetic consequences of microwave irradiation on mammalian
cells incubated in vitro

J. Hered.

73

133138

The effects of radiofrequency (<30 MHz) radiation in humans

Rev. Environ. Health

10

213215

Zhao Z., Zhang S., Zho H., Zhang S., Su J., & Li L. 1994

 

Mobile Telecommunications and Health

55
Appendix A
Studies of the effects of high frequency electromagnetic fields on the cellular level
Abbreviations 
neg. 

negative finding 

n.s. 

not statistically significant 

pos. 

positive finding 

s.s. 

statistically significant 

partly  some findings 
# 

disagreement with the conclusions of the authors 

? 

unknown; not provided; unreliable 

56

Mobile Telecommunications and Health
Table A.1 Genotoxic effects of high frequency electromagnetic fields
Frequency

Modulation

Power Flux Density / SAR

Exposure duration

Studies subject / Method

Result

Ref.

2,45 GHz

cw

10 – 20 W/m2
0,6 – 1,2 W/kg

2h

Rat, in vivo

pos., s.s.

Lai & Singh 1995

2,45 GHz

PM, 500 Hz

10 – 20 W/m2
0,6 – 1,2 W/kg

2h

Rat, in vivo

pos., s.s.

Lai & Singh 1995

2,45 GHz

PM, cw

20 W/m2
1,2 W/kg

2h

Rat, in vivo

pos., s.s.

Lai & Singh 1996

2,45 GHz

PM, 500 Hz

20 W/m2
1,2 W/kg

2h

Rat, in vivo

pos., s.s.

Lai & Singh 1996

2,45 GHz

PM, 500 Hz

20 W/m2
1,2 W/kg

2h

Rat, in vivo

pos., s.s.

Lai & Singh 1997

2,45 GHz

cw

0,7 – 1,9 W/kg

2 h – 24 h

Glioblastoma Cells
(Human), in vitro

neg.?

Malyapa et al.
1997a

2,45 GHz

cw

0,7 – 1,9 W/kg

2 h – 24 h

Fibroblasts (Mouse), in
vitro

neg.?

Malyapa et al.
1997a

836 – 848 MHz

cw, FM, PM

0,6 W/kg

2 h – 24 h

Glioblastoma Cells
(Human), in vitro

neg.?

Malyapa et al.
1997b

0,6 W/kg

2 h – 24 h

Fibroblasts (Mouse), in
vitro

neg.?

Malyapa et al.
1997b

2h

Rat (Brain), in vivo

?

Malyapa et al. 1998

Direct DNA damage

836 – 848 MHz
2,45 GHz

cw

1,2 W/kg
2

814 – 837 MHz

PM, TDMA, 50 Hz

8 – 90 W/m
2,4 – 26 W/kg

1 h – 10,67 h

T-Lymphoblasten

pos., s.s.

Phillips et al. 1998

2,45 GHz

cw

10 W/m2
1,18 W/kg

120 d, 2 h/d – 200 d, 2 h/d

Mouse (Brain, Testicles),
in vivo

pos., s.s.

Sarkar et al. 1994

1,7 GHz

cw

500 W/m2

30 min

Mouse (Testicles), in vivo

pos.

Varma & Traboulay
1977

Mobile Telecommunications and Health

57
Frequency

Modulation

Power Flux Density / SAR

Exposure duration

Studies subject / Method

Result

Ref.

Influences on DNA synthesis and repair
350 MHz

cw

10 – 100 W/m2
0,039 – 4,5 W/kg

1h–3h

Fibroblasts (Human), in
vitro

unclear, partly pos.

Meltz et al. 1987

350 MHz

PM, 5,0 Hz

10 – 100 W/m2
0,039 – 4,5 W/kg

1h–3h

Fibroblasts (Human), in
vitro

unclear, partly pos.

Meltz et al. 1987

850 MHz

cw

10 – 100 W/m2

1h–3h

Fibroblasts (Human), in
vitro

unclear, partly pos.

Meltz et al. 1987

850 MHz

PM, 5,0 Hz

10 – 100 W/m2

1h–3h

Fibroblasts (Human), in
vitro

unclear, partly pos.

Meltz et al. 1987

1,2 GHz

cw

10 – 100 W/m2

1h–3h

Fibroblasts (Human), in
vitro

unclear, partly pos.

Meltz et al. 1987

1,2 GHz

PM, 80 kHz

10 – 100 W/m2

1h–3h

Fibroblasts (Human), in
vitro

unclear, partly pos.

Meltz et al. 1987

836,55 MHz

PM, TDMA, 50 Hz

0,9 – 90 W/m2
0,00015 - 0,059 W/kg

4 h – 14 d

Glioma-Cells (Rat), in
vitro

pos., s.s.

Stagg et al. 1997

Chromosome aberrations
2,45 GHz

cw

?

?

Mouse (bone marrow), in
vivo

pos.

Banerjee et al. 1983

2,45 GHz

cw

400 W/m2

6 d, 30 min/d

Rat, in vivo

pos.

Beechey et al. 1986

7,7 GHz

cw

300 W/m2

15 - 60 min

Fibroblasts (Chin.
Hamster), in vitro

pos., s.s.

Garaj-Vrohac et al.
1990

7,7 GHz

cw

5 W/m2

15 - 60 min

Fibroblasts (Chin.
Hamster), in vitro

pos., s.s.

Garaj-Vrohac et al.
1991

7,7 GHz

cw

5 – 300 W/m2

10 min

Lymphocytes (Human), in
vitro

pos., s.s.

Garaj-Vrohac et al.
1992

0,4 MHz – 20 GHz

cw, AM, PM

Human, in vivo

pos.#, n.s.

Garson et al. 1991

Egg Cells (Chinese
Hamster)

pos., partly s.s.

Kerbacher et al.
1990

2,45 GHz

58

PM, 25 kHz

2

490 W/m
33,8 W/kg

2h

Mobile Telecommunications and Health
Frequency

Modulation

Power Flux Density / SAR

Exposure duration

Studies subject / Method

Result

Ref.

2,45 GHz

cw

104 – 193 W/kg

20 min

Lymphocytes (Human), in
vitro

neg.

Lloyd et al. 1984

2,45 GHz

cw

4 – 200 W/kg

20 min

Lymphocytes (Human)

neg.

Lloyd et al. 1986

2,45 GHz

cw

75 W/kg

30 – 120 min

Lymphocytes (Human), in
vitro

pos.

Maes et al. 1993

954 MH

PM, 217 Hz, GSM

Occupational exposure

Lymphocytes, Human, in
vivo

pos., s.s.

Maes et al. 1995

954 MHz

217 Hz, GSM

15 W/m2
1,5 W/kg

2h

Lymphocytes (Human), in
vitro

pos., s.s.

Maes et al. 1995

935,2 MHz

PM/GSM, 217 Hz

0,3 – 0,4 W/kg

2h

Lymphocytes (Human), in
vitro

pos., n.s.

Maes et al. 1997

9,4 GHz

PM, 1000 Hz

1 – 100 W/m2

2 w, 3 d/w, 1 h/d

Mouse, in vivo

pos., s.s.

Manikowska et al.
1979

2,45 GHz

cw

0,05 – 20 W/kg

2 w, 6 d/w, 30 min/d

Mouse, in vivo

pos., s.s.

Manikowska-Czerska
et al. 1985

2,55 GHz

cw

2W/kg

20 min

DNA (E.coli), in vitro

pos.

Sagripanti &
Swicord 1986

2,0 – 8,75 GHz

cw

10 W/kg

5 min – 25 min

DNA, in vitro

pos., s.s.

Sagripanti et al.
1987

2,45 GHz

cw

100 W/m2

120 d 6 h/d

Spermatogonia (Mouse), in neg.
vivo

Saunders et al. 1988

2,45 GHz

cw

50 W/m2
12,46 W/kg

90 min

Lymphocytes (Human), in
vitro

pos., n.s.

Vijayalaxmi et al.
1997

2,45 GHz

cw

750 W/m2

5 – 30 min

Chinese Hamster (Corneal
Epithelium), in vivo

pos, s.s.

Yao 1978

2,45 GHz

cw

15,2 W/kg

RH5- and RH16-Cells
(Kangaroo-Rat), in vitro

pos., s.s.

Yao 1982

Mobile Telecommunications and Health

59
Frequency

Modulation

Power Flux Density / SAR

Exposure duration

PM, 24,4 Hz

Changing exposures on the pastures

Studies subject / Method

Result

Ref.

Micronuclei
154 – 162 MHz

2

Cow (Erythrocytes) in vivo pos., s.s.

Balode 1996

10 min

Lymphocytes (Human), in
vitro

pos., partly s.s.

d'Ambrosio et al.
1995

2,45 GHz

CW

530 W/m
90 W/kg

2,45

AM, 50 Hz, sin

530 W/m2
90 W/kg

10 min

Lymphocytes (Human), in
vitro

pos., partly s.s.

d'Ambrosio et al.
1995

1,25 – 1,35 GHz

?PM

0,1 – 200 W/m2

Occupational exposure

Lymphocytes (Human), in
vivo

pos.

Fucic et al. 1992

7,7 GHz

cw

5 W/m2

15 - 60 min

Fibroblasts (Chin.
Hamster), in vitro

pos., s.s.

Garaj-Vrohac et al.
1991

7,7 GHz

cw

5 – 300 W/m2

10 min

Lymphocytes (Human), in
vitro

pos., s.s.

Garaj-Vrohac et al.
1992

2,45 GHz

cw

75 W/kg

30 – 120 min

Lymphocytes (Human), in
vitro

pos.

Maes et al. 1993

9,0 GHz

cw

70 W/kg

10 min

Lymphocytes (bovine), in
vitro

pos., s.s.

Scarfi et al. 1996

2,45

cw

50 W/m2
12,46 W/kg

90 min

Lymphocytes (Human), in
vitro

pos.#, n.s.

Vijayalaxmi et al.
1997 b

2,45

cw

1,0 W/kg

18 mon

Erythroczyten (Mouse
blood / bone marrow)

pos, s.s.

Vijayalaxmi et al.
1997 a

Sister chromatid exchange
380 MHz

PM, 17,65 Hz

80 W/kg

?

Lymphocytes (Human), in
vitro

neg.

Antonopoulos et al.
1997

900 MHz

PM/DCS, 217 Hz

208 W/kg

?

Lymphocytes (Human), in
vitro

neg.

Antonopoulos et al.
1997

1,8 GHz

PM/GSM, 217 Hz

1700 W/kg

?

Lymphocytes (Human), in
vitro

neg.

Antonopoulos et al.
1997

2,45 GHz

cw

?

?

Mouse (bone marrow), in
vivo

neg.

Banerjee et al. 1983

60

Mobile Telecommunications and Health
Frequency

Modulation

Power Flux Density / SAR

Exposure duration

Studies subject / Method

Result

Ref.

2

2,45 GHz

PM, 25 kHz

490 W/m
33,8 W/kg

2h

Egg Cells (Chinese
Hamster), in vitro

neg.

Ciaravino et al.
1987

2,45 GHz

PM, 25 kHz

490 W/m2
33,8 W/kg

2h

Egg Cells (Chinese
Hamster), in vitro

neg.

Ciaravino et al.
1991

2,45 GHz

cw

104 – 193 W/kg

20 min

Lymphocytes (Human), in
vitro, Add. caffeine

pos., s.s.#

Lloyd et al. 1984

2,45 GHz

cw

75 W/kg

30 – 120 min

Lymphocytes (Human), in
vitro

neg.

Maes et al. 1993

954 MHz

PM/GSM, 217 Hz

1,5 W/kg

2h

Lymphocytes (Human), in
vitro

pos., s.s.

Maes et al. 1996

935,2 MHz

PM/GSM, 217 Hz

0,3 – 0,4 W/kg

2h

Lymphocytes (Human), in
vitro

pos., partly s.s.

Maes et al. 1997

2,45 GHz

cw

100 W/m2

120 d 6 h/d

Spermatogonia (Mouse), in neg.
vivo

Saunders et al. 1988

2,45 GHz

AM, 100 Hz

40 – 80 W/kg

2 h –6 h

Escherichia coli, in vitro

partly pos., s.s.

Anderstam et al.
1983

2,45 GHz

AM, 100 Hz

40 – 80 W/kg

4h–7h

Salmonella typhimurium,
in vitro

neg.

Anderstam et al.
1983

3,07 GHz

PM, 500 Hz

95 W/kg

1h

Escherichia coli, in vitro

neg.

Anderstam et al.
1983

3,07 GHz

PM, 500 Hz

75 - 100 W/kg

2 h – 2,5 h

Salmonella typhimurium,
in vitro

neg.

Anderstam et al.
1983

9,4 GHz

cw

600 W/m2
23 W/kg

30 – 120 min

Escherichia coli, in vitro

neg.

Dardalhon et al.
1981

9,4 GHz

cw

600 W/m2
23 W/kg

30 – 120 min

Saccharomyces cerevisiae, partly pos., s.s.
in vitro

Dardalhon et al.
1981

9,4 GHz

cw

10 – 600 W/m2

330 min

Saccharomyces cerevisiae, pos.
in vitro

Dardalhon et al.
1985

Mutations

Mobile Telecommunications and Health

61
Frequency

Modulation

Power Flux Density / SAR

Exposure duration

Studies subject / Method

Result

Ref.

2,45 GHz

AM, 100 Hz

130 W/kg

5,7 h

Salmonella typhimurium,
in vitro

partly pos, s.s.

Hamnerius et al.
1985

3,10 GHz

PM, 500 Hz

90 W/kg

6h

Salmonella typhimurium,
in vitro

partly pos., n.s.

Hamnerius et al.
1985

2,45 GHz

AM, 100 Hz

110 W/kg

6h

Drosophila melanogaster,
in vivo

neg.

Hamnerius et al.
1985

3,10 GHz

PM, 500 Hz

60 W/kg

6h

Drosophila melanogaster,
in vivo

neg.

Hamnerius et al.
1985

2,375 MHz

cw

150.000 – 250.000 W/m2

25 – 300 min

Drosophila melanogaster,
in vivo

partly pos., s.s.

Marec et al. 1985

2,45

PM, 25 kHz

480 W/m2
30 W/kg

bis 63 h

Leukaemia-Cells (Mouse),
in vitro

pos./neg., partly s.s.

Meltz et al. 1989

2,45 GHz

PM, 25 kHz

650 – 870 W/m2
40 – 40,8 W/kg

4h

Leukaemia-Cells (Mouse),
in vitro

neg.

Meltz et al. 1990

 

62

Mobile Telecommunications and Health
Table A.2 Effects of high frequency electromagnetic fields on cellular processes
Frequency

Modulation

Power Flux Density SAR

Exposure Duration

Examines Subject Method

Result

Ref.

Gene transcription and gene translation
890 – 915 GHz

PM/GSM, 217 Hz

0,3 – 7,5 W/kg

4h

Brain (Rat), in vivo

pos., partly s.s.

Fritze et al. 1997 a

835,62 MHz

FM/cw

0,6 W/kg

4d

Fibroblasts (Mouse), in vitro

partly pos., s.s.

Goswami et al. 1999

847,74 MHz

PM/CDMA, 50 Hz

0,6 W/kg

4d

Fibroblasts (Mouse), in vitro

partly pos., s.s.

Goswami et al. 1999

836,55 MHz

2

PM/TDMA, 50 Hz

0,9 – 90 W/m
0,00026 – 0,026 W/kg

20 – 100 min

Pheochromocytoma Cells (Rat), in vitro

pos., s.s.

Ivaschuk et al. 1997

380 MHz

PM, 17,65 Hz

80 W/kg

?

Lymphocytes (Human), in vitro

neg.

Antonopoulos et al. 1997

900 MHz

PM/DCS, 217 Hz

208 W/kg

?

Lymphocytes (Human), in vitro

neg.

Antonopoulos et al. 1997

1,8 GHz

PM/GSM, 217 Hz

1700 W/kg

?

Lymphocytes (Human), in vitro

neg.

Antonopoulos et al. 1997

Cell-Cycle

2

2,45 GHz

PM, 25 kHz

490 W/m
33,8 W/kg

2h

Egg Cells (Chinese Hamster), in vitro

neg.

Ciaravino et al. 1991

2,45 GHz

cw

5 – 25 W/kg

2h

Egg Cells (Chinese Hamster), in vitro

pos., s.s.

Cleary et al. 1996

9,4 GHz

PM, 1,0 kHz

1 – 100 W/m2

2,45 GHz
2,45 GHz
2,45 GHz

cw
cw
cw

2 w 5 d/w 1 h/d

Mouse, in vivo

pos., s.s.

Manikowska et al. 1979

100 W/m

2

6x1 h

Lymphocytes (Human), in vitro

neg.

Pazmany et al. 1990

100 W/m

2

3x1 h

Lymphocytes (Human), in vitro

neg.

Pazmany et al. 1990

100 W/m

2

5h

Lymphocytes (Human), in vitro

pos., s.s.

Pazmany et al. 1990

 

Mobile Telecommunications and Health

63
Table A.3 Effects of high frequency electromagnetic fields on cell transformation and cell proliferation
Frequency

Modulation

Power Flux Density SAR

Exposure Duration

Studied Subject Method

Result

Ref.

Cell Transformations (including neoplastic)
2,45 GHz

PM, 120 Hz

4,4 W/kg

24 h

Fibroblasts (Mouse), in
vitro

partly pos., s.s.

Balcer-Kubiczek &
Harrison 1985

2,45 GHz

PM, 120 Hz

4,4 W/kg

24 h

Fibroblasts (Mouse), in
vitro

partly pos., s.s.

Balcer-Kubiczek &
Harrison 1989

2,45 GHz

PM, 120 Hz

0,1 – 4,4 W/kg

24 h

Fibroblasts (Mouse), in
vitro

partly pos., s.s.

Balcer-Kubiczek &
Harrison 1991

2,45 GHz

cw

0,8 – 12,3 W/kg

5d

Lymphocytes (Human), in
vitro

neg.

Czerska et al. 1992

2,45 GHz

PM, 1000 Hz

0,8 – 12,3 W/kg

5d

Lymphocytes (Human), in
vitro

pos., s.s.

Czerska et al. 1992

2,45 GHz

cw

50 W/m2

Lymphocytes (Mouse)

pos.

Smialowicz et al. 1979

Cell Communication
836,55 MHz

PM, TDMA, 50 Hz

0,3 – 30 W/m2
0,00015 - 0,015 W/kg

28 d

Fibroblasts (Mouse), in
vitro

partly pos., s.s.

Cain et al. 1997

Cell Proliferation
2,45 GHz

AM, 100 Hz

40 – 80 W/kg

2 h –6 h

Escherichia coli, in vitro

partly pos., s.s.

Anderstam et al. 1983

2,45 GHz

AM, 100 Hz

40 – 80 W/kg

4h–7h

Salmonella typhimurium,
in vitro

partly pos., s.s.

Anderstam et al. 1983

3,07 GHz

PM, 500 Hz

95 W/kg

1h

Escherichia coli, in vitro

partly pos., s.s.

Anderstam et al. 1983

3,07 GHz

PM, 500 Hz

75 - 100 W/kg

2 h – 2,5 h

Salmonella typhimurium,
in vitro

partly pos., s.s.

Anderstam et al. 1983

900 MHz

PM/GSM, 217 Hz

0,55 – 2,0 W/m2
0,075 – 0,270 W/kg

10 d 2 h/d

Lymphocytes (Rat,
(Sprague-Dawley), in vivo

neg.

Chagnaud & Veyret
1999

2,45

cw

5 – 50 W/kg

2h

Blut (Human),
Lymphocytes, in vitro

pos., s.s.

Cleary et al. 1990 a

2,45

cw

5 – 75 W/kg

2h

Glioma-Cells, in vitro

pos. s.s.

Cleary et al. 1990 b

64

Mobile Telecommunications and Health
Frequency

Modulation

Power Flux Density SAR

Exposure Duration

Studied Subject Method

Result

Ref.

2,45 GHz

cw

5 – 50 W/kg

2h

T-Lymphocytes (Mouse,
CTLL-2), in vitro

pos., s.s.

Cleary et al. 1996

2,45 GHz

PM/PCS, 50 Hz

5 W/kg

2h

T-Lymphocytes (Mouse,
CTLL-2), in vitro

pos., s.s.

Cleary et al. 1996

2,45 GHz

?

?

15 s – 5 h

Myeloma- and HybridomaCells (Mouse), in vitro

?, Methode fragwürdig

Dorp et al. 1998

150 MHz

AM, 72 Hz, 217 Hz, 1100 Hz

1,6 kV/m
5,4 µT

Escherichia coli, in vitro

pos., partly s.s.

Grospietsch et al. 1995

2,45 GHz

AM, 100 Hz

130 W/kg

5,7 h

Salmonella typhimurium,

pos, s.s.

Hamnerius et al. 1985

3,10 GHz

PM, 500 Hz

90 W/kg

6h

Salmonella typhimurium,

pos., s.s.

Hamnerius et al. 1985

836,55 MHz

PM, TDMA, 50 Hz

0,9 – 90 W/m2
0,00015 - 0,059 W/kg

4 h – 14 d

Glioma-Cells (Rat), in vitro neg.

Stagg et al. 1997

960 MHz

PM, GSM, 217 Hz

0,0021 W/kg

30 min

transform. EpithelAmnion-Cells (Human), in
vitro

Velizarov et al. 1999

pos., (s.s)

 

Mobile Telecommunications and Health

65
Appendix B
Studies of the effects of high frequency electromagnetic fields on the central nervous system
(Blood-Brain-Barrier)
Abbreviations 
neg. 

negative finding 

n.s. 

not statistically significant 

pos. 

positive finding 

s.s. 

statistically significant 

partly  some findings 
# 

disagreement with the conclusions of the authors 

? 

unknown; not provided; unreliable 

66

Mobile Telecommunications and Health
Table B.1 Effects of high frequency electromagnetic fields on the central nervous system
Frequency

Modulation

Power Flux Density / SAR

Exposure duration

Studies subject / Method

Result

Ref.

2

2h

Rat (Wistar)

pos.

Albert 1979

2h

Hamster (Chin.)

pos., s.s.

Albert & Kerns 1981

4h

Rat (Wistar)

pos., partly s.s.

Fritze et al. 1997 b

4h

Rat (Tac:N(SD)sBR)

partly pos, n.s.

Gruenau et al. 1982

4h

Rat (Tac:N(SD)sBR)

partly pos, n.s.

Gruenau et al. 1982

30 min – 2 h

Rat (Sprague Dawley)

pos., s.s.

Neubauer et al. 1990

2,8 GHz

cw

100 W/m

2,45 GHz

cw

100 W/m2
2,5 W/kg

900 MHz

PM/GSM, 217 Hz

0,3 – 7,5 W/kg

2,8 GHz

cw

100 – 400 W/m

2,8 GHz

PM, 500 Hz

2

10 – 150 W/m2
2

2,45 GHz

PM, 100 Hz

100 W/m
2 W/kg

1,3 GHz

cw

3 – 30 W/m2

20 min

Rat (Wistar)

pos., s.s.

Oscar & Hawkins 1977

1,3 GHz

PM, 5 Hz

0,3 – 0,5 W/m2

20 min

Rat (Wistar)

pos., s.s.

Oscar & Hawkins 1977

20 min

Rat (Wistar)

pos., s.s.

Oscar & Hawkins 1977

30 min

Rat (Sprague-Dawley)

partly pos., s.s.

Preston et al. 1979

1,3 GHz

PM, 1000 Hz

1 – 10 W/m

2
2

2,45 GHz

cw

1,0 – 300 W/m

915 MHz

cw

0,3 – 5,0 W/kg

2h

Rat (Fischer 344)

pos., s.s.

Salford et al. 1994

915 MHz

PM, 8 Hz

0,016 – 0,16 W/kg

2h

Rat (Fischer 344)

pos., s.s.

Salford et al. 1994

915 MHz

PM, 16 Hz

0,03 – 2,1 W/kg

2h

Rat (Fischer 344)

pos., s.s.

Salford et al. 1994

915 MHz

PM, 50 Hz

0,3 – 5,0 W/kg

2h

Rat (Fischer 344)

pos., s.s.

Salford et al. 1994

915 MHz

PM, 200 Hz

0,4 – 2,9 W/kg

2h

Rat (Fischer 344)

pos., s.s.

Salford et al. 1994

 

Mobile Telecommunications and Health

67
Appendix C
Studies of the Carcenogenic Effects of High Frequency Electromagnetic Fields in Animal
Experiments
Abbreviations 
neg. 

negative finding 

n.s. 

not statistically significant 

pos. 

positive finding 

s.s. 

statistically significant 

partly  some findings 
# 

disagreement with the conclusions of the authors 

? 

unknown; not provided; unreliable 

68

Mobile Telecommunications and Health
Table C.1 Animal experiments regarding the carcenogenic effects of high frequency electromagnetic fields
Frequency

Modulation

Power Flux Density / SAR

Exposure duration

Studies subject / Method

Result

Ref.

836,55 MHz

PM/TDMA, 50 Hz

0,74 – 1,6 W/kg

24 mon 4 d/w 2 h/d

Rat (Fischer 344)

neg.

Adey et al. 1999

900 MHz

PM/GSM, 217 Hz

0,55 – 2,0 W/m2

2 w, 2 h/d

Rat, Cancer, total

neg.

Chagnaud et al. 1999

2,45 GHz

PM, 800 Hz

0,15 – 0,4

25 mon

Rat, Cancer, total

pos., s.s.

Chou et al. 1992

2,45 GHz

cw

0,3 W/kg

18 mon, 7 d/w, 20 h/d

Mouse (C3H/HeJ), Cancer,
total

neg.

Frei et al. 1998 a

2,45 GHz

cw

1,0 W/kg

78 w, 7 d/w, 20 h/d

Mouse (C3H/HeJ), Cancer,
total

partly pos., n.s.

Frei et al. 1998 b

835,62 MHz

FM, cw

0,75 W/kg

150 d, 5 d/w, 4 h/d

Rat (Fischer 344), B16
Melanoma

partly pos., n.s.

Higashikubo et al. 1999

835,62 MHz

PM/CDMA, 50 Hz

0,75 W/kg

150 d, 5 d/w, 4 h/d

Rat (Fischer 344), B16
Melanoma

neg.

Higashikubo et al. 1999

929,2 MHz

PM/TDMA, 50 Hz

0,58 – 0,8

6 w, 5 d/w, 90 min/d

Rat (Fischer 344), Liver
cancer

neg.

Imaida et al 1998 a

1,439 GHz

PM/TDMA, 50 Hz

0,453 - 0,680 W/kg

6 w, 5 d/w, 90 min/d

Rat (Fischer 344), Liver
cancer

neg.

Imaida et al. 1998 b

900 MHz

PM/GSM, 217 Hz

2,6 – 13 W/m2
0,008 – 4,2 W/kg

18 mon 30 min/d

Mouse (transgenic Eµ-Pim1),
Lyphomas

pos., s.s.

Repacholi et al. 1997

915 MHz

PM, 4 – 217 Hz

0,0077 – 1,0 W/kg

2-3 w 5d/w 7h/d

Rat (Fischer 344), Brain
Tumor

partly pos., n.s.

Salford et al. 1993

2,45 GHz

cw

10 W/m2
1,2 W/kg

max. 46 w, 6 d/w, 2,5 h/d

Mouse (C57BL/6J), B16
Melanoma

partly pos., n.s.

Santini et al. 1988

2,45 GHz

PM, 25 Hz

10 W/m2
1,2 W/kg

max. 46 w, 6 d/w, 2,5 h/d

Mouse (C57BL/6J), B16
Melanoma

partly pos., n.s.

Santini et al. 1988

2,45 GHz

cw

50 – 150 W/m2
2 – 8 W/kg

12 mon 6d/w, 2h/d

Mouse (C3H/HeA), Cancer,
total

pos., s.s.

Szmigielski et al. 1982

2,45 GHz

cw

50 – 150 W/m2
2 – 8 W/kg

5 mon 6d/w, 2h/d

Mouse (Balb/c), Skin Cancer

pos., s.s.

Szmigielski et al. 1982

Mobile Telecommunications and Health

69
2,45 GHz

cw

50 – 150 W/m2

6 mon, 2 h/d

Mouse (Balb/c), Hautcancer

pos., s.s.

Szudinski et al. 1982

435 MHz

PM, 1,0 kHz

10 W/m2
0,32 W/kg

21 mon

Mouse (C3H/HeJ), Chest
tumors, Ovarian tumors

partly pos., s.s.

Toler et al. 1997

2,45 GHz

cw

100 W/m2
11 W/kg

5 mon, 6 d/w, 3 h/d

Mouse (Balb/c), Intestinal
cancer

partly pos., n.s.

Wu et al. 1994

 

70

Mobile Telecommunications and Health
Appendix D
Epidemiological Studies of the health Risks of HF EMFs
 

Mobile Telecommunications and Health

71
Table D.1

Overview of the results of epidemiological studies regarding exposures in the high frequency spectrum and health risks

Column 1: studied illness 
Column 2: Exposure situation 
Column 3: Reliability of the exposure classification:  
‐

3: Source of exposure and quantity clearly identified,  

‐

2: Method of exposure clearly identified 

‐

1: HF‐exposure probable 

Column 4: Relative Risk (R.R.), Explanations see text  
Column 5: Statistical significance of the findings:  
‐

s.s.: statistically significant(R.R.=1 outside of  95 %‐trust interval, or. p<0,05 

‐

n.s.: statistically not significant 

Column 6: Literatur reference 
Column 7: Comments:  
‐

R: Values in the Column R.R. obtained by conversion (reciprocal value, proportion) of other numerical values or via the interpretation of 
diagrams 

‐

*: Paper listed in the literature references of Appendix E 

 

72

Mobile Telecommunications and Health
Illness

Exposure

Exp.
class.

R.R.

stat. Sign. References

C

All illnesses, morbidity

MW, Radar, Military

2

1,18

n.s.

Robinette et al. 1980

R*

All Illnesses, morbidity

MW, mobile
telecommunications

3

0,93

n.s.

Rothman et al. 1996

Cancer, total, morbidity

MW, Radar, Military

2

1,50

n.s.

Robinette et al 1980

R*

Cancer, total, Incidence

RF, Radio, women

2

1,2

s.s.

Tynes et al. 1996

*

Cancer, total, Incidence

RF/MW, Military

2

2,07

s.s.

Szmigielski 1996

*

Cancer, total, Incidence

HF, Radio and TV transmitters, local residents

3

1,09

s.s.

Dolk et al. 1997 a

*

Cancer, total, Incidence

HF, place of work

1

2,0

n.s.

Lagorio et al. 1997

Cancer, total, Incidence

RF/MW, Radar and Radio, Police

2

0,96

n.s.

Finkelstein 1998

*

Multiple Myelome

HF, Radio and TV transmitter, local residents

3

1,23

n.s.

Dolk et al. 1997 a

*

All Illnesses

Cancer, total

Brain tumors, total and tumors of the nervous system, total
Brain-Tumors, total, Morbidity

HF, Place of work

1

1,54

n.s.

Lin et al. 1985

Brain-Tumors, Glioblastomas and Astrocytoma, Morbidity

HF, Place of work

1

2,15

s.s.

Lin et al. 1985

Brain-Tumors, total, Morbidity

HF, Place of work, Men

1

0,38

n.s.

Milham 1985

Brain-Tumors, total, Morbidity

RF/MW, Place of work, Men

2

2,3

s.s.

Thomas et al. 1987

Brain-Tumors, total, Morbidity

RF, Amateur Radio Users

2

1,39

n.s.

Milham 1988

Brain-Tumors, total, Incidence

HF, Place of work

1

2,9

s.s.

Törnqvist et al. 1991

Brain-Tumors, Glioblastomas, Incidence

HF, Place of work

1

3,4

s.s.

Törnqvist et al. 1991

Brain-Tumors, total, Incidence

RF, Place of work, Men

2

0,61

n.s.

Tynes et al. 1992

Brain-Tumors, total, Incidence

RF, Radio, Women

2

1,0

Brain-Tumors, total, Incidence

HF, Place of work, Men

1

2,4

s.s.

Beall et al. 1996

Brain-Tumors, total, Incidence

RF/MW, Military

2

1,39

s.s.

Grayson 1996

Mobile Telecommunications and Health

Tynes et al. 1996

*

*

*

73
Illness

Exposure

Exp.
class.

R.R.

stat. Sign. References

C

Brain-Tumors, total, Morbidity

HF/MW, TV transmitters and others
residents (adults)

3

0,89

n.s.

Hocking et al. 1996

*

Brain-Tumors, total, Incidence

HF/MW, TV and other transmitters, Local
residents/ Adults

3

0,82

n.s.

Hocking et al. 1996

*

Brain-Tumors, total, Morbidity

HF/MW, TV and other transmitters, Local
residents/child.

3

1,0

Hocking et al. 1996

*

Brain-Tumors, total, Incidence

HF/MW, TV and other transmitters, Local
residents/child.

3

1,3

n.s.

Hocking et al. 1996

*

Tumors des Nervensystems einschl. Hirntumors, Incidence

RF/MW, Military

2

1,91

s.s.

Szmigielski 1996

*

Brain-Tumors, total, Incidence

HF, Sender Radio and Fernsehen, Local residents 3

1,29

n.s.

Dolk et al. 1997 a

*

Brain-Tumors, maligne, Incidence

HF, Sender Radio and Fernsehen, Local residents 3

1,31

n.s.

Dolk et al. 1997 a

*

Brain-Tumors, total, Incidence

RF/MW, Radar and Radio, Police

2

0,84

n.s.

Finkelstein 1998

*

Brain-Tumors, total, Incidence

MW, Mobil telecommunications, Mobile phones

3

1,20

n.s.

Hardell et al. 1999

*

Brain-Tumors, Expos.seite, Incidence

MW, Mobilradio, Handy

3

R 2,45 n.s.
L 2,40 n.s.

Hardell et al. 1999

*

MW, Radar, Military

1

2,1

s.s.

Holly et al. 1995

Cancer der Atmungsorgane, Morbidity

MW, Radar, Military

2

2,59

s.s.

Robinette et al. 1980

Lungencancer, Morbidity

HF, Place of work, Men

1

0,80

n.s.

Milham 1985

Lungencancer, Incidence

RF, Radio, Women

2

1,2

n.s.

Tynes et al. 1996

*

Lungencancer, Incidence

HF, Sender Radio and Fernsehen, Local residents 3

1,01

n.s.

Dolk et al. 1997 a

*

Lungencancer, Incidence

RF/MW, Radar and Radio, Police

2

0,66

s.s.

Finkelstein 1998

*

HF, Place of work

1

2,9

n.s.

Demers et al. 1991

Cancer, Eyes
Melanome, Augen, Incidence
Cancer of the respiratory system, lung cancer
R*

Chest cancer, Men
Brustcancer, Mönner, Incidence

74

Mobile Telecommunications and Health
Illness

Exposure

Brustcancer, Men, Incidence

Exp.
class.

R.R.

stat. Sign. References

C

HF, Sender Radio and Fernsehen, Local residents 3

1,64

n.s.

Dolk et al. 1997 a

*

Brustcancer, Women, Morbidity

HF, Place of work

2

1,15

s.s.

Cantor et al. 1995

*

Brustcancer, Women, Incidence

RF, Radio, Women

2

1,5

s.s.

Tynes et al. 1996

*

Brustcancer, Women, Incidence

HF, Sender Radio and Fernsehen, Local residents 3

1,08

n.s.

Dolk et al. 1997 a

*

Cancer des lymphat. and des blutbild. Systems, Morbidity

MW, Radar, Military

2

1,98

n.s.

Robinette et al. 1980

R*

Cancer des lymphat. and des blutbild. Systems, Morbidity

HF, Place of work, Men

1

1,37

n.s.

Milham 1985

Cancer des lymphat. and des blutbild. Systems, Incidence

HF, Sender Radio and Fernsehen, Local residents 3

1,21

n.s.

Dolk et al. 1997 a

*

Cancer des lymphat. and des blutbild. Systems, Incidence

RF/MW, Military

2

6,31

s.s.

Szmigielski 1996

*

Leukaemia, total, Morbidity

HF, Place of work

1

1,11

n.s.

Milham 1982

Leukaemia, total, Morbidity

RF, Amateur radio user

2

1,91

s.s.

Milham 1985 a

Leukaemia, total, Morbidity

HF, Place of work, Men

1

1,02

n.s.

Milham 1985 b

Leukaemia, total, Morbidity

RF Amateur radio user

2

1,24

n.s.

Milham 1988

Leukaemia, total, Incidence

HF, Military

1

2,4

s.s.

Garland et al. 1990

Leukaemia, total, Incidence

HF, Place of work

1

0,8

n.s.

Törnqvist et al. 1991

Leukaemia, total, Incidence

RF, Place of work, Men

2

2,85

s.s.

Tynes et al. 1992

Leukaemia, total, Incidence

RF, Radio, Women

2

1,1

n.s.

Tynes et al. 1996

*

Leukaemia, total, Morbidity

RF/MW, TV and other transmitters, Local
residents/ Adults

3

1,17

n.s.

Hocking et al. 1996

*

Leukaemia, total, Morbidity

RF/MW, TV and other transmitters, Local
residents/ children.

3

2,32

s.s.

Hocking et al. 1996

*

Leukaemia, total, Incidence

RF/MW, TV and other transmitters , Local
residents/

3

1,24

s.s.

Hocking et al. 1996

*

Breast cancer, Women

Cancer of the lymphatic and blood forming systems, total

Leukaemia, total

Mobile Telecommunications and Health

75
Illness

Exposure

Exp.
class.

R.R.

stat. Sign. References

C

Adults
Leukaemia, total, Incidence

RF/MW, TV and other transmitters, Local
residents/ Children.

3

1,58

s.s.

Hocking et al. 1996

*

Leukaemia, total, Incidence

HF, Sender Radio and Fernsehen, Local residents 3

1,83

s.s.

Dolk et al. 1997 a

*

Leukaemia and Non-Hodgkin-Lymphoma, total, Incidence

HF, Sender Radio and Fernsehen, Local residents 3

1,25

n.s.

Dolk et al. 1997 a

*

Leukaemia, total, Incidence

RF/MW, Radar and Radio, Police

2

0,6

n.s.

Finkelstein 1998

*

Leukaemia, total, Incidence

RF/MW, TV and other transmitters, Local
residents/
children.

3

1,47

n.s.

McKenzie et al. 1998

*

Acute Leukaemia, total, Morbidity

HF, Place of work

1

2,39

n.s.

Milham 1982

Acute Leukaemia, total, Morbidity

HF, Place of work, Men

1

2,12

n.s.

Milham 1985

Acute Unspez. Leukaemia, Morbidity

RF, Amateur radio users

2

1,76

n.s.

Milham 1988

Acute Leukaemia, total, Incidence

HF, TV and Radio transmitters, Local residents

3

1,86

n.s.

Dolk et al. 1997 a

Lymphat. Leukaemia, total, Morbidity

RF, Amateur radio users

2

0,77

n.s.

Milham 1985

Lymphat. Leukaemia, total, Morbidity

RF, Amateur radio users

2

1,03

n.s.

Milham 1988

Lymphat. Leukaemia, total, Morbidity

RF/MW, TV and other transmitters, Local
residents/ Adults

3

1,39

s.s.

Hocking et al. 1996

*

Lymphat. Leukaemia, total, Morbidity

RF/MW, TV and other transmitters, Local
residents/ children.

3

2,74

s.s.

Hocking et al. 1996

*

Lymphat. Leukaemia, total, Incidence

RF/MW, TV and other transmitters, Local
residents/ Adults

3

1,32

s.s.

Hocking et al. 1996

*

Lymphat. Leukaemia, total, Incidence

RF/MW, TV and other transmitters, Local
residents/ children

3

1,55

s.s.

Hocking et al. 1996

*

Acute Leukaemia, total

*

Lymphat. Leukaemia, total

76

Mobile Telecommunications and Health
Illness

Exposure

Exp.
class.

R.R.

stat. Sign. References

C

Lymphat. Leukaemia, total, Incidence

RF/MW, TV and other transmitters, Local
residents /children.

3

1,53

n.s.

McKenzie et al. 1998

*

Acute Lymphat. Leukaemia, Morbidity

RF, Amateur radio users

2

1,20

n.s.

Milham 1988

Acute Lymphat. Leukaemia, Incidence

HF, Sender Radio and Fernsehen, Local residents 3

3,57

n.s.

Dolk et al. 1997 a

Chron. Lymphat. Leukaemia, Morbidity

RF, Amateur radio users

2

1,43

n.s.

Milham 1985

Chron. Lymphat. Leukaemia, Morbidity

RF, Amateur radio users

2

1,09

n.s.

Milham 1988

Chron. Lymphat. Leukaemia, Incidence

HF, Place of work

1

1,3

n.s.

Törnqvist et al. 1991

Chron. Lymphat. Leukaemia, Incidence

HF, Sender Radio and Fernsehen, Local residents 3

2,56

s.s.

Dolk et al. 1997 a

Myelo. Leukaemia, total, Morbidity

RF, Amateur radio users

2

2,81

s.s.

Milham 1985

Myelo. Leukaemia, total, Morbidity

RF, Amateur radio users

2

1,40

n.s.

Milham 1988

Myelo. Leukaemia, total, Morbidity

RF/MW, TV and other transmitters, Local
residents/ Adults

3

1,01

n.s.

Hocking et al. 1996

*

Myelo. Leukaemia, total, Morbidity

RF/MW, TV and other transmitters, Local
residents/child.

3

1,77

n.s.

Hocking et al. 1996

*

Myelo. Leukaemia, total, Incidence

RF/MW, TV and other transmitters, Local
residents/ Adults

3

1,09

n.s.

Hocking et al. 1996

*

Myelo. Leukaemia, total, Incidence

RF/MW, TV and other transmitters, Local
residents/child.

3

1,73

n.s.

Hocking et al. 1996

*

Acute Myelo. Leukaemia, Morbidity

RF, Amateur radio users

2

2,89

s.s.

Milham 1985

Acute Myelo. Leukaemia, Morbidity

RF, Amateur radio users

2

1,76

s.s.

Milham 1988

Acute Myelo. Leukaemia, Incidence

HF, Place of work

1

2,1

n.s.

Törnqvist et al. 1991

Acute Myelo. Leukaemia, Incidence

HF, Radio, TV, Local residents

3

1,02

n.s.

Dolk et al. 1997

Acute Lymphat. Leukaemia

*

Chron. Lymphat. Leukaemia

*

Myelo. Leukaemia, total

Acute Myelo. Leukaemia

Mobile Telecommunications and Health

*

77
Illness

Exposure

Exp.
class.

R.R.

stat. Sign. References

C

Chron. Myelo. Leukaemia, Morbidity

RF, Amateur radio users

2

2,67

s.s.

Chron. Myelo. Leukaemia, Morbidity

RF, Amateur radio users

2

0,86

Chron. Myelo. Leukaemia, Incidence

HF, Radio and TV transmitters, Local residents

3

1,23

n.s.

Dolk et al. 1997

*

Leukaemia, non-lymph. and non-myelo., Morbidity

RF/MW, TV and other transmitters, Local
residents/ Adults

3

1,57

s.s.

Hocking et al. 1996

*

Leukaemia, non-lymph. and non-myelo., Morbidity

RF/MW, TV and other transmitters, Local
residents/child.

3

1,45

n.s.

Hocking et al. 1996

*

Leukaemia, non-lymph. and non-myelo., Incidence

RF/MW, TV and other transmitters, Local
residents/ Adults

3

1,67

s.s.

Hocking et al. 1996

*

Leukaemia, non-lymph. and non-myelo., Incidence

RF/MW, TV and other transmitters, Local
residents/child.

3

1,65

n.s.

Hocking et al. 1996

*

Lymphosarkome, Morbidity

HF, Place of work, Men

1

0,73

n.s.

Milham 1985

Lymphome, excl. Lymphosarkoma, Morbidity

HF, Place of work, Men

1

3,42

n.s.

Milham 1985

Hodgkin-Syndrome, Morbidity

RF, Amateur radio users

2

1,23

n.s.

Milham 1988

Other malignant illness of the lymphat. tissues, Morbidity

RF, Amateur radio users

2

1,62

s.s.

Milham 1988

Lymphomas, total, Incidence

RF, Radio, Women

2

1,3

n.s.

Tynes et al. 1996

*

Hodgkin-Syndrome, Incidence

RF/MW, Radar and Radio, Police

2

0,84

n.s.

Finkelstein 1998

*

Non-Hodgkin-Lymphoma, Incidence

HF, Radio and TV transmitters, Local residents

3

0,66

n.s.

Dolk et al. 1997 a

*

Testicular cancer, Incidence

RF/MW, Place of work

2

3,1

s.s.

Hayes et al. 1990

Germ cell-Carcinoma, Seminoma

RF/MW, Place of work

2

2,8

n.s.

Hayes et al. 1990

Germ cell-Carzinome, others

RF/MW, Place of work

2

3,2

s.s.

Hayes et al. 1990

Chron. Myelo. Leukaemia
Milham 1985
Milham 1988

Leukaemia, non-lymph. and non-myelo.

Lymphomas, Hodgkin-Syndrome

Testicular cancer

78

Mobile Telecommunications and Health
Illness

Exposure

Exp.
class.

R.R.

stat. Sign. References

C

Testicular cancer, Incidence

MW, Radar, Police

2

6,9

s.s.

Davis & Mostofi 1993

*

Testicular cancer, Incidence

RF/MW, Radar and Radio, Police

2

1,33

s.s.

Finkelstein 1998

*

RF, Radio, Women

2

1,9

s.s.

Tynes et al. 1996

*

Skin Cancer, Malignant Melanoma, Incidence

RF, Radio, Women

2

0,9

n.s.

Tynes et al. 1996

*

Skin Cancer, total, Incidence

RF/MW, Military

2

1,67

n.s.

Szmigielski 1996

*

Skin cancer, Malignant Melanoma, Incidence

HF, Radio and TV transmitters, Local residents

3

1,43

n.s.

Dolk et al. 1997 a

*

Skin cancer, Malignant Melanoma, Incidence

RF/MW, Radar and Radio, Police

2

1,37

s.s.

Finkelstein 1998

*

Cardio vascular diseases, Morbidity

MW, Radar, Military

2

1,09

n.s.

Robinette et al. 1980

R*

Cardio vascular diseases, Morbidity

RF, Amateur radio users

2

0,70

s.s.

Milham 1988

Abnorm. Hearbeat rate variability

RF/AM, Radio transmitters, Place of work

2

1,6

s.s.

Bortkiewicz et al. 1996

*

Abnormal ECG

MW

2

2,9

?

Zhao et al. 1994

R

Cardio vascular complaints

MW

2

3,2

?

Zhao et al. 1994

R

reduced Fertility, reduced Sperm count

MW, Place of work

2

1,20

s.s.

Lancranjan et al. 1975

R

reduced Fertility, immob.
Spermatozoa

MW, Place of work

2

1,39

s.s.

Lancranjan et al. 1975

R

reduced Fertility, normal Spermatozoa

MW, Place of work

2

1,18

s.s.

Lancranjan et al. 1975

R

reduced. Fertility, reduced Sperm count

MW, Military

2

2,70

s.s.

Weyandt et al. 1996

R

reduced Fertility, reduced sperm count

MW, Radar

2

1,54

n.s.

Hjollund et al. 1997

R

reduced Fertility, immob. Spermatozoa

MW, Radar

2

1,58

n.s.

Hjollund et al. 1997

R

reduced Fertility, reduced Sperm count

MW, Radar

2

1,10

n.s.

Schrader et al 1998

R

Cancer of the uterus
Cancer of the uterus, Incidence
Skin cancer

Heart and cardio vascular diseases

Infertility, reduced fertility, Men

Mobile Telecommunications and Health

79
Illness

Exposure

Exp.
class.

R.R.

stat. Sign. References

C

KW, Place of work, Physiotherapie, Mothers

2

1,7

n.s.

Larsen et al. 1991 a

*

Infertility, reduced. fertility, Women
reduced. fertilityt

Miscarriages, Stillbirths, Malformations and other abnormalities of newborns
Malformations and perinatal death

KW, Place of work, Mother

2

2,36

s.s.

Källén et al 1982

Miscarriage

MW, Place of work, Mother

2

1,28

s.s.

Ouellet-Hellstrom &
Stewart 1993

*

Miscarriage

KW, Place of work, Mother

2

1,07

n.s.

Ouellet-Hellstrom &
Stewart 1993

*

Tumors of the nervous system

HF, Place of work, fathers

1

2,01

n.s.

Cole Johnson & Spitz 1989

Cancer, total, Incidence

Radar, Place of work, fathers

2

2,3

s.s.

Smulevich et al. 1999

*

Alzheimer’s, Morbidity

HF, Place of work

1

1,5

n.s.

Savitz et al. 1998

*

Parkinson’s Disease

HF, Place of work

1

-

Savitz et al. 1998

*

Amyotrophic Lateral Sklerosis

HF, Place of work

1

-

Savitz et al. 1998

*

Cancer, Offspring (parental exposure)

Neurodegenerative Diseases

Disturbances of motoric and psychological reactions, Unwellness
Reduced stamina, Boys

MW, Radar

2

1,38

s.s.

Kolodynski & Kolodynska
1996

R*

Reduced stamina, Girls

MW, Radar

2

1,38

s.s.

Kolodynski & Kolodynska
1996

R*

reduced memory, Boys

MW, Radar

2

1,09

s.s

Kolodynski & Kolodynska
1996

R*

Reduced memory, Girls

MW, Radar

2

1,12

s.s

Kolodynski & Kolodynska
1996

R*

Reduced concentration, Boys

MW, Radar

2

1,23

s.s.

Kolodynski & Kolodynska
1996

R*

80

Mobile Telecommunications and Health
Illness

Exposure

Exp.
class.

R.R.

stat. Sign. References

C

Reduced Concentration, Girls

MW, Radar

2

1,20

s.s.

Kolodynski & Kolodynska
1996

R*

Extended reaction time, Boys

MW, Radar

2

1,07

n.s.

Kolodynski & Kolodynska
1996

R*

Extended reaction time, Girls

MW, Radar

2

1,12

s.s.

Kolodynski & Kolodynska
1996

R*

Unwellness. ('Neurosis')

MW

2

3,2

?

Zhao et al. 1994

R

 

Mobile Telecommunications and Health

81
Appendix E (only available in German)
Extracts of our database (EMFbase) 
Important  research  papers  relevant  to  the  assessment  of  health  risks  resulting  from  exposure  to  the  electromagnetic  fields  of  mobile 
telecommunications under the aspect of precautionary health protection 
 
 

82

Mobile Telecommunications and Health

More Related Content

PPT
The viability of technology-based smoking cessation programs in developing co...
PDF
S1p3 michael repacholi(1)
PPT
Dariusz Leszczynski presentation at the Science & Wireless 2012, Melbourne, A...
PDF
Science and conflict of interest in bioelectromagnetics
PDF
Novel biotechnologies : intervening in the brain
PDF
Technology on clinical service delivery among caregivers and patients in maku...
PPTX
ROLES OF TECHNOLOGY AGAINST NOVEL CORONA VIRUS
PDF
SRGE COVID-19 Publications 2020
The viability of technology-based smoking cessation programs in developing co...
S1p3 michael repacholi(1)
Dariusz Leszczynski presentation at the Science & Wireless 2012, Melbourne, A...
Science and conflict of interest in bioelectromagnetics
Novel biotechnologies : intervening in the brain
Technology on clinical service delivery among caregivers and patients in maku...
ROLES OF TECHNOLOGY AGAINST NOVEL CORONA VIRUS
SRGE COVID-19 Publications 2020

What's hot (18)

PDF
wjeb-5-1-2
PDF
Dariusz Leszczynski Australia November 2014
PDF
Neuro-Anatomical Changes of Carbon Monoxide Poisoning on Advanced Imaging: A ...
PDF
Advanced_Science_future_of_gov_en (6)
DOCX
final research file
PPTX
Health, Climate and Innovation
PDF
Co-Calibrating Physical and Psychological Outcomes and Consumer Wearable Acti...
PPTX
UK Diagnostics Summit 2019
PPTX
Nano med july 24 25 2017 tbagchi
PDF
Huang
PPTX
SSMA lecture Nov 2016 Melbourne Australia
PDF
ICIC 2013 New Product Introductions GVK Bio Informatics
PDF
An EHealth Adoption Framework for Developing Countries: A Systematic Review
PPTX
One Funder’s View for Advancing Open Science
PDF
Analyzing Consumer Reaction to the Fungal Meningitis Outbreak in Real-Time
PPTX
Exploring the Currents of Telemedicine
PPT
Secure Data Sharing and Related Matters – An NIH View
wjeb-5-1-2
Dariusz Leszczynski Australia November 2014
Neuro-Anatomical Changes of Carbon Monoxide Poisoning on Advanced Imaging: A ...
Advanced_Science_future_of_gov_en (6)
final research file
Health, Climate and Innovation
Co-Calibrating Physical and Psychological Outcomes and Consumer Wearable Acti...
UK Diagnostics Summit 2019
Nano med july 24 25 2017 tbagchi
Huang
SSMA lecture Nov 2016 Melbourne Australia
ICIC 2013 New Product Introductions GVK Bio Informatics
An EHealth Adoption Framework for Developing Countries: A Systematic Review
One Funder’s View for Advancing Open Science
Analyzing Consumer Reaction to the Fungal Meningitis Outbreak in Real-Time
Exploring the Currents of Telemedicine
Secure Data Sharing and Related Matters – An NIH View
Ad

Viewers also liked (9)

PDF
Nasa the futureof war
PDF
Wi fi technology - an uncontrolled global experiment on the health of mankind...
PDF
Xkeyscore
PDF
UNICEF Terms of use
PDF
La parte que no te gustará:Los Insectos
PDF
adm6: ip6tables, pf.conf, ipf mit python in deutsch
PDF
Multistakeholder processes
PDF
Top Secret National Reconnaissance Office declassification guideline
PDF
Petitionsausschuss
Nasa the futureof war
Wi fi technology - an uncontrolled global experiment on the health of mankind...
Xkeyscore
UNICEF Terms of use
La parte que no te gustará:Los Insectos
adm6: ip6tables, pf.conf, ipf mit python in deutsch
Multistakeholder processes
Top Secret National Reconnaissance Office declassification guideline
Petitionsausschuss
Ad

Similar to Ecolog2000 (20)

PDF
Mthr report 2012
PDF
Instant ebooks textbook From Grid to Healthgrid Studies in Health Technology ...
PDF
A Significant Gap In The NBN Corporate Plan
PDF
Michael Repacholi ČESTA PITANJA U VEZI ZDRAVSTVENIH EFEKATA NA KORISNIKE MOBI...
PDF
POSSIBLE ELECTROMAGNETIC HYPERSENSITIVITY AMONG CELLULAR PHONE USERS IN RELEV...
PDF
POSSIBLE ELECTROMAGNETIC HYPERSENSITIVITY AMONG CELLULAR PHONE USERS IN RELEV...
PDF
Expert reviews on Radiofrequency Energy
PDF
Biomedical engineering
PDF
Patient Safety Informatics Adverse Drug Events Human Factors And It Tools For...
DOCX
Decentralization of Health care Delivery
PDF
Environmental and Health impacts of Mobile Phone
PDF
Consideration the relationship between ict and ehealth
PDF
Patient Safety and eHealth in the rescue: A revolution unfolding
DOCX
Final paper for technology and public health
DOCX
Final paper for technology and public health
DOCX
Final paper for technology and public health
DOCX
Determining the Factors of Slow Adoption of Information and Communication Tec...
PDF
Mobile phones and cancers: What is the evidence? - Prof Mike Repacholi
PDF
PPTX
Technological changes and cost
Mthr report 2012
Instant ebooks textbook From Grid to Healthgrid Studies in Health Technology ...
A Significant Gap In The NBN Corporate Plan
Michael Repacholi ČESTA PITANJA U VEZI ZDRAVSTVENIH EFEKATA NA KORISNIKE MOBI...
POSSIBLE ELECTROMAGNETIC HYPERSENSITIVITY AMONG CELLULAR PHONE USERS IN RELEV...
POSSIBLE ELECTROMAGNETIC HYPERSENSITIVITY AMONG CELLULAR PHONE USERS IN RELEV...
Expert reviews on Radiofrequency Energy
Biomedical engineering
Patient Safety Informatics Adverse Drug Events Human Factors And It Tools For...
Decentralization of Health care Delivery
Environmental and Health impacts of Mobile Phone
Consideration the relationship between ict and ehealth
Patient Safety and eHealth in the rescue: A revolution unfolding
Final paper for technology and public health
Final paper for technology and public health
Final paper for technology and public health
Determining the Factors of Slow Adoption of Information and Communication Tec...
Mobile phones and cancers: What is the evidence? - Prof Mike Repacholi
Technological changes and cost

More from Marc Manthey (20)

PDF
The Rise of BaaS A Utopia for Client-Side Developers
PDF
Javascript on Fiber - http://fibjs.org
PDF
Future topic geoengineering
PDF
PTS- Wissenschaftliche Grundlagen des Analysesystems
PDF
Firmen die Monsanto verwenden
PDF
Bt hack-full-disclosure Uncovered – //NONSA//NOGCHQ//NOGOV - CC BY-ND
PDF
Wifi - a thalidomide in the making - who cares
PDF
Silent weapons for quiet wars
PDF
Vision 2015 - Geheimdienste Global verknüpfen
PDF
Wenn diese Petition es vor den Petitionsausschuss schafft geb ich einen Aus
PDF
Third part nations - S-CCO leaked document 1
PDF
Der spiegel 28-2013_-_nur_der_snowden_und_nsa_part
PDF
Wirtschaftsspionage in Zeiten von Vollüberwachung
PDF
CoCCA OpenReg development, registry software
PDF
PDF
Piraten analyse
PDF
Internetstadt köln-veranstaltung
PDF
Web rtc videoconference
PDF
A swarm intelligence-based unicast routing protocol for hybrid ad hoc networks
PDF
Guide to intrusion detection
The Rise of BaaS A Utopia for Client-Side Developers
Javascript on Fiber - http://fibjs.org
Future topic geoengineering
PTS- Wissenschaftliche Grundlagen des Analysesystems
Firmen die Monsanto verwenden
Bt hack-full-disclosure Uncovered – //NONSA//NOGCHQ//NOGOV - CC BY-ND
Wifi - a thalidomide in the making - who cares
Silent weapons for quiet wars
Vision 2015 - Geheimdienste Global verknüpfen
Wenn diese Petition es vor den Petitionsausschuss schafft geb ich einen Aus
Third part nations - S-CCO leaked document 1
Der spiegel 28-2013_-_nur_der_snowden_und_nsa_part
Wirtschaftsspionage in Zeiten von Vollüberwachung
CoCCA OpenReg development, registry software
Piraten analyse
Internetstadt köln-veranstaltung
Web rtc videoconference
A swarm intelligence-based unicast routing protocol for hybrid ad hoc networks
Guide to intrusion detection

Recently uploaded (20)

PDF
NewMind AI Weekly Chronicles – August ’25 Week III
PDF
Getting started with AI Agents and Multi-Agent Systems
PDF
STKI Israel Market Study 2025 version august
PPTX
MicrosoftCybserSecurityReferenceArchitecture-April-2025.pptx
PDF
Two-dimensional Klein-Gordon and Sine-Gordon numerical solutions based on dee...
PDF
ENT215_Completing-a-large-scale-migration-and-modernization-with-AWS.pdf
PDF
Five Habits of High-Impact Board Members
PDF
Consumable AI The What, Why & How for Small Teams.pdf
PDF
Credit Without Borders: AI and Financial Inclusion in Bangladesh
PDF
A Late Bloomer's Guide to GenAI: Ethics, Bias, and Effective Prompting - Boha...
PDF
Hindi spoken digit analysis for native and non-native speakers
PDF
Abstractive summarization using multilingual text-to-text transfer transforme...
PDF
Zenith AI: Advanced Artificial Intelligence
PDF
Hybrid horned lizard optimization algorithm-aquila optimizer for DC motor
PPTX
Modernising the Digital Integration Hub
PDF
Taming the Chaos: How to Turn Unstructured Data into Decisions
PDF
CloudStack 4.21: First Look Webinar slides
PDF
Enhancing emotion recognition model for a student engagement use case through...
PDF
sbt 2.0: go big (Scala Days 2025 edition)
PDF
A review of recent deep learning applications in wood surface defect identifi...
NewMind AI Weekly Chronicles – August ’25 Week III
Getting started with AI Agents and Multi-Agent Systems
STKI Israel Market Study 2025 version august
MicrosoftCybserSecurityReferenceArchitecture-April-2025.pptx
Two-dimensional Klein-Gordon and Sine-Gordon numerical solutions based on dee...
ENT215_Completing-a-large-scale-migration-and-modernization-with-AWS.pdf
Five Habits of High-Impact Board Members
Consumable AI The What, Why & How for Small Teams.pdf
Credit Without Borders: AI and Financial Inclusion in Bangladesh
A Late Bloomer's Guide to GenAI: Ethics, Bias, and Effective Prompting - Boha...
Hindi spoken digit analysis for native and non-native speakers
Abstractive summarization using multilingual text-to-text transfer transforme...
Zenith AI: Advanced Artificial Intelligence
Hybrid horned lizard optimization algorithm-aquila optimizer for DC motor
Modernising the Digital Integration Hub
Taming the Chaos: How to Turn Unstructured Data into Decisions
CloudStack 4.21: First Look Webinar slides
Enhancing emotion recognition model for a student engagement use case through...
sbt 2.0: go big (Scala Days 2025 edition)
A review of recent deep learning applications in wood surface defect identifi...

Ecolog2000

  • 1.         Mobile Telecommunications and Health   Review of the current scientific research in view of precautionary health protection                       April 2000 ECOLOG-Institut               Translated by   Andrea Klein  
  • 2. Mobile Telecommunications and Health   Review of the Current Scientific Research in view of Precautionary Health Protection     Commissioned by  T‐Mobil  DeTeMobil Deutsche Telekom MobilNet GmbH              Authors  Dr Kerstin Hennies  Dr H.‐Peter Neitzke  Dr Hartmut Voigt    With the support of   Dr Gisa‐Kahle Anders    ECOLOG‐Institut  für sozial‐ökologische Forschung und Bildung gGmbH  Nieschlagstrasse 26  30449 Hannover  Tel. 0511‐92456‐46  Fax 0511‐92456‐48  Email mailbox@ecolog‐institut.de  Hannover, April 2000 
  • 3. Contents 1 1 1.1 1.2 2 Introduction  1 3 New Technologies and Precautionary Health Protection  Terms of Reference and Structure of the Review  5 2.1 2.2 3 Collating and Interpreting the Scientific Data (Methodology)  5 5 Primary  Reciprocal  Effects  between  High  Frequency  Electromagnetic  Fields  and Biological Systems (Biophysical and Biochemical Processes)  3.1 3.2 3.3 3.4 3.5 4 Thermal Effects  3.1.1 Effects of Homogenous Warming  3.1.2 Microthermal Effects  Direct Field Effects  3.2.1 Effects from the Electrical Component of the Electromagnetic Field  3.2.2 Effects from the Magnetic Component of the Electromagnetic Field  Quantum Effects  Other Effects  Particular Properties of Pulsed Electromagnetic Fields  Biological Primary Effects of High  Frequency Electromagnetic Fields Effects  on Cellular Level  4.1 4.2 4.3 5 Criteria for the Selection of Papers  Assessment Criteria  Gene Toxicity  Cellular Processes  4.2.1 Gene‐Transcription and Gene‐Translation  4.2.2 Membrane Function  4.2.3 Signal Transduction  4.2.4 Cell Cycle  Cell Transformation and Cell Proliferation  4.3.1 Cell Transformation  4.3.2 Cell Communication  4.3.3 Cell Proliferation  8 8 8 8 9 9 10 10 10 11 12 12 13 13 14 14 16 16 17 17 17 Patho‐Physiological Effects  19 5.1 5.2 19 19 19 20 20 22 23 23 24 5.3 Immune System  Central Nervous System  5.2.1 Blood Brain Barrier  5.2.2 Neurotransmitters  5.2.3 Electroencephalogram (EEG)  5.2.4 Cognitive Functions  Hormone Systems  5.3.1 Stress Hormones  5.3.2 Melatonin  iii
  • 4. Pathological Effects  26 6.1 6 26 26 27 28 6.2 7 8 Results of Experimental Studies  6.1.1 Cancer  6.1.2 Infertility and Teratogenic Effects  Results of Epidemiological Studies  Health  Risks  to  Humans  Resulting  from  Exposure  to  the  Electromagnetic  Fields of Mobile Telecommunications  33 Recommendations  37 8.1 8.2 Precautionary Health Protection in Relation to Exposures to  Electromagnetic Fields of Mobile Telecommunications  Scientific Studies Regarding the Health Risk of Mobile  Telecommunications  37 38 Literature  40 Appendix A  56 Studies of the effects of high frequency electromagnetic fields on the cellular level  56 Table A.1  Genotoxic Effects of High Frequency Electromagnetic Fields  Table A.2  Effects of High Frequency Electromagnetic Fields on Cellular Processes  Table A.3  Effects of High Frequency Electromagnetic Fields on Cell  Transformation and Cell Proliferation  Appendix B  66 Studies of the effects of high frequency electromagnetic fields on the central  nervous system (Blood‐Brain‐Barrier)  Table B.1  Effects of High Frequency Electromagnetic Fields on the Blood‐Brain‐ Barrier  Appendix C  66 68 Studies of the Carcenogenic Effects of High Frequency Electromagnetic Fields in  Animal Experiments  Table C.1  Animal Experiments Regarding the Carcinogenic Effects of High  Frequency Electromagnetic Fields  Appendix D  68 71 Epidemiological Studies of the health Risks of HF EMFs  Table D.1  Overview of the results of epidemiological studies regarding  exposures in the high frequency spectrum and health risks  Appendix E (only available in German)  71 82 Extracts of our database (EMFbase)  Important  research  papers  relevant  to  the  assessment  of  health  risks  resulting  from  exposure to the electromagnetic fields of mobile telecommunications under the aspect of  precautionary health protection  iv
  • 5. 1 Introduction 1.1 New Technologies and Precautionary Health Protection No technology covering virtually entire countries with its emissions has ever been rolled  out as quickly as mobile telecommunications. At the same time, there are only few direct  studies of the potential health risks of typical mobile telecommunications frequencies and  modulations for the exposed population. Also, many of the existing studies worked with  high  intensities,  which  will  only  be  found  in  rare  cases  in  the  real  environment.  High  intensities  of  high  frequency  electromagnetic  fields  can  heat  the  absorbing  tissue  and  trigger  stress  reactions  in  the  body  and  thus  with  rising  temperatures  lead  to  thermal  damage.  Effects  from  high  intensity  high  frequency  EMFs,  also  know  as  thermal  effects,  on  the  central  nervous  system,  the  immune  system,  the  cardio‐vascular  system  and  the  reproductive system including teratogenic effects, have been proven for mammals with a  multitude of experiments.  The results of studies of the thermal effects of high frequency EMFs form the basis of the  recommendations of the International Commission on Non‐Ionizing Radiation Protection  (ICNIRP), which, in the past, were the basis for the guidelines set by the government in  Germany and many other countries. The base guideline was an upper limit on the Specific  Absorption  Rate  (SAR),  i.e.  the  amount  of  energy  absorbed  by  the  body  from  the  field  within a given unit of time.  According to ICNIRP, thermal damage will not occur at SAR values of under 4 W/kg and  exposure  levels  of  0.4  W/kg  for  professional  exposures  and  0.08W/kg  for  the  general  population are considered safe.  Parallel to the experiments examining thermal effects, there have been a growing number  of  studies  examining  the  effects  on  the  body  of  HF  EMFs  at  sub‐thermal  intensities.  We  now have a plethora of experimental studies examining a variety of effects on all levels of  the organism, ranging from effects on single cells to effects which manifest themselves as  reactions  of  the  entire  body.  In  addition  to  the  experimental  studies,  there  have  been  a  number  of  epidemiological  studies  in  order  to  establish  the  possible  causal  correlations  between  higher  exposures  to  HF  EMFs,  for  example  as  found  near  base  stations,  and  health damage amongst the population groups with higher exposures.  The mobile telecommunications situation reflects, once again, the dilemma already known  from chemical toxicology: The study of potential health effects cannot generally compete  with  the  speed  of  technical  development  and  the  roll  out  of  the  product.  The  extremely  fast  roll  out  of  the  mobile  telecommunications  technology  and  the  accompanying public  fear of the potential danger of this technology have stimulated research insofar that now  we  have  more  studies  examining  the  effects  of  frequencies  and  modulations  as  used  in  mobile  telecommunications  on  biological  systems.  There  are  also  a  growing  number  of  experiments  using  lower  intensities,  reflecting  the  real  conditions  of  exposure  in  the  vicinity  of  base  stations  and  equipment,  so  that  effects  found  in  the  studies  can  be  extrapolated  into  real  life  conditions.  The  number  of  studies  which  examine  the  Mobile Telecommunications and Health 1
  • 6. physiological effects of real mobile exposures is still very low, compared to the degree of  penetration achieved by the technology and the number of (potentially) exposed persons.  The  WHO  amongst  others,  have  only  recently  begun  to  develop  targeted  strategies  to  examine the potential health risk from mobile telecommunications and results can earliest  be expected within several years.  In  the  meantime,  it  is  only  possible  to  assess  the  potential  dangers  of  mobile  telecommunications using the results generated by uncoordinated research, which is still  mainly  orientated  towards  topics  and  criteria  of  relevant  to  science  only,  rather  than  addressing the requirements of society as a whole.  Faced  with a  state  of  incomplete  scientific  research  it  is  necessary  to  chose  between  two  fundamentally different assessment theories when planning to assess the potential health  risks of new technologies:  The  first  theory  is  based  on  the  (without  doubt  correct)  scholarly  understanding  that  is  practically impossible to prove the ‘non‐harmfulness’ to human health or the environment  of a technology, a material or a product. This understanding is interpreted in such a way  that  a  presupposition  of  ‘not  guilty’  is  adopted  and  any  risks  have  to  be  unequivocally  proven.  ‘Unequivocal  proof’  in  this  context  means  the  consistent  evidence  for  a  biological‐ physiological  or  an  ecological  chain  of  effects,  from  the  biophysical  or  biochemical  primary  effect  through  to  the  physiological  effects  and  the  resulting  illness  or,  if  applicable, the ecological damage.  This theory, which is firmly based in scientific conservatism, has the advantage that it will  stand  up  in  court  and  will  not  hinder  the  introduction  of  new  technologies.  It  is  methodologically simple, since it is sufficient to examine studies which are presented as  ‘proof’ with regards to their methodological correctness and their validity and then to put  all  these  reviewed  pieces  of  evidence  together  like  a  jigsaw  to  produce  a  whole  picture.  The  complete  whole  picture  finally  constitutes  the  scientific  proof  required  by  the  legislators and courts.  The  disadvantage  of  this  theory  is  obviously  the  length  of  time  necessary  to  obtain  enough  knowledge  for  a  completed  chain  of  proof,  during  which  many  facts  will  be  created,  which  may  later  prove  irreversible  or  only  reversible  with  very  high  costs  attached, such as investments and irreversible damage to health and the environment.  The second theory solves the dilemma of the time delay. It is based on the assessment of  the  potential  risks  of  a  technology  on  the  basis  of  existing  knowledge.  If  there  are  sufficient indications that there may be damaging effects, the precautionary principle for  the protection of health and the environment will apply and avoidable exposures will be  avoided until such time when there is enough knowledge for a wider introduction of the  technology in question. This theory draws its justification not least from the experiences  with  the  introduction  of  technologies  and  products  (such  as  asbestos,  DDT,  CFCs,  formaldehyde, wood preservatives, mass X‐ray screenings etc.), which were widely used,  even  many  years  after  the  first  clear  indications  of  health  and  ecological  damage  had  appeared.  When  finally  sufficient  scientific  proof  for  the  health  and  ecological  damage  2 Mobile Telecommunications and Health
  • 7. was  provided,  it  took  many  more  years  until  the  further  use  was  finally  reduced  and  banned through the courts and international negotiations.  The  advantage  of  the  precautionary  principle  is  of  course  primarily  medical  and  ecological,  since  exposures  are  initially  limited  to  a  level  recognised  as  safe  under  the  precautionary  principle.  But  it  can  also  offer  economical  advantages,  because  firstly,  it  may  prevent  potentially  highly  risky  investments,  but  also  secondly,  because  the  commitment to and observance of the precautionary principle will create trust within the  general population and thus increase acceptance for the placing of emitting equipment.  On the other hand, it will be the industry – as the owner of emitting equipment – who has  to  bear  the disadvantage  of  this  principle,  when  it  becomes  clear  that, for  precautionary  reasons, an economically and technically perfectly‐suited site can’t be approved, or maybe  even an entire technology has to be abandoned.   Furthermore,  the  methodological  difficulties  of  this  theory  must  not  be  underestimated,  since  it  is  not  enough  to  prove  the  reliability  of  single  scientific  studies,  which  is  just  as  essential under this premise as under the first theory. The ultimate goal however is – to  remain with the jigsaw analogy – to put the existing jigsaw pieces together and recognise  early on which pictures might appear once the work is completed.  1.2 Terms of Reference and Structure of the Review The aim of this study was the assessment of the potential risks of electromagnetic fields as  they  are  used  for  mobile  telecommunications  with  respect  to  precautionary  health  protection. To this aim, the scientific literature was reviewed with regards to study results  which  might  be  of  importance  to  the  assessment  of  potential  health  risks  from  mobile  telecommunications.  To  create  a  base  for  later  scientific  discussion,  a  list  of  studies  which  are  particularly  important in this respect should be created. On the basis of these papers, the health risk  from  exposure  to  electromagnetic  fields  from  mobile  telecommunications  should  be  assessed. Finally, recommendations for future scientific studies should be formulated.  The  methodological  aspects  of  this  examination  are  presented  in  Chapter  2.  This  is  followed by a review of the current scientific knowledge of the effects of high frequency  electromagnetic fields. This review is structured according to the different levels of effects:  ■ biophysical and biochemical primary effects of HF fields on organic matter as a whole  or at the level of cells and membranes (Chapter 3)  ■ primary  biological  effects  on  the  cellular  level,  i.e.  on  the  genetic  substance  and  on  intracellular processes as well as cell transformation and cell proliferation (Chapter 4)  ■ patho‐physiological  effects,  i.e.  physiological  effects  with  possible  but  not  certain  negative health implications (Chapter 5)  ■ pathological  effects,  which  means  manifested  illness  and  other  effects  such  as  the  damage  of  cognitive  functions,  which  have  been  found  in  epidemiological  or  experimental studies (Chapter 6).  Mobile Telecommunications and Health 3
  • 8. The  conclusions  of  all  findings  are  drawn  in  Chapter  7.  In  Chapter  8,  we  make  recommendations  for  precautionary  health  protection  with  regards  to  exposures  to  the  electromagnetic  fields  of  mobile  telecommunications  and  for  focal  points  for  further  research.  4 Mobile Telecommunications and Health
  • 9. 2 Collating and Interpreting the Scientific Data (Methodology) 2.1 Criteria for the Selection of Papers In order to include a maximum of relevant literature, we analysed the literature we have  catalogued in our own database, EMFbase, as well as exploring the three following paths:  ■ research in other relevant scientific databases  ■ complete  sifting  of  at  least  the  last  two  full  years’  issues  of  all  relevant  scientific  journals  available  in  the  Central  Library  of  Medicine  in  Cologne,  the  Technical  Information Library in Hanover, and the Library of the Medical University of Hanover  ■ evaluation  of  all  existing  monographs,  reviews  and  conference  reports  related  to  the  subject matter  The basic literature research was finished in February 2000.  Literature  databases  are  a  convenient  research  tool,  but  their  value  in  assessing  the  current  scientific  knowledge  in  a  subject  matter  is  limited  by  the  number  of  registered  publications,  inconsistent  use  of  keywords,  the  changing  understanding  of  certain  procedures, effects etc. and last but not least, due to long time delays between the time of  publication  and  availability  in  the  database.  Furthermore,  databases  usually  only  keep  abstracts  of  papers,  and  those  differ  often  from  the  full  text  with  regards  to  the  presentation and interpretation of the results. Our research for this review confirmed this  observation,  reflecting  the  results  of  a  study  of  Pitkin  et  al.  (1999)  according  to  which  almost  40%  of  all  papers  published  in  the  six  largest  medical  journals  contained  inaccuracies  and  mistakes  in  the  abstracts.  To  be  at  the  cutting  edge  of  scientific  knowledge, it is necessary to research current scientific journals and find older papers via  monographs  and  reviews.  Reviews  are  only  useful  to  gain  an  overview  over  a  subject  matter  and  as  a  source  for  literature  leads.  It  is  inappropriate  to  use  assessments  or  interpretations  of  a  review  study  since  some  authors  of  reviews  will  have  based  their  conclusion on abstracts rather than the full texts of the papers they discuss.  2.2 Assessment Criteria One  sub‐goal  of  the  present  paper  was  to  identify  those  scientific  papers  which  are  particularly  interesting  for  the  assessment  of  potential  health  risks  caused  by  the  electromagnetic  emissions  of  mobile  telecommunications.  (Extracts  from  our  database  EMFbase with a summary of the results of these papers can be found in Annex E. In the  source references, these papers carry an asterisk*). Only peer reviewed papers published  in scientific journals were included in our review. We also accorded weight to the ‘Impact  Factor’, which is calculated by the Institute for Scientific Information in Philadelphia. This  factor  is  a  rough  measure  for  the  amount  of  importance  and  reputation  attributed  to  a  scientific journal in its subject matter.  Mobile Telecommunications and Health 5
  • 10. The  papers  able  to  pass  this  first  filter  were  subsequently  interpreted  according  to  the  following criteria:  ■ carrier frequency or frequency range  ■ manner of modulation  ■ modulation frequency or frequency range  ■ power flux density  ■ specific Absorption Rate  ■ electric filed strength  ■ duration of exposure  ■ other parameters of exposure (such as other fields [incl. ELF], ambient and if applicable  body temperature, particular forms of modulation)  ■ source  of  exposure  or  environment  of  the  exposure  (such  as  antenna  emitting  freely,  anechoic chamber, transmission line)  ■ object of experiments (human, animal, cell system)  ■ examined pathological results (manifested illness and other effects on the whole body)  ■ examined patho‐physiological effects (physiological effects with a potential for health  damage)  ■ examined biological effects (mostly on the cellular level)  ■ examined  biophysical  and  biochemical  processes  (primary  effects  on  the  level  of  molecules, membranes etc.)  ■ methodology of the experiments (procedures used)  ■ results (including a mention if our own interpretations differ from those of the author)  ■ statistical significance of the results  ■ appropriateness  of  the  model  (with  regards  to  the  statements  made  about  effects  on  humans)  ■ appropriateness of the methodology (methodical weakness analysis)  ■ documentation of the conditions of the experiments (completeness, reproducibility)  ■ context of other experiments (mention of experiments with the same or contradicting  results)  ■ meaning (Main conclusions drawn from the results, importance for the assessment of  health risks for humans)  Because of the delay of science with regards to the electromagnetic frequencies emitted by  mobile  telecommunications,  a  risk  analysis  cannot  be  limited  to  the  frequencies  and  6 Mobile Telecommunications and Health
  • 11. modulations  actually  used  by  this  technology.  Therefore,  we  have  included  all  papers  examining  carrier  frequencies  from  100MHz  to  10GHz.  In  the  experiments  at  cellular  level, but also in animal experiments, effects have been found that only appear at certain  modulations or are a lot stronger at these modulations (chapter 3 and 4). At this point in  time it is not possible to determine whether the majority of the found effects are caused by  the  HF  carrier  wave  or  the  modulation.  This  is  why  we  have  included  all  forms  of  modulation  into  this  review.  Because  of  the  nature  and  the  importance  of  the  so‐called  ‘thermal  effects’  (chapter  3.1)  we  have  not  set  an  exclusion  limit  for  power  flux  density  and  Specific  Absorption  Rate.  However,  we  did  not  include  papers,  in  which  the  EMF  exposure led to a considerable rise in body temperature (>1ºC) of the animals or human  subjects.  When evaluating the papers, we kept making the following observations:  ■ important single results are ‘masked’ for example when data are ‘pooled’  ■ certain  observations  are  dismissed  by  the  authors  as  ‘blips’  if  they  don’t  fit  the  (expected/otherwise  observed)  general  trend,  without  sufficient  explanation  being  offered for this dismissal  ■ single results are not taken into account for statistical reasons, but a common trend is  not recognised or not sufficiently acknowledged.  In  such  cases,  whenever  this  was  possible  based  on  the  existing  data,  we  proceeded  to  make our own interpretations. Where our evaluation differed from the main statements of  the authors, it will be noted.  Mobile Telecommunications and Health 7
  • 12. 3 Primary Reciprocal Effects between High Frequency Electromagnetic Fields and Biological Systems (Biophysical and Biochemical Processes) 3.1 Thermal Effects 3.1.1 Effects of Homogenous Warming HF  electromagnetic  fields  are  absorbed  depending  on  the  frequency  and  polarisation  of  the  fields  on  the  one  hand  and  the  dimensions  and  material  characteristics  of  the  biological system on the other hand. They cause electric currents (dominant in the range  under  1  MHz),  polarisation  effects  and  potential  differences  on  cell  membranes  (in  the  range between 1 MHz and 100 MHz) or trigger rotational oscillations of polar molecules  (mainly within the GHz range). All these processes can lead to a warming of the biological  material  if  the  intensity  is  sufficient  (Ohmic  losses  in  the  low  frequency  range  and  dielectrical  losses  in  the  GHz  range).  The  avoidance  of  health‐damaging  warming  is  the  base of the concept of SAR, expressed by limiting the specific absorption rate, measured  as the energy absorption per unit, to a rate which will exclude overheating based on the  body’s own thermo‐regulative processes. For humans, a whole body exposure of 0.4 W/kg  corresponds approximately to half the metabolic base rate. In absence of heat conduction  or other thermal dissipation, a SAR of 0.4 W/kg will lead to a temperature rise of 10‐4K/sek  (Foster 1996) in soft tissue like muscles or the brain.  3.1.2 Microthermal Effects The warming through microwaves is fundamentally different from the warming through  a  water  bath  for  example.  In  the  latter  case  the  energy  is  transmitted  by  stochastic  collisions. In microwave heating it is in the simplest case the electrical component which  puts  polar  molecules  within  the  medium  collectively  in  vibration  (3.2.1).  Because  of  ‘friction’  with  the  dense  ambient  medium,  the  energy  is  quickly  transmitted  to  this  medium  and  further  dissipated  by  collisions.  When  corresponding  inner  molecular  degrees of freedom exist, the microwave energy can also be absorbed as a quantum and,  in a large molecule, stored (3.3.). Compared to conventional warming, the absorption of a  microwave  quantum  is  a  singular  process,  which  can  lead  to  localised  warming  if  the  absorbing  molecules  are  suitably  distributed.  Liu  &  Cleary  (1995)  show  in  a  theoretical  model that at the cellular level, membrane‐bound water can lead to frequency dependent  spatial discrepancies in dissipation of the SAR and the induced HF fields.  Microthermal effects can also be caused by the non‐uniformity of thermal conductivity of  tissue at microscopic level, especially when the warming is short, strong and local. This is  of importance mainly for the evaluation of pulsed fields, because in such fields, even at a  low  average  power  flux  density,  the  energy  absorbed  during  a  pulse  can  be  very  high.  Radiation  in  the  form  of  short  pulses  can  lead  to  a  very  high  rate  of  temperature  rise,  which  can  itself  trigger  thermoelastic  waves,  a  phenomenon,  which  is  inked  to  the  8 Mobile Telecommunications and Health
  • 13. acoustic perception of microwaves. A high peak‐SAR can also trigger thermally‐induced  membrane phenomena (Foster 1996).  3.2 Direct Field Effects 3.2.1 Effects from the Electrical Component of the Electromagnetic Field The  electric  component  of  the  electromagnetic  field  exerts  a  force  on  electrical  charges,  permanent  dipole  moments,  induced  dipole  moments  and  higher  multipole  moments.  The  forces  on  charges  create  currents,  however  these  only  play  a  role  in  the  lower  HF  range,  causing  changes  in  membrane  potentials  (stimulation)  or  thermal  effects  (see  above).  Permanent  charge  distributions  in  biomolecules  and  cells  lead  to  permanent  dipole  (or  higher multipole) moments. The electrical field exerts a torque on dipoles, which tries to  align  the  dipole  moment  parallel  to  the  field.  In  alternating  fields  with  not  too  high  frequencies,  the  interactions  lead  to  oscillations  of  the  dipoles.  In  dense  media,  these  oscillations  are  hindered  by  interactions  with  the  surrounding  particles,  which  lead  to  heating (see above). If the particles are too large or the surrounding particle density is too  high or if the frequency of the field is too high, the oscillations cannot develop.   The  threshold  field  strengths  for  the  orientation  of  dipolar  cells  and  other  objects  of  similar  size  (radius  of  approx.  1  μm)  are  at  100  V/m,  the  cut‐off  frequencies  in  water  (temperature 300K) are at circa 0.05Hz, hence far outside the HF range. DNA molecules and  other bio‐polymers can be put into oscillation by fields with frequencies in the kHz range.  Spherical protein molecules (radius approx. 5nm) can still follow fields with frequencies  up  to  400  kHz,  however  this  requires  field  strengths  of  106V/m  (Foster  1996).  Such  field  strengths are not usually reached in the environment.  The interaction between a field and a particle with an induced dipole moment depends on  the  field  strength  to  the  power  of  2,  that  means,  a  continuous  electrical  alternating  field  influences  the  particle  via  a  constant  torque,  however  the  torque  of  a  modulated  field  follows  the  modulation.  There  is  no  limitation  through  a  cut‐off  frequency  for  the  interaction between a field and an induced dipole moment, however for frequencies over  1  MHz,  the  forces  exerted  on  the  cells  are  very  small  unless  field  strengths  of  several  thousand  V/m  are  used.  With  such  field  strengths  however,  strong  dielectrophoretic  forces appear, which can lead to cell deformations, to the orientation of non‐spherical cells  and to the so‐called coin roll effect, a stringing together of cells. Since the induced dipole  moment  depends  on  the  polarizability  of  the  particle  and  the  latter  on  the  size  of  the  particle,  even  higher  field  strengths  are  needed  for  smaller  bodies  than  cells  (biopolymers).  Electric  fields  can  induce  electrical  potentials  on  cell  membranes.  The  size  of  these  potentials depends on the electric field strength, the dimensions of the cell, the frequency  of  the  field,  the  electrical  conductivity  within  and  outside  of  the  cell  as  well  as  the  capacitance of the cell membrane.  Mobile Telecommunications and Health 9
  • 14. With  frequencies  above  1  MHz  the  membrane  is  practically  short‐circuited  and  the  induced  membrane  potentials  become  very  small.  However,  theoretical  rectification  processes  and  non‐linear  phenomena  at  the  cell  membrane  have  been  discussed,  and  these could lead to an intensification of the effect and to membrane potentials that have  an effect on cell physiology.  3.2.2 Effects from the Magnetic Component of the Electromagnetic Field With  some  exceptions,  biological  tissue  is  not  magnetic  and  the  mutual  effects  between  the  magnetic  component  of  an  electromagnetic  field  and  tissue  are  generally  small.  However, the presence of magnetite crystals, which have a strong capacity to absorb the  frequency  range  of  0.5  to  10  GHz  which  is  relevant  for  mobile  telecommunications,  has  been  found  in  the  human  brain  as  well  as  in  the  tissue  of  many  animals  (*Kirschvink  1996).  Under  exposure  to  amplitude  modulated  or  pulse  modulated  microwaves,  the  frequency of the crystal vibrations varies according to the modulation frequency, and thus  transmits it, for example in the form of an acoustic wave onto the ambient medium and  the cell membrane, which possibly leads to changes of the permeability of the membrane  (*Kirschvink  1996).  Theoretical  calculations  show  that  magnetite  transmitted  effects  can  only occur at high densities of superparamagnetic particles (*Dobson & St. Pierre 1998).  3.3 Quantum Effects The  quantum  energy  from  radio  and  microwaves  in  the  frequency  range  between  100  MHz  to  10  GHz  is  far  too  low  to  break  ionic,  covalent  or  hydrogen  bonds.  Bohr  et  al.  (*1997)  have  however  shown  theoretically,  that  wring  resonances  can  be  triggered  in  chain molecules. The frequencies of these resonances are in the range from 1 to 10 GHz for  proteins  and  10  MHz  to  10  GHz  for  DNA  molecules.  The  wring  modes  of  molecules  manifest  themselves  as  ‘torsions’  in  the  molecule  chain,  which  can  lead  to  structural  changes.  The  influences  of  microwaves  on  structural  changes  in  molecules  have  been  found  in  experiments  using  the  protein  ß‐Lactoglobuline  (*Bohr  &  Bohr  2000).  The  triggering  of  resonant  wring  modes  can  even  lead  to  chain  breaks,  since  due  to  White’s  Theory,  the  added energy can be concentrated in a very limited part of the molecule during structural  changes (*Bohr et al.). In this part, the chain can break.  3.4 Other Effects Resonance Phenomena  When the frequency of the electromagnetic wave meets the natural vibrations in the cell  structures  or  in  tissue,  it  can  lead  to  resonances.  Rhythmical  fluctuations  of  signal  substances,  matter‐exchange‐processes  and  Ion‐conductivity  can  be  found  in  many  neurones,  receptors  and  cell  types.  These  oscillations  can  influence  the  membrane  potentials and switch certain stimuli on and off. An external field – according to theory –  can imprint an external oscillation frequency onto these structures. Neurones which have  10 Mobile Telecommunications and Health
  • 15. been modified in this way can even synchronise the following neurones in the same way.  This external synchronisation would even remain after the disappearance of the external  stimulus.  Indirect Effects  In  addition  to  the  previously  described  triggering  of  wring  resonances,  microwaves  can  possibly damage the genetic substance via the formation of hydroxyl radicals. The input  energy  of  microwaves  is  sufficient  to  raise  the  ratio  of  oxidants  to  anti‐oxidants,  a  self‐ accelerating chain reaction of free radicals can lead to damage of the DNA (Scott 1992, see  also Maes et al. 1995).  3.5 Particular Properties of Pulsed Electromagnetic Fields In  an  evaluation  of  circa  40  studies,  in  which  the  biological  effects  of  pulsed  high  frequency fields were directly compared to those of continuous fields of the same median  power  density,  Postow  &  Swicord  (1996)  concluded  that  in  half  of  the  studies,  the  biological  effectiveness  of  pulsed  fields  was  significantly  higher.  Only  in  a  few  studies  were  the  continuous  fields  more  effective  and  in  the  remainder  of  the  studies  the  effectiveness of both was practically the same. The studies which are mainly discussed in  chapter 4 and 5 convey a similar picture.  At  first  glance,  the  higher  biological  effectiveness  of  pulsed  electromagnetic  fields  in  comparison to continuous fields at the same median power flux densities could have an  almost trivial cause:  The  individual  pulses  of  pulse  modulated  fields  have  a  higher  amplitude  than  the  continuous  fields;  the  possible  threshold  for  the  triggering  of  biological  reactions  could  therefore be passed in these fields during the duration of the pulse.  However,  numerous  experiments  found  that  the  biological  response  depends  in  a  complicated  manner  on  the  duration  of  the  pulse  and  its  frequency.  Given  that  some  effects have only been observed at certain pulse frequencies, we presume that in addition  to  the  described  effect,  there  are  others  which  can  be  originally  attributed  to  the  low  frequency modulation (see also chapter 4).  Mobile Telecommunications and Health 11
  • 16. 4 Biological Primary Effects of High Frequency Electromagnetic Fields Effects on Cellular Level At the cellular level, it is possible that there may be direct effects of the EM field on the  genetic material, which we have collated under the heading Gene Toxicity and which will  manifest as mutations if the cell’s own repair mechanisms fail. On the other hand, it is also  possible  that  the  fields  influence  cellular  processes  such  as  gene‐transcription  and  gene‐ translation.  Furthermore  it  is  possible  that  the  fields  can  impact  on  the  cell  membranes,  the  intracellular  processes  of  signal  transmission  and  not  least  the  cell  cycle.  Just  like  direct  damage  of  the  genetic  substance,  a  disruption  of  these  processes  can  lead  to  a  transformation of the cell, to disruptions of inter‐cellular communication and to a changed  rate  of  cell  division,  which  can  lead  to  a  slower  –  or  very  importantly  with  respect  to  a  potential carcinogenic effect – faster growth.  4.1 Gene Toxicity A basic question for the evaluation of the potential dangers of mobile telecommunication  is whether the electromagnetic fields used are genotoxic. If the fields had the potential to  damage  genetic  substance  directly,  they  would  not  only  amplify  the  effects  of  other  carcinogenic  teratogenic  or  mutagenic  substances,  but  they  would  induce  these  effects  themselves. A direct genotoxic effect of electromagnetic fields with frequencies as they are  used for mobile telecommunications has been thought to be not likely in the past (Brusick  et  al.  1998,  Moulder  et  al.  1999,  Repacholi  1997,  Repacholi  1998,  Saunders  et  al.1991,  Verschaeve 1995, Verschaeve & Maes 1998). The reasons for this assumption were on the  one  hand  that  the  quantum  energy  contained  in  EM  field  in  the  radio  and  microwave  range was not sufficient to break molecular bonds. This assumption is no longer tenable  after the experiments of Bohr et al. (*1997) and Bohr & Bohr (*2000) (see also chapter 3.3).  On the other hand, it was argued that there was a large number of experiments showing  no  genotoxic  effects.  Our  list  of  papers  in  Annex  A,  Table  A.1  shows  however,  that  the  much debated findings of the work of Lai & Singh (*1995), in which the direct damage of  DNA (single strand and double strand breaks) has been proven, have been confirmed by  a  whole  range  of  other  studies,  some  by  the  same  laboratory,  but  also  by  other  groups  (*Lai  &  Singh  1996,  1997,  *Phillips  1998,  *Sarkar  1994).  A  study  by  Varma  &  Traboulay  (1977)  on  the  effect  of  HF  fields  on  pure  DNA  had  already  resulted  in  hints  of  direct  genotoxic effects, however, this experiment used a relatively high power flux density and  therefore  significant  warming  may  have  occurred,  at  least  locally.  Lai  and  Singh  (*1997)  found  that  the  dispensation  of  melatonin  and  N‐Tert‐Butylalpha‐Phenylnitron  (PBN)  before  the  EMF  exposure  prevented  the  occurrence  of  DNA  breaks.  Melatonin  captures  free radicals and for PBN it has been proven that it protects cells from cell death induced  by free radicals.   In Appendix Table A.1 we also list the experiment of Meltz et al. (*1987) and Stagg et al.  (*1997) which examined the influences of EMF fields on the DNA repair mechanisms and  the DNA synthesis.  12 Mobile Telecommunications and Health
  • 17. The term chromosome aberration sums up all anomalies of the DNA double strand level  with  respect  to  chromatids  and  chromosomes.  Examples  for  structural  chromosome  aberrations  are:  chromatid  and  chromosome  breaks,  chromatid  gaps,  acentric  fragments  as well as di‐ and tetracentric chromosomes.  Chromosome aberrations have been observed in a multitude of experimental conditions,  in  vivo  as  well  as  in  vitro  (Table  A.1).  Maes  et  al.(*1997)  found  a  rise  of  chromosome  aberrations  in  human  lymphocytes  in  workers  who  were  professionally  exposed  to  radiation  from  mobile  equipment,  but  also  in  experiments  with  human  blood  under  controlled  exposure  conditions  (GSM  base  station,  15  W/m²,  exposure  time  of  2  hours).  However, this was the only study so far which used the actual fields of a real base station.  The incidence of micronuclei indicates whether the distribution of chromosomes into the  daughter nuclei after a cell division has been normal and complete. A number of studies  have  proven  a  higher  incidence  of  micronuclei  under  the  influence  of  HF  EMF  fields,  which  is  interpreted  as  an  indication  for  chromosome  damage  (Table  A.1).  With  one  exception,  the  frequencies  were  all  over  1  GHz  and  in  most  cases  the  intensities  were  relatively high.  For  the  incidence  of  sister  chromatid  exchange  as  a  measure  for  damage  at  DNA  single  strand level, only very few studies using typical mobile frequencies and intensities have  been  done  so  far  (Table  A.1).  Maes  et  al.(*1996)  found  that  the  radiation  of  a  GSM  base  station  (954  MHz,  217  Hz,  duration  of  exposure:  2  hours)  raises  the  genotoxic  effects  of  Mitomycin C significantly, demonstrated via the sister chromatid exchange.  Genetic  damage  can  lead  to  cell  mutation  with  possibly  damaging  effects  for  the  living  organism. Mutations which promote faster cell division will be discussed in chapter 4.3.  Table A.1 shows in its last block some studies which focussed on the evidence of changes  in  the  genetic  materials  which  manifest  themselves  as  changed  properties  within  the  organism.  4.2 Cellular Processes 4.2.1 Gene-Transcription and Gene-Translation The  code  of  the  DNA  controls  protein  synthesis  in  the  ribosomes  via  the  RNA.  The  creation  of  RNA,  i.e.  the  imprinting  of  genetic  information  happens  in  the  cell  nucleus  (transcription). The encoded information is transported via messenger‐RNA (M‐RNA) to  the ribosomes and is read there with the help of Transfer RNA (t‐RNA). According to the  transmitted  code,  proteins  are  subsequently  synthesized.  This  process  of  synthesis  is  called translation. Since one m‐RNA chain can be used by several ribosomes, the rate of  synthesis  of  the  corresponding  protein  can  be  a  lot  higher  than  that  of  the  m‐RNA.  Mistakes made during the genetic transcription can thus be ‘raised to a higher power’ at  the protein level.  In  the  first  block  of  Appendix  Table  A.2,  we  list  several  recent  studies  which  demonstrated  changes  of  gene  transcription  and  translation  under  the  influence  of  electromagnetic  fields  of  mobile  telecommunications.  Fritze  et  al.  (*1997)  observed  Mobile Telecommunications and Health 13
  • 18. changed gene transcription in certain areas of the brains of rats which had been exposed  to the field of a GSM phone for four hours.   In  an  in  vitro  experiment,  Ivaschuk  et  al.  (*1997)  exposed  cells  to  a  pulse  modulated  HF  field (836.55 MHz, TDMA 50Hz) and afterwards extracted and analysed the entire cellular  RNA.  This  showed  statistically  significant  changes  with  regards  to  the  transcription  of  the  response  gene  c‐jun  (90W/m²,  duration  of  exposure:  20  minutes),  however  no  changes  with  regards  to  c‐fos.  The  results  of  the  experiments  by  Goswami  et  al.  (*1999)  found  a  evidence for an influence on the transcription of the response gene c‐fos by a similar field,  whilst for c‐jun and c‐myc, no statistically significant effect was observed. The intensities  at  which  effects  on  gene  translation  had  been  observed  were  well  below  the  values  at  which thermal effects would occur in mammals.  4.2.2 Membrane Function There is a large number of experimental evidence that high frequency fields, non‐pulsed  and  pulsed  can  affect  different  properties  of  the  ion  channels  in  cell  membranes,  for  example  in  the  form  of  a  lowering  of  the  rate  of  channel  formation  or  the  reduction  of  frequency  of  the  opening  of  individual  channels  (Repacholi  1998).  The  frequency  of  openings of ion channels which are activated by acetylcholine was significantly lowered  by a microwave field (10.75 GHz) with a power flux density of a few μW/cm². (*D’Inzeo et  al.1988).  Changes  of  the  membranes  as  a  whole  have  also  been  observed  under  the  influence of weak fields. Thus, Phelan et al. (*1992) observed that a 2.45 GHz field, with a  pulse  modulation  of  100  Hz  could  trigger  a  phase  transition  from  liquid  to  solid  in  melatonin containing cells after an exposure of 1 hour at a SAR of 0.2 W/kg.  4.2.3 Signal Transduction Ca2+  The  divalent  Calcium  cation  Ca2+  plays  an  important  role  in  the  cell‐signal‐transduction:  regulating the energy output, the cellular metabolism and the phenotypical expression of  cell characteristics.    The signal function of the Ca2+ is based on a complicated network of cellular channels and  transport mechanisms, which maintains the Ca2+ concentration within the cell at a lower  level  than  outside,  but  which  is  also  linked  to  dynamic  reservoirs.  This  allows  the  transduction  of  extracellular  signals  (hormones,  growth  factors)  as  Ca2+  peaks  in  the  cytosol,  transmitting  information  encoded  in  their  intensity  and  frequency.  It  is  known  that  this  signal  process  can  be  disrupted  by  a  variety  of  toxic  chemicals  in  the  environment, which can lead to cell damage and even cell death (Kass & Orrenius 1999).  Studies by Bawin et al. (*1975) and Blackman et al. (*1979) showed very early on in vitro  experiments that the Ca2+ balance of nerve cells and brain tissue can be disrupted by HF  fields with low frequency amplitude modulations.  14 Mobile Telecommunications and Health
  • 19. Both studies worked with amplitude modulated 147 MHz fields (with intensities ranging  from  5  to  20  W/m2).  The  maximum  effect  occurred  at  a  modulation  frequency  of  16  Hz.  Experiments  conducted  by  Dutta  et  al.  (*1984  *1989)  and  Lin‐Liu  &  Adey  (*1982)  also  showed significant dependence on the modulation frequencies, in some cases at Specific  Absorption Rates of as low as 0.5 W/kg. Equally, Somosy et al. (*1993) found that an effect  on the distribution of Ca in intestinal cells is only possible within a field modulated with a  low  frequency.  Wolke  et  al.  (*1996)  observed  in  their  experiment  on  myocytes  that  exposure to fields with mobile‐like carrier frequencies of 900 MHz and 1800 MHz resulted  in lower intracellular concentrations of Ca2+  for all modulation frequencies (16 Hz, 50 Hz,  217 Hz, 30 KHz) compared to exposures to a continuous 900 MHz field or no exposure at  all. A statistically significant effect was only found with the combination of a carrier wave  of  900MHz  and  a  modulation  frequency  of  50  Hz.  The  Specific  Absorption  Rate  for  this  experiment  was  between  0.01  and  0.034  W/kg,  far  below  the  range  which  might  be  relevant for ‘thermal’ effects.  Enzymes  Protein  kinases  are  enzymes  with  the  property  to  phosphorylate  other  enzymes  or  proteins.  Phosphorylation,  a  covalent  modification  by  addition  of  a  phosphate  group,  changes the activity or function of a protein. The protein kinases play an important role in  the  transmission  of  information  from  the  membrane  receptors  for  hormones  and  cytokines  into  the  interior  of  the  cell,  and  thus  in  the  regulation  of  many  intracellular  processes  such  as  glucose  and  lipid  metabolisms,  protein  synthesis,  membrane  permeability, enzyme intake and transformation by viruses.  An  amplitude  modulated  450  MHz  field  is  capable  of  decreasing  the  activity  of  protein  kinases which are not activated by cyclical Adenosine monophosphate. Byus et al. (*1984)  showed  that  the  degree  of  inactivity  depended  on  the  exposure  time  as  well  as  the  modulation frequency. Maximum effects occurred at exposure times of 15 to 30 minutes  with a modulation frequency of 16 Hz.  The  enzyme  ornithine  decarboxylase  (ODC)  determines  the  speed  of  the  biosynthesis  of  polyamines.  Polyamines  are  needed  for  DNA  synthesis  and  cell  growth.  ODC  is  also  activated  in  relation  to  carcinogenesis.  The  control  of  OCD  activity  from  the  exterior  is  facilitated via processes on the cell membrane. Byus et al. (*1988) exposed three different  cell  types  (rat  hepatoma  cells,  egg  cells  of  the  Chinese  hamster,  human  melanoma  cells)  for  one  hour  to  a  450  MHz  field  with  a  16  Hz  amplitude  modulation  and  a  power  flux  density  of  10W/m2.  The  exposure  raised  ODC  activity  by  a  little  more  than  50%.  The  heightened  ODC  activity  remained  for  several  hours  after  the  exposure.  Similar  fields  with a 60 Hz and a 100 Hz modulation had no effects. Another study (*Penafiel et al. 1997)  observed  heightened  ODC  activity  after  the  radiation  of  L929‐cells  of  mice  with  a  835  MHz field which had been amplitude modulated at 60Hz or pulse modulated at 50Hz. No  effects  whatsoever  were  observed  with  an  analogue  mobile  phone,  a  frequency  modulation at 60 Hz and a speech amplitude modulation. This last finding confirms other  results by the same group, according to which a minimum coherence time of 10 seconds  of  the  field  needs  to  be  present  for  an  effect  on  ODC  activity  to  manifest  (*Litovitz  et  al.1993,  1997,  see  also  Glaser  1998  and  Litovitz  1998).  The  coherence  time  of  speech  modulated fields however is shorter than a second.  Mobile Telecommunications and Health 15
  • 20. Further  important  proof  that  low  frequency  modulation  has  a  determining  influence  on  the effects of electromagnetic fields on enzyme activity was found by Dutta et al. (*1994):  They compared the effects of a low frequency modulated 147 Hz field (0.05 W/kg) and a  combined low frequency electric and magnetic field (ELF EM, 21.2V/97nT). A continuous  high  frequency  field  only  had  a  small  effect  (3.6  per  cent)  on  the  activity  of  enolase  in  Escheria Coli, a 16 Hz modulated field led to an increase in activity of nearly 62 per cent, a  60 Hz modulated field led to a decrease of activity of 28.5 per cent. At ELF‐EM a similar  response  could  be  observed:  increase  of  enzyme  activity  by  more  than  59  per  cent  at  a  frequency of 16 Hz and decrease of 24 per cent at 60 Hz. The results of the experiments by  Behari  et  al.(*1998)  point  in  the  same  direction.  They  found  that  a  30  to  35  day  long  exposure  of  rats  to  amplitude  modulated  fields  (6.11  –  9.65  W/kg)  led  to  a  significant  increase  in  Na+‐K+‐ATPase  activity,  which  was  independent  from  the  carrier  frequency,  but  characteristically  dependent  on  the  modulation  frequency,  because  the  effect  was  always stronger at a 16 Hz modulation than at a 76 Hz modulation.  4.2.4 Cell Cycle An undisrupted signal transduction or efficient cell cycle control mechanisms which are  capable  of  correcting  false  information  or  facilitating  repairs  are  the  prerequisite  for  cell  cycle progression if the genomic integrity of the cell is to be maintained (Shackelford et al.  1999).  Disturbances  of  the  DNA  replication  can  lead  to  detrimental  mutations  and  as  a  consequence  to  cell  death  or  in  multicellular  organisms  to  cancer.  The  causes  for  irregularities  in  the  course  of  the  cell  cycle  are  almost  always  to  be  found  in  mistakes  during signal transduction and/or the failure of control mechanisms.  In Appendix Table  A.2. we list studies which examined disruption of the cell cycle. The  only in vivo experiment is the one by Mankowska et al. (*1979) which also used intensities  as they are found in the environment of real emitting equipment. Statistically significant  increases  of  disrupted  metaphases  with  uni‐,  quadri‐  and  hexavalencies  were  demonstrated in this study from a power flux density of 5 W/m2.  Cleary et al. (81996) found in their experiment that 2.45 GHz fields are roughly twice as  effective  as  27  MHz  fields  when  it  comes  to  the  triggering  of  cell  cycle  disturbances.  Whilst the 27 MHz fields had no influence on the G2/M phase of egg cells of the Chinese  hamster, disturbances of all phases were observed in a 2.45 GHz field.  4.3 Cell Transformation and Cell Proliferation In  vitro  experiments  of  the  effects  of  high  frequency  fields  on  the  rate  or  division  or  the  rate  of  proliferation  of  cells,  expressed  in  the  proliferation  rate  and  the  (neoplastic)  transformation of cells can offer important findings with regards to possible carcinogenic  effects of the fields. The adverse influences of the fields which could not be prevented by  the cell’s own repair mechanisms manifest themselves in disrupted cell proliferation and  cell transformation rates.  Table A.3 gives an overview of the studies, in which the effects of high frequency fields on  cell transformation and cell proliferation rates were the focus of the examinations.  16 Mobile Telecommunications and Health
  • 21. 4.3.1 Cell Transformation Balzer‐Kubiczek  &  Harrison  (*1985,  *1989,  *1991)  found  an  increase  in  neoplastic  transformations in cells which had been exposed in vitro to a high frequency field with a  low  frequency  pulse.  The  effect  depended  on  intensity,  but  was  only  observable,  if  a  tumour promoter (TPA) was added after the exposure.  Czerska  et  al.  (*1992)  found  that  low  frequency  pulsed  microwave  radiation  (2.45  GHz)  increased  the  rate  of  transformation  of  small  inactive  lymphocytes  into  large  activated  lymphoblasts. Continuous radiation could trigger this effect only at power flux densities  that also led to measurable warming.  However, the experiments with pulsed radiation which triggered the cell transformation  at power flux densities, for which a homogenous warming can be ruled out, showed that  homogenous warming cannot be responsible for this effect.  4.3.2 Cell Communication Disrupted communication between transformed cells and normal cells plays an important  role  in  tumor  promotion.  Cain  et  al.  (*1997)  co‐cultivated  transformed  cells  with  normal  cells. The co‐culture was exposed for 28 days to a TDMA (50Hz) modulated 836.55 MHz  field  as  well  as  to  the  tumor  promoter  TPA  in  various  concentrations.  At  power  flux  densities of 3 and 30 W/m2, which corresponded to Specific Absorption Rates of 1.5 and 15  mW/kg, they did not find a statistically significant difference of focus formation between  the exposed and the control cultures for any of the TPA concentrations. The data for the  lowest intensity (0.3 W/m2/0.15 mW/kg) show for two of the three TPA concentrations that  there was a small but statistically significant difference in the number of foci, and for the  lowest TPA concentration also for the surface and density of the foci.  4.3.3 Cell Proliferation Anderstam  et  al.  (*1983)  found  in  their  experiments  with  bacteria  that  some  strains  reacted  to  the  exposure  with  an  amplitude  modulated  2.45  GHz  field  (500Hz,  35  to  100  W/kg)  with  an  increased  proliferation.  Also  for  some  species,  the  number  of  mutations  and  the  frequency  of  mutations  were  increased.  These  results  were  confirmed  by  Hamnerius et al. (*1985) amongst others. Grospietsch et al. (1995) found similar results for  150 MHz fields with several amplitude modulations.  Cleary et al. (*1990 a,b) demonstrated on human lymphocytes and on Glioma cells that the  rate of cell division was increased after exposure with a continuous 2.45 GHz field. In a  newer  experiment,  the  same  effect  could  be  observed  for  exposures  with  a  pulse  modulated field of the same carrier frequency (*Cleary et al. 1996).  In  the  first  of  the  two  experiments  which  were  conducted  with  fields  displaying  all  the  characteristics  of  real  pulsed  mobile  emissions  (see  also  Table  A.3),  an  increased  DNA  synthesis rate was observed, but no faster proliferation of the examined cells was found.  (*Stagg  et  al.  1997).  In  the  second  experiment,  at  similarly  low  intensities  (0.0021  W/kg)  however,  transmitted  by  a  GSM  modulated  960  MHz  wave,  an  increase  of  the  cell  Mobile Telecommunications and Health 17
  • 22. proliferation rate was found (*Velizarov et al. 1999). The EMF exposure in this experiment  was  conducted  at  two  different  temperatures,  which  also  applied  to  the  relating  control  cultures. The increase of the proliferation rate only happened in the exposed cell cultures.  Similar  experiments  to  prove  that  microwaves  and  ‘conventional’  heat  have  different  effects, were conducted by La Cara et al. (*1999) on a thermophile bacterium, in which the  radiation  with  a  10.4  GHz  field  led  to  an  irreversible  inactivation  of  the  thermostable  enzyme  ß‐galactosidase,  whilst  heating  in  a  water  bath  had  no  effect.  This  result  confirmed the results of Saffer & Profenno (*1992) which had worked with frequencies in  the lower GHz range.  18 Mobile Telecommunications and Health
  • 23. 5 Patho-Physiological Effects 5.1 Immune System The  immune  system  plays  a  central  role  in  the  protection  against  infectious  micro‐ organisms in the environment and, also, against several kinds of cancer cells. Experiments  on hamsters, mice and rats found, amongst other things, that there was a reduction in the  activity of natural killer cells and an increase in macrophage activity (see e.g. Yang et al.  1983; Ramo Rao et al. 1983; Smialowicz et al. 1983). However, the majority of experiments  on living animals were carried out at power flux density levels that produced an increase  in body temperature of more than 1oC. On the other hand, it was observed in parallel in  vitro  experiments,  that  in  vitro  heating  of  macrophages  did  indeed  lead  to  increased  activity; the effect was, however, weaker than that of the in vivo radiation which produced  the same temperature (Ramo Rao et al. 1983).   Elekes et al. (*1996) observed that, after exposing mice for a period of 3 hours per day over  several  days  using  microwaves  (2.45  GHz)  with  a  power  flux  density  of  1W/m2  (SAR  =  0.14 W/kg), there was an increase in antibody‐producing cells in the spleen of about 37%  with continuous radiation and around 55% with amplitude‐modulated radiation.  In  contrast  to  the  in  vivo  experiments,  numerous  in  vitro  experiments  were  carried  out  with  intensities  at  which  an  effect  due  to  warming  can  be  excluded.  Thus,  Lyle  et  al.  (*1983) observed an inhibition of cytotoxicity of T‐Lymphocytes in the mouse with a 450  MHz field that was amplitude modulated with various frequencies in the range between  3Hz to 100 Hz. The effect that was demonstrated with a relatively low power flux density  of 15 W/m2 was greatest at the 60 Hz modulation. The inhibition of cytotoxic effectiveness  of  the  irradiated  lymphocytes  declined  continually  for  both  the  lower  and  higher  modulation frequencies.   The  tables  in  Appendix  A  list  further  experiments  with  (human)  leucocytes  in  which  damaging  effects  were  proven  at  non‐thermal  power  flux  density  levels,  especially  also  with low frequency amplitude modulated fields.   The  work  of  Maes  et  al.(*1995)  deserves  special  consideration.  In  an  in  vitro  experiment  with  human  leucocytes  at  a  GSM  base  station  and  also  in  the  examination  of  the  lymphocytes in the blood of workers who were exposed to the fields of the mobile phone  base  stations  during  maintenance  work,  they  found  that  there  was  an  increase  in  chromosome  damage  (chromatid  breakage,  acentric  fragments  and  some  chromosome  breaks).   5.2 Central Nervous System 5.2.1 Blood Brain Barrier The brain of mammals is protected from potentially dangerous materials in the blood by  the  blood  brain  barrier,  a  specialized  neurovascular  complex.  The  blood  brain  barrier  Mobile Telecommunications and Health 19
  • 24. functions as a selective hydrophobic filter that can only be easily passed through by small  fat‐soluble molecules. Other non fat‐soluble molecules, e.g. glucose, can pass through the  filter with the help of carrier proteins that have a high affinity for specific molecules.  It is known that a large number of disorders of the central nervous system are caused by  disturbances of the barrier function of the blood brain barrier (*Salford et al. 1994).  Severe  warming  of  the  brain  can  lead  to  an  increased  permeability  of  the  blood‐brain  barrier  for  those  materials  whose  passage  should  actually  be  prevented.  The  results  of  first  experiments  with  high  frequency  fields  of  high  intensity,  which  led  to  a  higher  permeability  of  the  blood  brain  barrier,  were  then  interpreted  as  a  consequence  of  warming by the HF radiation.  However, Appendix Table B.1 lists a whole series of studies in which a greatly increased  permeability  of  the  blood  brain  barrier  was  produced  through  pulsed  high  frequency  fields  of  very  low  intensity  (*Oscar  &  Hawkins  1977,  *Neubauer  et  al.  1990,  *Salford  et  al.1994,  *Fritze  et  al.1997)  amongst  others  with  carrier  frequencies  and  modulation  frequencies which corresponded to those of mobile telephony (GSM).  5.2.2 Neurotransmitters Pulsed  and  continuous  high  frequency  fields  of  low  intensity  may  lead  to  chemical  changes in the brain. Inaba et al. (*1992) exposed rats to a continuous 2.45 GHz field with  a power flux density of between 50 to 100 W/m2 and found a significant reduction in the  Noradrenalin  content  of  the  Hypothalamus,  whilst  the  two  other  neurotransmitters  Dihydroxyphenylacetic  acid  and  5‐Hydroxyindolacetic  acid  were  found  in  the  pons  and  medulla  oblongata  in  significantly  increased  concentrations.  The  radiation  did  not  produce significant changes in the dopamine or serotonin concentrations.  Lai et al. (*1987, 1989 a, b, see above Lai et al. 1988) found also in experiments using rats  that a 2.45 GHz field modulated with 500 Hz pulse‐modulation influences brain activity,  especially  in  the  frontal  cortex  and  the  hippocampus,  via  the  most  important  parasympathetic neurotransmitter acetylcholine. It could be demonstrated that the effect  was  related  to  the  exposure  duration.  A  45  minute  exposure  duration  led  to  significant  reductions in choline‐uptake, the reduction to 20 minutes exposure produced a significant  increase. A similar behaviour was found in animals also as a reaction to stress through the  reduction of the freedom of movement and through acoustic white noise.  5.2.3 Electroencephalogram (EEG) In  contrast  to  the  neuroendocrine  effects,  which  can  barely  be  measured  directly  in  the  brain of humans, EEG studies can be carried out relatively easily. Several valid studies of  that kind do now exist.  Most animal experiments have limited validity, since they were carried out with relatively  high  power  flux  density  values  (see  e.g.  Chizhenkova  1988:  2.397  MHz,  cw,  400  W/m2,  Chizhenkova & Safroshkina 1996: 799 MHz, cw, 400 W/m2, Thuroczy et al. 1994; 2.45 GHz,  AM 16 Hz, 100 W/m2).  20 Mobile Telecommunications and Health
  • 25. One  of  the  few  exceptions  are  the  studies  by  Vorobyov  et  al.  (*1997),  who  observed  an  increase  on  the  left‐right  symmetry  in  the  EEG  in  rats  that  were  exposed  to  a  945  MHz  field (AM, 4Hz, 1 to 2 W/m2, within the first 20 seconds after the start of the exposure.  Early  experiments  by  von  Klitzing  (1995)  with  EEG  recording  during  the  exposure  of  subjects  to  pulsed  high  frequency  fields,  that  were  similar  to  those  of  mobile  telephone  fields  (150  MHz,  217  Hz,  power  flux  density  in  the  pulse  in  the  brain  at  a  6  cm  depth  below  10‐2  W/m2),  found  changes  in  the  awake  EEG,  these  were  called  into  question  because of insufficient documentation.   In later experiments however, a clear effect was demonstrated in the awake and sleeping  EEGs.  Reiser  et  al.  (*1995)  observed,  both  with  exposures  to  a  150  MHz  field  (modulated  frequency  9.6  Hz,  peak  power  0.5  mW,  4  cm  distance,  near‐field  conditions)  and  also  in  the field of a mobile telephone (902 MHz, modulation frequency 217 Hz, peak power 8W,  40 cm distance), a significant increase in the energy in the EEG frequency bands ‐ Alpha,  Beta 1 and Beta 2.  Experiments by Röschke & Mann (*1997) resulted in no significant difference in the EEGs  for exposed and sham‐exposed subjects under short exposure conditions (3.5 minutes, 900  MHz,  GSM,  0.5  W/m2).  However,  the  peak  of  approx.  9Hz  in  the  presented  averaged  power density spectra of exposed subjects was clearly lower and narrower than for non‐ exposed subjects. The same authors (*Mann & Röschke 1996) demonstrated again in the  field  of  a  GSM  mobile  telephone  (8W,  distance  40  cm  power  flux  density  0.5  W/m2),  a  reduction  of  the  time  taken  to  fall  asleep  and  a  statistically  significant  reduction  of  the  duration and the proportion of the REM sleep. Furthermore, the spectral analysis revealed  an increased power density of the EEG signal during REM sleep above all in the ‘Alpha’  frequency  band.  The  REM  suppressive  effect  and  the  reduction  of  the  time  taken  to  fall  asleep were also confirmed by the same research team (*Mann et al.1997, *Wagner et al.  1998).  The  study  carried  out  in  1997  also  found  a  significant  increase  in  the  cortisol  concentration  in  the  blood  of  humans  exposed to  a 900  MHz/217  Hz  field  with  a power  flux density value of 0.2 W/m2. Systematic deviations were also observed for the Growth  Hormone and Melatonin levels, but these did not reach significance level.  Whilst  in  the  previously  cited  studies,  changes  in  the  sleep  EEG  could  be  demonstrated  only  as  a  consequence  of  the  influence  of  mobile  telecommunications  fields  for  several  hours, Borbély et al. (1999) were able to demonstrate that changes in sleep were already  occurring after 15 to 30 minutes exposure. This research team used also a 900 MHz field,  which  could  be  selectively  pulse‐modulated  with  either  2,  8,  217  or  1736  Hz.  As  in  the  other experiments, a statistically significant reduction in the proportion of REM sleep was  found at a Specific Absorption Rate of less than 1W/kg. In addition, the waking‐up phase  was noticeably reduced.  Freude  et  al.  (*1998,  see  also  Henschel  et  al.  1999)  examined  the  effect  of  the  radiation  from mobile telephones on slow brain potentials.  Slow  brain  potentials  are  event‐correlated  brain  potentials  that  arise  during  the  preparation  for  motor  action  and/or  information  processing.  Changes  in  the  slow  brain  Mobile Telecommunications and Health 21
  • 26. potentials  give  an  indication  about  the  influences  on  specific  aspects  of  human  information  processing.  Freude  et  al.  found  that  the  fields  of  a  mobile  telephone  (916.2  MHz,  217  Hz,  SAR  0.882‐1.42  W/kg,  exposure  time  3  to  5  minutes)  led  to  a  statistically  significant  decrease  of  the  slow  readiness  potentials  for  specific  tasks,  in  specific  brain  areas.   5.2.4 Cognitive Functions Impairments  of  the  brain,  e.g.  by  modification  of  the  choline‐uptake,  can  be  expected  to  cause learning deficits. These were demonstrated in many learning experiments, in which  rats were previously exposed to pulsed microwave fields (*Lai et al. 1989, 1994; *Wong &  Lai 2000, see above D’Andrea 1999 for older studies). In the study by Lai et al. (*1994), rats  were exposed for 45 minutes to a 500 Hz pulsed 2.45 GHz field with a power flux density  of 10 W/m2. This intensity resulted in a mean whole body SAR of 0.6 W/kg. Following the  exposure, the starved rats were placed in a labyrinth with several arms in which food was  placed.  The  researchers  measured  how  effectively  the  ‘exposed  rats’  and  the  ‘sham‐ exposed rats’ searched the labyrinth for food. For the ‘exposed’ group, significantly more  failed attempts were observed, i.e. searching already emptied labyrinth arms. The authors  attributed  the  low  performance  of  the  ‘exposed’  rats  to  deficits  in  spatial  memory.  The  ‘handicap’ of the EMF exposure could be levelled out in a follow‐up experiment, in which  the rats were given either the acetylcholine agonist Physostigmin or the opiate antagonist  Naltrexone  before  their  exposure.  According  to  the  authors,  these  findings  are  confirmation of their results from previous studies (see above), in which they had found  that  high  frequency  electromagnetic  fields  influence  cholinergic  and  endogenous  opioid  neurotransmitter systems in the brain and that this effect can lead to memory deficits. In  the meantime, the effect has been confirmed by other experiments (Mickley & Cobb 1998).   In a further experiment (*Wang & Lai 2000), rats were trained over several sessions to find  a platform situated just under the water surface inside a round water basin. Subsequently,  they were exposed to pulsed microwave radiation for an hour (2.45 GHz, 500 pulses per  second, mean power flux density 2W/m2, mean whole‐body SAR 1.2 W/kg). Testing was  then  carried  out  to  determine  how  long  the  ‘exposed  rats’  needed  to  find  the  platform  from  different  starting  positions,  compared  to  the  ‘non‐exposed  rats’  or  ‘sham‐exposed  rats’.  The  ‘exposed  rats’  clearly  required  longer  for  this,  as  they  spent  significantly  less  time  in  the  correct  quadrant  of  the  water  basin.  Finally,  the  recorded  traces  of  the  swimming lanes used by the ‘exposed animals’ differed from those of the control groups,  this  suggests  that  different  strategies  were  used  when  searching  for  the  platform.  This  result  confirms  the  findings  from  other  studies  that  pulsed  high  frequency  fields  can  influence specific aspects of memory performance.   The effects of a 600 MHz field on the memory of rats were also demonstrated by Mickley  et al. (*1994). In this experiment, the capacity of the animals to recognize familiar objects  was measured in relation to the radiation they received. Whilst the ‘non‐exposed control  animals  and  also  the  animals  who  were  exposed  to  a  SAR  of  0.1  W/kg  occupied  themselves  for  longer  with  a  novel  object  compared  to  a  familiar  object,  the  higher  exposed animals spent just as much time examining an actually familiar object as with a  22 Mobile Telecommunications and Health
  • 27. novel object. The limit for this exposure dependent change in behaviour was between 0.1  and 1.0 W/kg   The lowest SAR so far which has been shown to have an effect on cognitive functioning in  rats  was  0.072  W/kg.  However,  in  this  experiment,  pulses with  a  peak  of  more  than  700  MW (megawatts) were used (Raslear et al. 1993). The low SAR in this case resulted only  from averaging over time with a very low pulse repetition rate of 0.125 pulses per second  and a pulse width of only 80 nsec.  It  has  been  shown  in  experiments  by  Preece  et  al.  (*1999)  that  fields  like  those  used  in  mobile telephony can influence cognitive functions of the brain. In this study, 36 subjects  were subjected to a 915 MHz field of a simulated mobile telephone. The field was overlaid  either with a 217 Hz sinusoidal modulation or a 217 Hz pulse modulation. In the analogue  simulation  the  net  forward  power  was  about  one  Watt,  and  in  the  digital  simulation  it  was  0.125  Watt.  Under  the  conditions  ‘Exposure  to  analogue  field’,  ‘Exposure  to  digital  field’  or  ‘Sham  exposure  without  any  field’,  each  of  the  test  persons  had  to  carry  out  several tests to measure ability to react and various tests of memory performance. In both  exposed  groups  there  was  a  slight  but  statistically  significant  decrease  in  reaction  time,  which was more marked for ‘Analogue exposure’ than for ‘Digital exposure’.  5.3 Hormone Systems 5.3.1 Stress Hormones Environmental  pollution  can  act  as  a  stressor  on  the  body,  like  physical  and  mental  stressors,  and  cause  ‘alarm  reactions’.  Such  reactions  are  associated  with  hormonal  changes.  The  presence  of  a  stress‐situation  can  be  proved  by  the  presence  of  hormones  like  adrenocorticotropin  [the  adrenocorticotrophic  hormone]  (ACTH),  cortisol  and  corticosterone in the blood, and also to a lesser extent by changes in the concentration of  prolactin and growth hormone.  Electromagnetic fields can clearly cause stress reactions in animals used for experiments.  Thus, the experiment by Imaida et al. (*1998a) on rats that were exposed for a duration of  90 minutes daily over a period of 6 weeks to a field with a carrier frequency of 929.9MHz  and a 50 Hz pulse modulation, showed a statistically significant increase in the ACTH and  corticosterone levels. The whole‐body SAR value in this experiment was between 0.58 and  0.8 W/kg. The exposure in the 1.439 GHz field, equally with a 50 Hz pulse modulation and  a SAR value between 0.453 and 0.680 W/kg had the same effect (*Imaida et al. 1998b).  Chou et al.(*1992) exposed rats in a long‐term experiment (25 months) to 800 MHz pulse‐ modulated  2.45  GHz  field  that  led  to  a  Specific  Absorption  Rate  of  0.15  to  0.4  W/kg.  Alongside  other  physiological  parameters  the  corticosterone  profile  was  regularly  measured  for  the  first  half  year  of  the  experiment.  Whilst  the  hormone  profile  of  the  exposed  animals  and  the  non‐exposed  animals  were  practically  identical  in  the  later  stages  of  the  experiment,  with  the  exception  of  a  slight  increase  in  the  sham‐exposed  group of animals in the third phase of the experiment, the first examination after 6 week’s  exposure  showed  a  statistically  significant  increase  in  the  corticosterone  profile  in  the  blood of the exposed animals.  Mobile Telecommunications and Health 23
  • 28. The  authors  report  that  their  attempt  to  replicate  this  effect  produced  no  statistically  significant results, however, only 20 animals were tested in this second experiment whilst  the actual series of experiments contained 200 animals.   A  similarly  extensive  experiment  on  rats  like  that  of  Chou  et  al.  However,  with  an  unmodulated 435 MHz field showed no difference in the concentration of the hormones  ACTH,  corticosterone  and  prolactin  between  the  exposed  animals  and  the  non‐exposed  animals (Toler et al. 1988).  The  few  experiments  previously  carried  out  on  humans  do  not  yet  produce  a  clear  picture.  Mann  et  al.  (*1998)  exposed  24  volunteer  subjects  whilst  asleep  to  the  field  of  a  mobile telephone that was transmitted from a separate antenna (900 MHz, 217 Hz, 0.2 W/  m2).  Blood  samples  were  withdrawn  via  a  catheter  whilst  the  subjects  were  asleep  and  they  were  analysed  for,  amongst  other  things,  cortisol  and  growth  hormone  concentrations. There were systematic differences between the ‘exposed subjects’ and the  ‘sham‐exposed  subjects’  during  the  course  of  the  night  for  both  hormones,  which  only  reached statistical significance levels for cortisol.  De Seze et al. (*1998) examined the effect of a GSM mobile telephone (900MHz, 217 Hz) on  subjects  who  were  exposed  to  the  field  for  2  hours  per  day,  5  days  per  week  for  over  a  month.  Based  on  nine  blood  sample  withdrawals  per  week;  amongst  other  things,  the  change in the concentrations of ACTH, growth hormone and prolactin were determined  over time.  The authors’ evaluation of their studies was that at one month, intermittent exposure in  the radio‐frequent field from the mobile telephone had no lasting or accumulative effects  on the hormone secretions from the anterior lobe of the pituitary gland. In their data, it is  however noticeable that that ACTH and prolactin follow a quite similar profile over time:  the  concentrations  started  at  high  initial  values  at  the  start  of  the  exposure  and  then  decreased  in  the  following  3  weeks,  and  they  then  rose  slightly  again.  The  growth  hormone  concentrations  are  very  high  for  the  first  measurements  during  the  exposure  period,  they  then  fall  to  the  pre‐exposure  concentration  levels  and  maintain  these  levels  until  the  end  of  the  experiment.  Possibly,  these  measurements  show  a  temporary  stress  reaction, which reduced in the following weeks.   5.3.2 Melatonin The hormone melatonin, which is produced in the pineal gland, functions as a regulating  hormonal  signal  that  synchronizes  the  endocrine  rhythms  of  all  the  hormone  glands.  It  regulates,  amongst  other  things,  the  daily  cycles  of  ACTH  and  the  cortisol‐release  and  thereby regulates the daily rhythms of many metabolic processes.  Melatonin  also  exerts  influences  (inhibitory)  on  sex  hormones  and  it  has  a  stimulatory  effect  on  the  immune  system.  Melatonin  also  influences  specific  cancer  illnesses  via  the  regulation  of  the  release  of  the  sex  hormones.  In  addition,  melatonin  is  a  free  radical  scavenger,  inactivating  radicals  such  as  OH,  which  amongst  other  things  can  be  dangerous  for  the  genetic  material.  Furthermore,  during  in  vivo  experiments,  it  was  demonstrated that melatonin hinders changes in DNA produced by chemical carcinogens  24 Mobile Telecommunications and Health
  • 29. and it protects lymphocytes from chromosome damage in high frequency electromagnetic  fields (*Lai & Singh 1997).  In  the  previously  described  experiments  carried  out  by  Imaida  et  al.(*1998  a,  b),  it  was  found  that  the  experimental  animals  that  were  exposed  to  a  pulse‐modulated  high  frequency field had a reduced melatonin concentrations in the blood. This finding could  not  be  confirmed  by  Heikkinen  et  al.  (1999),  who  exposed  mice  for  17  months  to  a  900  MHz  field  with  a  217  Hz  GSM  pulse  modulation  (SAR:  0.35  to  1.5  W/kg).  Studies  by  Vollrath  et  al.  (1997)  using  rats  and  hamsters  with  a  900  MHz  field  (217  Hz  GSM,  SAR:  0.04 to 0.36 W/kg) could not contribute much to the clarification of the problem, since in  several  sub‐sets  of  the  experiment  statistically  significant  differences  between  ‘exposed  animals’  and  ‘non‐exposed  animals’  had  been  found,  but  according  to  the  authors  these  resulted from mistakes in the experimental order.  In experiments by Mann et al. (*1997 see above), the stress hormones were measured as  well as the serum melatonin profile. This showed, in the case of the exposed humans, that  for  a  period  of  between  3  to  4  hours  in  the  middle  of  the  night  there  was  an  increase  compared to the control values, but these were not statistically significant according to the  evaluation of the authors.   Mobile Telecommunications and Health 25
  • 30. 6 Pathological Effects 6.1 Results of Experimental Studies 6.1.1 Cancer Carcinogenesis  Carcinogenesis is a multi‐layered process, at the beginning of which is a certain impact on  the  level  of  the  genetic  material.  This  can  be  a  direct  impact  (for  example  ionising  radiation) or an indirect action via the product of a reaction (for example OH radicals). A  direct or indirect interaction with DNA can lead to damage of the DNA or the chromatin  structures  (see  also  Chapter  3).  If  those  damages  are  not  repaired  by  endogenous  processes,  the  damage  will  be  permanent.  Thus,  the  initiated  cell  can,  if  the  immunological control fails, under the influence of hormones and promoters develop into  a pre‐neoplastic focus,  which can then lead to a malignant tumor.  The different steps of  carcinogenesis are summarised in three phases:  ■ Initiation: Triggering of damage on the DNA and mutations on critical genes  ■ Promotion: Increased rate of DNA synthesis and proliferation of transformed cells  ■ Progression: Transition of a pre‐neoplastic focus to a malignant tumor  A  physical  or  chemical  pollutant  can  in  principle  be  effective  in  all  three  phases  of  carcinogenesis.  ■ Initiation:  Triggering  of  direct  DNA  damage  or  of  a  substance  which  causes  DNA  damage, disruption of repair processes of the DNA  ■ Promotion: Promotion of the proliferation of transformed cells  ■ Progression: Suppression of immune‐reactions and promotion of tumor growth  Results from Animal Experiments  In vivo experiments using animals with an inbred genetic predisposition for certain tumor  illnesses or in which animals were injected with cancer cells, yielded very different results  (see  Appendix  C,  Table  C.1).  In  the  majority  of  the  studies,  no  cancer  promoting  effect  of  high frequency electromagnetic fields could be found, or effects were only observed under  certain conditions of exposure (marked in the Table with ‘partly’), and even in those cases  they were often not statistically significant. However, it needs to be noted that many studies  with  negative  results  had  very  short  exposure  times  and  durations  of  the  study  itself  (for  example Chagnaud et al. 1999: 2 weeks, Salford et al. 1993: 2 to 3 weeks) and hence they do  not  have  much  relevance  to  answer  the  question  whether  high  frequency  electromagnetic  fields have carcinogenic potential.  Some  long‐term  studies  have  yielded  results  which  indicate  a  carcinogenic  or  co‐ carcinogenic effect of electromagnetic fields with mobile telecommunications frequencies  26 Mobile Telecommunications and Health
  • 31. if the animals are exposed over a long period of time. (*Repacholi et al. 1997, *Szmigielski  et al. 1982 and *Szudinski et al. 1983). Important in this context is also the study of Chou  et al. (*1992). This study did not find a statistically significant rise in tumors in a particular  organ.  However,  the  exposed  group  developed  not  only  a  higher  number  of  tumors  in  total, but also the number of primary malignant and metastatic malignant neoplasms was  significantly higher in the exposed animals. In their discussion of the results, the authors  point  to  the  fact  that  the  number  of  the  primary  malignant  neoplasms  in  the  exposed  group  compared  to  the  control  group  is  four  times  higher  and  that  this  finding  is  statistically  significant,  but  then  go  on  to  undermine  their  finding  by  quoting  literature,  according  to  which  the  tumor  incidence  of  the  exposed  group  should  still  be  within  the  normal range.  The experiment of Toler et al. (*1997) using animals with a predisposition for chest tumors  did  not  result  in  a  higher  incidence  of  these,  but  the  number  of  ovarian  tumors  was  significantly higher in the exposed group compared to the controls.  The  intensities  at  which  an  increase  in  tumors  was  found  in  animals  were  one  to  two  powers  of  ten  below  the  values  at  which  one  would  expect  a  triggering  of  ‘thermal’  effects. According to the presenting results, low frequency modulation does not seem to  be responsible for the carcinogenic effect.  6.1.2 Infertility and Teratogenic Effects Teratogenesis  Teratogenic effects of a pollutant can – as with the carcinogenic effect – either be caused by  the  triggering  of  a  genetic  defect  or  a  harmful  impact  on  the  foetal  development.  The  formation  of  a  genetic  malformation  during  its  initiation  phase  is  analogous  to  carcino‐ genesis, i.e. teratogenic effects are also caused by direct or indirect impact on the DNA and  disruptions of the endogenous repair mechanisms. Later damages of the foetus can either  be  caused  by  direct  effects  of  the  pollutant  on  the  foetus  or  by  reactions  to  the  pollutant  within the mother’s organism, which would then be passed on to the foetus.  Results from Animal Experiments  A multitude of studies have demonstrated that high body temperatures in mammals lead  to a spermatotoxic and teratogenic effect. Since many studies examining such effects from  high  frequency  electromagnetic  fields  worked  with  intensities  that  were  capable  of  significantly  raising  body  temperature,  it  cannot  be  excluded  that  the  observed  spermatotoxic  and  teratogenic  effects  were  caused  by  a  thermal  effect,  (see  for  example  Berman  et  al.  1982,  1983,  Berman  &  Carter  1984,  Jensh  et  al.  1983a,b,  Kowalczuk  et  al.  1983, Lary et al. 1983, Nawrat et al. 1985, Saunders et al. 1981, 1983, for the results of older  studies, see O’Connor 1980). The results of these studies do not always appear consistent,  however,  this  can  possibly  be  explained  by  a  different  thermal  susceptibility  of  the  different animal species used. In rats for example, a loss of thermally damaged embryos is  often  observed,  whilst  the  birth  of  malformed  animals  is  rare.  Other  mammals  show  a  wider bandwidth between teratogenic and lethal exposures. (Verschaeve & Maes 1998).  Mobile Telecommunications and Health 27
  • 32. However, there are some indications in the literature for teratogenic effects at intensities  that cause no (or, if at all very small) rises in temperature. Magras & Xenos (1997) exposed  mice during six months to a real transmitter. The mice had offspring five times during this  period and a continuous decrease in offspring was found down to irreversible infertility.  The exposure consisted of several radio and TV transmitters in the VHF and UHF bands  and  measured  between  0.00168  and  0.01053  W/m2.  A  repetition  of  this  study  would  be  desirable in order to exclude that the effect was due to problems with the maintenance of  the animals or the screening of the control group.  Khillare and Behari (*1998) found that male rats that had been exposed to a 200 MHz field  (power  flux  density:14.7W/m2,  SAR:1.65  to  2.0W/kg)  during  a  period  of  35  days  for  six  days per week and two hours per exposure day and which were afterwards mated with  unexposed females, produced significantly less offspring that the males in the unexposed  control group.  In an experiment by Akdag et al. (1999) male rats were exposed one hour every day to a  9.45 GHz field (power flux density:2.5W/m2, SAR:1.8 W/kg) during different periods of 13,  26,  39  or  52  days  corresponding  to  one,  two,  three  and  four  cycles  of  the  seminal  epithelium.  At the end of each exposure period the following data were measured and compared to  an  unexposed  control  group:  number  of  sperm  in  the  epididymides,  morphology  of  the  sperm and weight of the testicles, epididymides, seminal vesicles and prostate.   They  found  amongst  other  effects  a  decrease  in  the  number  of  sperm  (statistically  significant  in  the  group  exposed  for  53  days)  and  an  increase  of  abnormal  sperm  (statistically significant in the groups exposed for 26, 39 and 52 days).  A  co‐teratogenic  effect  under  non‐thermal  exposures  with  power  flux  densities  of  10  to  100  W/m2  in  combination  with  cytosine  arabinoside  (CA)  was  found  in  a  study  by  Marcickiewicz et al. (*1986). In the experiment, mice were exposed in utero for two hours  a day to 2.45 GHz from the first to the 18th day of the pregnancy. The field, which alone  was  not  teratogenic,  significantly  increased  the  teratogenic  effect  of  CA.  A  direct  teratogenic effect  of  microwave  radiation  with  a  frequency  of  2.45  GHz  on  the  brains  of  newborn rats was found by Inalösz et al. (*1997). However the authors declared that the  SAR of 2.3W/kg led to a rise of rectal temperature of 1.0ºC.  6.2 Results of Epidemiological Studies Methodological Requirements  In principle, epidemiological studies are an effective instrument to prove potential health  risks of a pollutant under real environmental and exposure conditions. Usually, they are  carried out by comparing statistical data about the incidence of an illness in an exposed  population  as  opposed  to  the  incidence  of  this  illness  in  an  unexposed  population.  The  exact classification of exposure would require the metrological recording of the pollutant  for  all  participants  (exposed  and  unexposed)  during  the  entire  latency  period  of  the  illness. This is often not practicable and for long latency periods, which can usually only  be addressed via retrospective studies, inherently impossible. Under such circumstances it  28 Mobile Telecommunications and Health
  • 33. has to suffice that surrogates are used, for example having a profession which is linked to  a certain exposure or the proximity of the home to an emitting installation. In some cases,  if the emitting installations have been used for a long time in the same mode, it is possible  to extrapolate past exposures from current measurements.  The  quality  of  the  exposure  classification  determines  the  validity  of  an  epidemiological  study. Possible weaknesses, which can lead to wrong results, are:  ■ People are classified as ‘exposed’ or ‘strongly exposed’ although in fact there is no or  only little exposure. An example with regards to high frequency fields is the often‐used  exposure classification on the basis of professional categories, such as radar operators  or  telecommunications  engineers,  for  whom  it  cannot  be  excluded  that  the  main  occupation is a desk job without exposure.   ■ It is assumed that the control group is completely unexposed, although the pollutant is  actually  ubiquitous,  which  will  lead  to  smaller  but  still  potentially  significant  exposures  in  the  control  group.  One  known  example  are  mains  frequency  magnetic  fields,  which  affect  the  immediate  neighbours  of  power  supply  equipment,  but  still  exist  at  non‐negligible  strengths  in  houses  which  are  further  away  from  such  equipment.  Both effects lead to a levelling out between the exposed and unexposed group and hence  to an underestimation of the real health risk posed by the pollutant in question.  Another  weakness  of  epidemiological  studies  can  be  the  presence  of  unrecognized  confounders, i.e. other influences, which also affect the groups studied and influence the  development of the illness. This can be environmental factors, such as exposures to other  pollutants, but also socio‐economic and behavioural factors. If not all potentially relevant  confounders are factored in, the results can be distorted, either towards an overestimation  or an underestimation of the real risk.  The fast development of mobile technology has lead to a double dilemma with regards to  the study of potential risks through epidemiological studies:  ■ For illnesses like cancer with latency periods of many years it is still too early to expect  valid results. If mobile telecommunications are indeed linked to a higher incidence of  cancer, the illness will only have manifested in a few people so far. This should at least  be  valid  for  the  part  of  the  population  whose  exposures  are  from  base  stations  only.  Potentially it could be different for direct mobile phone users, since these are generally  exposed  to  significantly  higher  intensities.  But  also  for  this  group,  at  this  moment  in  time,  we  would  expect  results  from  epidemiological  studies  to  underestimate  the  real  risk.   ■ In  some  years  epidemiological  studies  will  hit  a  different  obstacle:  once  base  stations  cover the entire country and a large proportion of the population use a mobile phone,  it will become difficult to find the necessary unexposed control groups.   Given  this  dilemma,  epidemiological  studies  carried  out  in  the  past  have  a  certain  validity,  even  if  the  exposures  are  not  exactly  the  same  as they  would  be  today  and  the  studies do not always correspond to today’s quality standards.  Mobile Telecommunications and Health 29
  • 34. The Selection of Studies  At the time of finishing this present report there were only two epidemiological studies of  health risks in relation to actual existing mobile telecommunications exposures (*Rothman  at  al.  1996,  *Hardell  et  al.  1999).  However  there  are  a  much  larger  number  of  studies  available, in which the health effects of high frequency electromagnetic fields in humans  were examined (see also Appendix D, Table D.1). Just under a quarter of all results relate  to  exposures  with  low  frequency  pulse  or  amplitude  modulated  high  frequency  fields,  such as they are used for mobile telecommunications, even if the carrier and modulation  frequencies are in most cases not identical with those of mobile telecommunications.  In  Appendix  Table  D.1,  the  examined  illnesses  are  listed  with  their  evaluated  end  point  (incidence or mortality), data describing the exposure situation is given and the quality of  the  exposure  classification  is  assessed.  Finally,  the  result  of  the  study  is  evaluated  as  ‘Relative  Risk’  (RR)  which  includes  the  relevant  risk  factors  in  the  form  of  standardised  mortality  rates,  standardised  morbidity  rates  and  odds  ratios,  and  the  statistical  significance is assessed. For each study we list the value for the highest exposure class or  if  there  was  a  further  differentiation  of  the  examined  groups,  for  example  according  to  occupational groups, the highest found value.  Values  are  considered  statistically  significant  (s.s.)  if  the  value  RR=1  outside  of  the  95%  confidence interval or if p<0.05.  A  statistical  evaluation  of  the  results  presented  in  Table  D.1  can  be  found  in  Table  6.1.  Here,  we  list  for  every  illness  how  many  studies  or  separate  results  are  available,  how  many of these show a relative risk RR >1 and how many are statistically significant.  Almost all the studies, in which the total cancer risk without any differentiation according  to tumor form were examined, showed a risk factor of RR>1. Half of the studies resulted  in statistically significant risk factors with a maximum value of 2.1, which corresponds to  a  doubling  of  the  statistical  risk  to  develop  cancer  from  exposure  to  high  frequency  electromagnetic fields.  A similar picture was found in relation to tumors of the nervous system, especially brain  tumors. Here, the maximum value for relative risk found was 3.4. Eleven of the total of 15  studies yielded a positive result, more than half of which were statistically significant.  The  incidence  of  breast  cancer  in  relation  to  high  frequency  fields  must  be  examined  separately for men and women. All three studies relating to the breast cancer incidence in  women yielded risk factors greater than 1, the statistically significant values were 1.15 and  1.5.  For  men,  risk  factors  of  up  to  2.9  were  found;  however,  not  all  were  statistically  significant.  Of  the  total  of  16  results  for  leukaemia  without  further  differentiation  of  the  illness,  13  were  positive  (RR>1),  more  than  half  of  these  results  were  statistically  significant.  The  highest statistically significant value for the relative risk was 2.85. Amongst the results of  the  differentiated  studies,  the  following  are  notable:  lymphatic  leukaemia  (7  results,  5  positive, 4 statistically significant, RR maximum value: 2.74) and acute myeloic leukaemia  (4 different studies, 3 positive results, 2 statistically significant, maximum RR value: 2.89).  30 Mobile Telecommunications and Health
  • 35. With  regards  to  the  correlation  of  high  frequency  electromagnetic  fields  from  radar  and  other  sources  and  testicular  cancer,  three  studies  have  been  conducted.  All  lead  to  statistically significant risk factors with a maximum value of 6.9.  The studies regarding cardio‐vascular diseases did not result in a clear picture, not least  because of the multitude of the symptoms examined.  All  four  studies  of  fertility  problems  in  relation  to  the  exposure  of  men  to  microwaves  indicate increased risk. In two studies statistically significant risk factors of up to 2.7 were  found.  With  regards  to  irregular  courses  of  pregnancies  and  malformations  in  children  of  mothers  which  had  been  exposed  to  high  frequency  fields,  there  are  a  large  number  of  studies  with  positive  results,  of  which  only  two  fit  into  the  frequency  range  relevant  to  our  report.  Both  of  these  studies  found  statistically  significant  positive  results  with  risk  factors of up to 2.36.  Of  the  studies  of  cancer  risk  of  children  whose  fathers  had  been  exposed  to  electro‐ magnetic fields, only two correspond to the quality criteria required for inclusion into this  report.  Both  indicate  an  increased  risk,  but  only  one  result  is  statistically  significant  at  a  value of RR=2.3. (With regards to the cancer risk of children in correlation to the exposure  of their parents, see also Colt & Blair 1998).  Regarding the disruption of motor functions as well as psychological functions and well‐ being, there is only one valid study for the frequency bands relevant to this report, which  yielded a slightly increased risk factor. However since other studies of transmitters with  frequencies  below  100  MHz  resulted  in  serious  indications  of  increased  risk,  indicating  that this problem should be given more attention in the future, we also included the study  of  Zhao  et  al.  (1994),  although  it  didn’t  meet  our  quality  standards  with  regards  to  the  statistical evaluation.  Unfortunately,  the  majority  of  the  studies  do  not  state  the  actual  strength  of  the  exposures. Measurements are only available for the radio and television transmitter used  for the studies of Hocking et al. (1996) and McKenzie et al. (1998). The mean power flux  densities for all 16 municipalities affected by this transmitter were 3.3 10‐3W/m2 within the  range from 2.6 10‐4 to 1.46 10‐2W/m2  (McKenzie et al. 1998). The ICNIRP guidelines for the  general  population  recommend  a  maximum  value  of  2  to  2.51  W/m2  for  the  range  of  frequencies  emitted  by  this  transmitter  (64.25  to  527.25MHz).  This  means  that  the  exposures in these studies were below the German guidelines by a factor of 10‐4.  Mobile Telecommunications and Health 31
  • 36. Table 6.1 Overview over the results of epidemiological studies with regards to the health risks of high frequency electromagnetic exposures (see also Appendix D, Table D.1) Illness Number of studies (results) Studies (results) with RR>1 Statistically significant results All illnesses 2 0 0 Cancer, unspecified 6 (7) 5 (6) 3 Brain tumours unspecified and tumours of the nervous system unspecified 14 (21) 10 (15) 6 (7) Cancer (eyes) 1 1 1 Cancer of the respiratory organs, lung cancer 5 2 1 Chest cancer, men 2 2 0 Breast Cancer, women 3 3 2 Cancer of the lymphatic and blood forming system unspecified 4 4 1 Leukaemia unspecified 12 (16) 9 (13) 5 (7) Acute leukaemia unspecified 4 4 0 Lymphatic leukaemia unspecified 4 (7) 2 (5) 1 (4) Acute lymphatic leukaemia 2 2 0 Chronic lymphatic leukaemia 4 4 1 Leukaemia, non lymph. non-myelo 1 (4) 1 (4) 1 (2) Lymphoma, Hodgkin-Syndrome 5 (7) 3 (4) 1 Testicular cancer 3 (5) 3 (5) 3 (4) Uterine cancer 1 1 1 Skin cancer 4 3 1 Cardio-vascular diseases 4 (5) 3 (4) 1 Infertility, reduced fertility, men 4 (7) 4 (7) 2 (4) Infertility, reduced fertility, women 1 1 0 Miscarriages, stillbirths, malformations and other birth defects 2 (3) 2 (3) 2 Cancer, offspring (parental exposure) 2 2 1 Neurodegenerative diseases, Alzheimer’s 1 1 0 Disruptions of motor and psychological functions and well-being 2 (9) 2 (9) 1 (7)   32 Mobile Telecommunications and Health
  • 37. 7 Health Risks to Humans Resulting from Exposure to the Electromagnetic Fields of Mobile Telecommunications The triggering of an illness caused by an (environmental) pollutant and the development  of this illness are a multi‐phased process, which begins with a biological, biochemical or  biophysical primary interaction of the pollutant with the biological system and ends with  the manifestation of the illness. During the different phases of the process, the body’s own  repair  mechanisms  can  intervene  and  impede  the  further  development  of the illness. An  assessment  of  the  potential  health  risks  of  electromagnetic  fields  as  they  are  used  for  mobile  telecommunications  should  therefore  be  mainly  based  on  studies  conducted  directly on humans, because extrapolations from animal studies or even in vitro studies on  cell  cultures  only  have  limited  validity  for  effects  in  humans,  due  to  the  difference  in  susceptibilities  and  the lack  of  organic  interactions  in  cell  cultures.  However,  due  to  the  ethical limits to the research on humans, it is unavoidable to use results from experiments  with animals, single organs or cells in order to discover the biological and physiological  mechanisms.  Cancer  Given  the  results  of  the  present  epidemiological  studies,  it  can  be  concluded  that  electromagnetic fields with frequencies in the mobile telecommunications range do play a  role in the development of cancer. This is particularly notable for tumours of the central  nervous system, for which there is only the one epidemiological study so far, examining  the  actual  use  of  mobile  phones.  The  most  striking  result  of  this  study  was  an  obvious  correlation  between  the  side  at  which  the  phone  was  used  and  the  side  at  which  the  tumour  occurred.  The  brain  tumour  incidence  however  was  only  slightly  increased.  A  (hypothetical) explanation of such a finding could for example be that mobile fields have  a  promoting  effect  on  previously  initiated  (multiple)  tumours,  triggering  a  defence  mechanism in the body which is capable of suppressing unpromoted tumours.  Higher risks were also demonstrated for several forms of leukaemia.  Although the studies in relation to testicular cancer were examining particular exposure  conditions (emitting equipment worn partly on the body at hip level), given the high risk  factor found, a possible risk cannot be excluded, especially not for mobile users wearing  the  devices  in  standby  mode  on  their  belts.  The  epidemiological  findings  for  testicular  cancer also need to be interpreted in conjunction with the results of the studies of fertility  problems occurring in relation to high frequency electromagnetic fields.  The risk factors for cancers other than testicular cancer are only moderately increased, but  not  negligible,  considering  this  technology  will  potentially  reach  full  coverage  of  the  entire population.  Mobile Telecommunications and Health 33
  • 38. Reliable  conclusions  about  a  possible  dose‐response‐relationship  cannot  be  made  on  the  basis  of  the  present  results  of  epidemiological  studies,  but  an  increase  of  cancer  risk  cannot be excluded even at power flux densities as low as 0.1 W/m2.  In  long‐term  animal  experiments,  the  carcinogenic  effect  of  pulse  modulated  high  frequency  fields  was  demonstrated  for  power  flux  densities  of  circa  3W/m2  (mouse,  exposure duration 18 months, 30 minutes per day, SAR (mouse) circa 0.01 W/kg).  On  the  cellular  level,  a  multitude  of  studies  found  the  type  of  damage  from  high  frequency  electromagnetic  fields  which  is  important  for  cancer  initiation  and  cancer  promotion:  Direct  damage  on  DNA  as  well  as  influences  on  DNA  synthesis  and  DNA  repair  mechanisms  were  demonstrated  in  in  vivo  and  in  vitro  experiments  for  continuous  and  pulsed fields at power flux densities from 10W/m2 and 9W/m2 respectively.  Chromosome aberrations and micronuclei occurred at power flux densities from 5 W/m2.  Neoplastic cell transformation and an enhanced cell proliferation were demonstrated for  Specific Absorption Rates of below 0.5W/kg, and individual studies demonstrated that the  obvious disturbance of the communication between cells, which is a prerequisite for the  uninhibited  proliferation  of  cells  that  is  characteristic  for  cancer  development,  occurs  at  just a few W/m2.  Conclusion:  The  results  of  the  studies  for  all  stages  of  cancer  development  from  the  damage  of  the  genetic material via the uninhibited proliferation of cells and debilitation of the immune  system  (see  below)  up  to  the  manifestation  of  the  illness  prove  effects  at  power  flux  densities  of  less  than  1  W/m2.  For  some  stages  of  cancer  development,  intensities  of  0.1  W/m2 or even less may suffice to trigger effects.  Debilitation of the Immune System  Damaging effects on the immune system which can aid the development of illnesses were  demonstrated in animal experiments at power flux densities of 1 W/m2 (mouse, exposure  duration  6  days,  3  hours  per  day,  SAR  (mouse)  0.14W/kg).  In  in  vitro  experiments  on  lymphocytes, defects of the genetic material were demonstrated at power flux densities of  circa 10 W/m2. The presence of stress hormones, which when permanent can debilitate the  immune  system,  was  found  to  be  increased  in  human  experiments  from  power  flux  densities  of  0.2W/m2.  In  animal  experiments  (rat)  a  similar  effect  was  observed  at  a  Specific Absorption Rate of circa 0.2 W/kg.  Conclusion:  Experiments on animals prove harmful effects on the immune system from circa 1 W/m2;  at power flux densities of 0.2 W/m2 higher secretions of stress hormones in humans have  been demonstrated.  34 Mobile Telecommunications and Health
  • 39. Influences on the Central Nervous System and Cognitive Function  The effects of pulsed and continuous high frequency fields on the blood‐brain‐barrier and  the activity of neurotransmitters were demonstrated in animal experiments for power flux  densities of 3 and 10 W/m2 respectively.  In humans, influences on the slow brain potentials were found at SAR values of 0.882 to  1.42W/kg, i.e. well below the current guidelines for partial body exposure of 2 W/kg.  Changes in the sleep EEG of humans, which showed a shortening of the REM sleep phase  occurred at intensities as low as 0.5 W/m2.  In animal experiments, changes in the EEG were demonstrated at power flux densities of  1 to 2W/m2.  Impairment  of  cognitive  functions  was  found  in  animal  experiments  at  power  flux  densities of 2W/m2. In humans, there are indications that brain functions are influenced by  fields such as they occur when using a mobile telephone.  An  epidemiological  study  of  children  who  had  been  exposed  to  pulsed  high  frequency  fields, found a decrease in the capability to concentrate and an increase in reaction times.  Conclusion:  Effects of high frequency electromagnetic fields on the central nervous system are proven  for intensities well below the current guidelines. Measurable physiological changes have  been demonstrated for intensities from 0.5 W/m2. Impairments of cognitive functions are  proven for animals from 2W/m2.  Electrosensitivity or Electromagnetic Hypersensitivity  The  terms  ‘electrosensitivity’  or  ‘electromagnetic  hypersensitivity’  describe  disturbances  of  well‐being  and  impairments  of  health,  such  as  they  are  suffered  by  certain  sensitive  people  when  working  with  or  being  in  the  presence  of  devices  and  equipment  emitting  electrical,  magnetic  or  electromagnetic  fields.  The  sensitivity  manifests  in  a  variety  of  symptoms including:  ■ nervous  symptoms  such  as  sleep  disturbances,  headaches,  exhaustion,  lack  of  concentration, irritability, anxiety, stress  ■ cardio‐vascular complaints  ■ disruptions of hormones and metabolism  ■ skin complaints  The  composition  and  strength  of  the  complaints  varies  enormously  in  different  individuals. The correlation of the complaints with electromagnetic exposures and other  environmental  influences  seems  to  vary  strongly  not  only  between  affected  persons  but  also in time, a fact that has so far impeded the conclusive scientific proof of a cause‐effect‐ relationship in provocation studies. The present results of scientific studies are often not  conclusive and partly contradictory. On the other hand, however, there is a wealth of data  Mobile Telecommunications and Health 35
  • 40. collected  by  the  self‐help  organisations  of  affected  people,  which  has  not  yet  been  explored.  Conclusion:  On the basis of current knowledge it is impossible to estimate the risk of electrosensitive  reactions or to make recommendations for guidelines designed to avoid such a risk for the  general population, which is composed of sensitive and non‐sensitive persons.   36 Mobile Telecommunications and Health
  • 41. 8 Recommendations 8.1 Precautionary Health Protection in Relation to Exposures to Electromagnetic Fields of Mobile Telecommunications With mobile telecommunications we have to differentiate to exposure situations:  ■ exposure of residents near base stations  ■ exposure of mobile users when using the devices  To  limit  exposure  to  an  acceptable  degree,  if  this  is  possible  at  all,  there  need  to  be  different strategies for the two different exposure groups.   Exposures from Base Stations  In  humans,  harmful  organic  effects  of  high  frequency  electromagnetic  fields  as  used  by  mobile  telecommunications  have  been  demonstrated  for  power  flux  densities  from  0.2W/m2 (see Chapter 7). Already at values of 0.1 W/m2 such effects cannot be excluded. If  a  security  factor  of  10  is  applied  to  this  value,  as  it  is  applied  by  ICNIRP  and  appears  appropriate  given  the  current  knowledge,  the  precautionary  limit  should  be  0.01W/m2.  This  should  be  rigorously  adhered  to  by  all  base  stations  near  sensitive  places  such  as  residential areas, schools, nurseries, playgrounds, hospitals and all other places at which  humans are present for longer than 4 hours.   We  recommend  the  precautionary  limit  of  0.01  W/m2  independent  of  the  carrier  frequency.  The  rough  dependency  on  frequency  with  higher  limits  outside  of  the  resonance range, as it is applied in the concept of SAR, is not justifiable given the results  of  the  scientific  studies  which  conclusively  prove  non‐thermal  effects  of  high  frequency  fields.  Also,  the  current  allowed  higher  exposures  for  parts  of  the  body,  as  long  as  they  refer to the head or thorax are not justifiable.  Exposures of Mobile Phone Users  Given the state of technology now and in the foreseeable future, it is currently technically  impossible  to  apply  the  recommended  maximum  value  for  mobile  base  stations  also  to  the  use  of  mobile  phones.  However,  a  lowering  of  the  guidelines  to  a  maximum  of  0.5  W/m2 should urgently be considered.  A  particular  problem  in  this  exposure  group  is  posed  by  children  and  adolescents,  not  only because their organism is still developing and therefore particularly susceptible, but  also because many adolescents have come to be the most regular users of mobile phones.  Advertising  towards  this  population  group  should  be  banned.  Furthermore,  particular  efforts should be made to lower the exposures during calls. It would be recommendable  to conduct (covert) advertising campaigns propagating the use of headsets. It would also  be  important  to  develop  communications  and  advertising  aiming  at  minimising  the  exposures created by carrying mobile phones in standby mode on the body.  Mobile Telecommunications and Health 37
  • 42. 8.2 Scientific Studies Regarding the Health Risk of Mobile Telecommunications The precautionary limits recommended in Chapter 8.1 are based on the current scientific  knowledge. This is, however, still incomplete and in the case of this technology, which is  exposing  the  entire  population  to  its  emissions,  further  research  efforts  are  needed  to  create a base for the setting of truly reliable guidelines. Based on the scientific knowledge  presented in this report, the further research requirements are mainly for studies on living  organisms (humans or animals):  Epidemiological studies  ■ studies  that  metrologically  record  the  exposure  on  existing  radio  transmitters  (USW),  TV  transmitters  and  longer‐established  radio  communications  and  paging  networks.  (The  emissions  of  this  type  of  equipment  with  regards  to  the  modulation  frequencies  may  not  be  directly  comparable  to  those  of  mobile  telecommunications,  but  such  studies  could  nevertheless  offer  important  indications  for  the  assessment  of  the  exposure  risks  of  high  frequency  electromagnetic  fields;  the  studies  should  focus  on  cancer  and  illnesses  of  the  central  nervous  system  including  neurodegenerative  diseases as well as cardio‐vascular diseases and any diseases caused by a disruption of  the immune system; such studies should also address potential clusters of unspecified  symptoms and impairments of well‐being (electrosensitivity)).  ■ a  meta‐study  with  retrospective  dosimetry  for  the  studies  which  examined  the  residents near emitting base stations (see Appendix D) with the help of measured data  from comparable sites  ■ a  cohort  study  examining  the  health  (see  above)  of  mobile  users  and  residents  near  mobile base stations  ■ epidemiological animal studies on pets  Experimental long‐term studies  Studies of the chronic effects of the fields emitted by mobile telecommunications  ■ on the central nervous system (preferably on humans)  ■ on  the  immune  and  endocrine  system  (preferably  on  humans,  but  further  animal  experiments at low intensities would also be helpful for example with regards to EMF‐ induced stress)  ■ on  the  cardio‐vascular  system  (variability  of  heartbeat  rates,  blood  pressure,  etc.,  on  humans and on animals)  Experimental short‐term studies  Studies of the acute effects of the fields emitted by mobile telecommunications  ■ on  the  brain  in  various  rest  and  stress  situations  (preferably  making  use  of  EEG  and  similar methods)  38 Mobile Telecommunications and Health
  • 43. Beyond these suggestions, it would be important to develop a strategy for the research of  the  ‘electrosensitivity’  phenomenon  and  its  incidence,  which  would  acknowledge  the  failure of traditional scientific methods to address the problem and allow the inclusion of  the data available from the self‐help groups and associations of the affected.    Mobile Telecommunications and Health 39
  • 44. Literature Adey W.R., Byus C.V., Cain C.D., Higgins R.J., Jones R.A., Kean C.J., Kuster N., MacMurray A., Stagg R.B., Zimmermann G., Phillips J.L. & Haggren W. 1999 Spontaneous and nitrosourea-induced primary tumors in the central nervous system in Fischer 344 rats chronically exposed to 836 MHz modulated microwaves Radiat. Res. 152 293302 Akdag M.Z., Celik S., Ketani A., Nergiz Y., Deniz M. & Dasdag S. 1999 Effect of chronic low-intensity microwave radiation on sperm count, sperm morphology, and testicular and epididymal tissues of rats Electro- Magnetobiol. 18, 2 133145 Albert E.N. 1979 Reversibility of microwave-induced blood-brain-barrier permeability Radio Sci. 14, 6S 323327 Alberti E.N. & Kerns J.M. 1981 Reversible microwave effects on the blood-brain barrier Brain Res. 230 153164 Anderstam B., Hamnerius Y., Hussain S. & Ehrenberg L. 1983 Studies of possible genetic effects in bacteria of high frequency electromagnetic fields Hereditas 98 11-32 Antonopoulos A., Eisenbrandt H. & Obe G. 1997 Effects of high-frequency electromagnetic fields on human lymphocytes Mutat. Res. in vitro Balcer-Kubiczek E.K. & Harrison G.H. 1985 Evidence for microwave carcinogenicity in vitro Balcer-Kubiczek E.K. & Harrison G.H. 1989 Balcer-Kubiczek E.K. & Harrison G.H. 6 (6) 859864 Induction of neoplastic transformation in C3H/10T1/2 cells by 2.45 GHz Radiat. Res. microwaves and phorbol ester 117 531537 1991 Neoplastic transformation of C3H/10T1/2 cells following exposure to 120-Hz modulated 2.45-GHz microwaves and phorbol ester tumor promoter Radiat. Res. 126 65-72 Balode Z. 1996 Assessment of radio-frequency electromagnetic radiation by the micronucleus test in bovine peripheral erythrocytes Sci Total Environ 180 81-85 Banerjee R., Goldfeder A. & Mitra J. 1983 Sister chromatid exchanges and chromosome aberrations induced by radio sensitizing agents in bone marrow cells of treated tumor-bearing mice JNCI 70, 3 517521 Bawin S.M., Kaczmarek L.K. & Adey W.R. 1975 Effects of modulated VHF fields on the central nervous system Ann. N. Y. Academ. Sciences 247 74-80 40 Carcinogenesis 209214 Mobile Telecommunications and Health
  • 45. Beall C., Delzell E., Cole P. & Brill I. Brain tumors among electronics industry workers Epidemiology 7, 2 125130 Beechey C.V., Brooker D., Kowalczuk D., Saunders 1986 C.I. & Searle A.G. Cytogenic effects of microwave irradiation on male germ cells of the mouse Int. J. Radiat. Biol. 50, 5 909918 Behari J., Kunjilwar K.K. & Pyne S. 1998 Interaction of low level modulated RF radiation with Na+-K+-ATPase Bioelectrochemistry 47 247252 Berman E., Carter H.B. & House D. 1980 Tests for mutagenesis and reproduction in male rats exposed to 2.45 GHz (CW) microwaves Bioelectromagnetics 1 65-76 Berman E., Carter H.B. & House D. 1982 Reduced weight in mice offspring after in utero exposure to 2450-MHz (CW) microwaves Bioelectromagnetics 3 285291 Berman E..& Carter H.B. 1984 Decreased body weight in foetal rats after irradiation with 2450-MHz (CW) microwaves Health Phys. 46, 3 537542 Bernhardt J.H., Matthes R. & Repacholi M.H. (Ed.) 1997 Non thermal effects of RF electromagnetic fields. Proceedings international seminar on biological effects of non-thermal pulsed and amplitude modulated RF electromagnetic fields and related health risks. Munich ICNIRP 3/97 Blackman C.F., Elder J.A., Weil C.M., Benane S.G., Eichinger D.C. & House D.E. 1979 Induction of calcium-ion efflux from brain tissue by radio-frequency radiation: effects of modulation frequency and field strength Radio Sci 14, 6S 93-98 Bohr H. & Bohr J. 2000 Microwave enhanced kinetics observed in ORD studies of a protein Bioelectromagnetics 21 68-72 Bohr H., Brunak S. & Bohr J. 1997 Molecular wring resonances in chain molecules Bioelectromagnetics 18 187189 Borbély A.A., Huber R., Graf T., Fuchs B., Gallmann E. & Achermann P. 1999 Pulsed high-frequency electromagnetic fields affects human sleep and sleep electroencephalogram Neuroscience Lett. 275 207210 Bortkiewicz A., Gadzicka E. & Zmyslony M. 1996 Heart rate variability in workers exposed to medium-frequency electromagnetic fields J. Auton Nerv Syst 59 91-97 Brusick D., Albertini R., McRee D., Peterson D., Williams G., Hanawalt P. und Preston J. 1998 Genotoxicity of Radiofrequency Radiation Environ. Mol. Mutagenesis 32 1-16 Byus C.V., Kartun K., Pieper S. & Adey W.R. 1988 Increased ornithine decarboxylase activity in cultured cells exposed to low energy modulated microwave fields and phorbol ester tumor promoters Cancer Res 48 422426 Byus C.V., Lundak R.L., Fletcher R.M. & Adey W.R. 1984 Alterations in protein kinase activity following exposure of cultured human lymphocytes to modulated microwave fields Bioelectromagnetics 5 341351 Mobile Telecommunications and Health 1996 41
  • 46. Cain C.D., Thomas D.L. & Adey W.R. 1997 Focus formation of C3H/10T1/2 cells and exposure to a 836.55 MHz modulated radiofrequency field Bioelectromagnetics 18 237243 Cantor K.P., Stewart P.A., Brinton L.A. & Dosemeci M. 1995 Occupational exposures and female breast cancer mortality in the United States J. Occup. Environ. Med. 37 (3) 336348 Chagnaud J.-L. & Veyret B. 1999 In vivo exposure of rats to GSM-modulated microwaves: flow cytometry Int. J. Radiat. Biol. analysis of lymphocyte subpopulations and of mitogen stimulation 75, 1 111113 Chagnaud J.-L., Moreau J.-M. & Veyret B. 1999 No effect of short-term exposure to GSM-modulated low-power microwaves on benzo(a)pyrene-induced tumours in rat 75, 10 12511256 Chizhenkova R.A. 1988 Slow potentials and spike unit activity of the cerebral cortex of rabbits Bioelectromagnetics exposed to microwaves 9 337345 Chizhenkova R.A. & Safroshkina A.A. 1996 Electrical reactions of brain to microwave irradiation ElectroMagnetobiology 15, 3 253258 Chou C.-K., Guy A.W., Kunz L.L., Johnson R.B., Crowley J.J. & Krupp J.H. 1992 Long-term, low-level microwave irradiation of rats Bioelectromagnetics 13 469496 Ciaravino V., Meltz M.L., & Erwin D.N. 1991 Absence of synergistic effects between moderate-power radiofrequency electromagnetic radiation and adriamycin on cell-cycle progression and sister chromatid exchange Bioelectromagnetics 12 289298 Ciaravino V., Meltz M.L. & Erwin D.N. 1987 Effects of radiofrequency radiation and simultaneous exposure with Environ. Mutagen. mitomycin C on the frequency of sister chromatid exchanges in Chinese hamster ovary cells 9 393399 Cleary S.F., Cao G. & Liu L.-M. 1996a Effects of isothermal 2.45 GHz microwave radiation on the mammalian Bioelectrochem cell cycle: comparison with effects of isothermal 27 MHz Bioenerg radiofrequency radiation exposure 39 167173 Stress proteins are not induced in mammalian cells exposed to radiofrequency or microwave radiation Bioelectromagnetics 18 499505 Cleary S.F., Cao G., Liu L.M., Egel P.M. & Shelton 1997 K.R. Int. J. Radiat. Biol. Cleary S.F., Du Z., Cao G., Liu L. & McCrady C. 1996b Effect of isothermal radiofrequency radiation on cytolytic T lymphocytes FASEB J 10 913919 Cleary S.F., Liu L.-M- & Merchant R.E. 1990a Bioelectromagnetics 11 47-56 Cleary S.F., Liu L.-M. & Merchant R.E. 1990b Glioma proliferation modulated in vitro by isothermal radiofrequency exposure Radiat. Res. 121 38-45 42 In vitro lymphocyte proliferation induced by radio-frequency electromagnetic radiation under isothermal conditions Mobile Telecommunications and Health
  • 47. Cole Johnson C. & Spitz M.R. 1989 Childhood nervous system tumours: an assessment of risk associated with paternal occupations involving use, repair or manufacture of electrical and electronic equipment Int. J. Epidemiol. 18, 4 756762 Colt J.S. & Blair A. 1998 Parental occupational exposure and risk of childhood cancer Environ. Health Perspect. 106 (Suppl. 3) 909925 Czerska E.M., Elson E.C., Davis C.C., Swicord M.L. 1992 & Czerki P. Effects of continuous and pulsed 2450-MHz radiation on spontaneous lymphoblastoid transformation of human lymphocytes in vitro Bioelectromagnetics 13 247259 d’Ambrosio G., Lioi M.B., Massa R., Scarfi M.R. & Zeni O. 1995 Genotoxic effects of amplitude-modulated microwaves on human lymphocytes exposed in vitro under controlled conditions ElectroMagnetobiology 14 157164 D’Andrea J.A. 1991 Microwave radiation absorption: behavioral effects Health Physics 61, 1 29-40 D’Andrea J.A. 1999 Behavioral evaluation of microwave irradiation Bioelectromagnetics 20 64-74 D’Inzeo G., Bernardi P., Eusebi F., Grassi F., Tamburello C. & Zani B.M. 1988 Microwave effects on acetylcholine-induced channels in cultured chick myotubes Bioelectromagnetics 9 363372 Dardalhon M., Averbeck D. & Berteaud A.J. 1981 Studies on possible genetic effects of microwaves in prokaryotic and eukaryotic cells Radiat Environ Biophys 20 37-51 Dardalhon M., Averbeck D., Berteaud A.J. & Ravary V. 1985 Thermal aspects of biological effects of microwaves in Saccharomyces cerevisiae Int J Radiat Biol 48 987996 Dasdag S., Oflazoglu H., Kelle M. & Akdag Z. 1998 Effects of microwaves on the phagocytic activity of variously treated rat macrophages Electro- Magnetobiol. 17, 2 185194 Davis R.L. & Mostofi F.K. 1993 Cluster of testicular cancer in police officers exposed to hand-held radar Am. J. Indust. Med. 24 231233 Demers P.A., Thomas D.B., Rosenblatt K.A., Jimenez L.M., McTiernan A., Stalsberg H., Sternhagen A., Douglas W.D., McCrea Curnen M.G., Satariano W., Austin D.F., Isacson P., Greenberg R.S., et al. 1991 Occupational exposure to electromagnetic fields and breast cancer in men Am. J. Epidemiol. 134 (4) 340347 Dobson J. & Pierre T.G.S. 1998 Thermal effects of microwave radiation on biogenic magnetite particles Electro- Magnetobiol. and circuits: theoretical evaluation of cellular phone safety aspects 17, 3 351359 Dolk H., Elliott P., Shaddick G., Walls P. & Thakrar B. 1997b Cancer incidence near radio and television transmitters in Great Britain, II All high power transmitters 145, 1 10-17 Mobile Telecommunications and Health Am. J. Epidemiol. 43
  • 48. Dorp R. van, Marani E. & Boon M. E. 1998 Cell replication rates and processes concerning antibody production in vitro are not influenced by 2.45-GHz microwaves at physiologically normal temperatures. Methods 15 151159 Dutta S.K., Ghosh B. & Blackman C.F. 1989 Radiofrequency radiation-induced calcium ion efflux enhancement from human and other neuroblastoma cells in culture Bioelectromagnetics 10 197202 Dutta S.K., Subramoniam A., Ghosh B. & Parshad R. 1984 Microwave radiation-induced calcium ion efflux from human neuroblastoma cells in culture Bioelectromagnetics 5 71-78 Dutta S.K., Verma M. & Blackman C.F. 1994 Frequency-dependent alterations in enolase activity in Escheria coli caused by exposure to electric and magnetic fields Bioelectromagnetics 15 377383 Elekes E., Thuróczy G. & Szabó L.D. 1996 Effect on the immune system of mice exposed chronically to 50 Hz amplitude-modulated 2.45 GHz microwaves Bioelectromagnetics 17 246248 Finkelstein M.M. 1998 Cancer incidence among Ontario police officers Am. J. Ind. Med. 34 157162 Foster K.R. 1996 Interaction of radiofrequency fields with biological systems as related to modulation Bernhardt et al. (Ed.) 1997 Frei M.R., Berger R.E., Dusch S.J., Guel V., Jauchem J.R., Merritt J.H. & Stedham M.A. 1998a Chronic exposure of cancer-prone mice to low-level 2450 MHz radiofrequency radiation Bioelectromagnetics 19 20-31 Frei M.R., Jauchem J.R., Dusch S.J., Merritt J.H., 1998b Chronic, low-level (1.0 W/kg) exposure of mice prone to mammary Berger R.E. & Stedham M.A. cancer to 2450 MHz microwaves Radiat. Res. 150 568576 Freude G., Ullsperger P., Eggert S. & Ruppe I. 1998 Effects of microwaves emitted by cellular phones on human slow brain potentials Bioelectromagnetics 19 384387 Freude G., Ullsperger P., Eggert S., Ruppe I. & Eulitz C. 1999 Untersuchungen zum Einfluß elektromagnetischer Felder von in Krause et al. 1999 Mobiltelefonen auf langsame Hirnpotentiale im Elektroenzephalogramm des Menschen Fritze K., Sommer C; Schmitz B; Mies G; Hossmann KA; Kiessling M & Wiessner C. 1997b Effect of global system for mobile communication (GSM) microwave exposure on blood-brain barrier permeability in rat Fritze K., Wiessner C., Kuster N., Sommer C., Gass P., Hermann D.M., Kiessling M. & Hossmann K.A. 1997 a Effect of global system for mobile communication microwave exposure Neuroscience on the genomic response of the rat brain Fucic A., Garaj-Vrhovac V., Skara M. & Dimitrovic 1992 B. 44 X-rays, microwaves and vinyl chloride monomer: their clastogenic and aneugenic activity, using the micronucleus assay on human lymphocytes Acta Neuropathol. Mutat. Res. 47-63 165176 94 465470 81 627639 282 265271 Mobile Telecommunications and Health
  • 49. Garaj-Vrhovac V., Fucic A. & Horvat D. 1992 The correlation between the frequency of micronuclei and specific chromosome aberrations in human lymphocytes exposed to microwave radiation in vitro Mutation Res. 281 181186 Garaj-Vrhovac V., Horvat D. & Koren Z. 1990 The effect of microwave radiation on the cell genome Mutation Res. 243 87-93 Garaj-Vrhovac V., Horvat D. & Koren Z. 1991 The relationship between colony-forming ability, chromosome aberrations and incidence of micronuclei in V79 Chinese hamster cells exposed to microwave radiation Mutation Res. 263 143149 Garland F.C., Shaw E., Gorham E.D., Garland C.F., White M.R. & Sinsheimer P.J. 1990 Incidence of leukemia in occupations with potential electromagnetic field exposure in United States navy personnel Am. J. Epidemiol. 132, 2 293303 Garson O.M., McRobert T.L., Campbell L.J., Hocking B. & Gordon I. 1991 A chromosomal study of workers with long-term exposure to radiofrequency radiation Med. J. Austral. 155 289292 Glaser R. 1998 Do electromagnetic fields really increase the ornithine-decarboxylase Bioelectrochem. (ODC) activity of cells? What happens with the ‘coherence time’ effect? Bioenerget. - A comment to the papers of T.A. Litovitz et al. 46 301302 Goldman H., Lin J.C., Murphy S. & Lin M.F. 1984 Cerebrovascular permeability to 86Rb in the rat after exposure to pulsed microwaves Bioelectromagnetics 5 323330 Goswami P.C., Albee L.D., Parsian A.J., Baty J.D., 1999 Moros E.G., Pickard W.F., Roti Roti J.L. & Hunt C.R. Proto-oncogene mRNA levels and activities of multiple transcription factors in C3H 10T1/2 murine embryonic fibroblasts exposed to 836.62 and 847.74 MHz cellular phone communication frequency radiation Rad. Res. 151 300309 Grayson J.K. Radiation exposure, socioeconomic status, and brain tumor risk in the US Air Force: A nested case-control study Am. J. Epidemiol. 143, 5 480486 Grospietsch T., Schulz O., Hölzel R., Lamprecht I. 1995 & Kramer K.-D. Stimulating effects of modulated 150 MHz electromagnetic fields on the growth of Escherichia coli in a cavity resonator Bioelectrochem. Bioenerget. 37 17-23 Gruenau S.P., Oscar K.J., Folker M.T. & Rapoport 1982 S.I. Absence of microwave effects on blood-brain barrier permeability to (14C)sucrose in the conscious rat Exp. Neurol. 75 299307 Hamnerius Y., Rasmuson A. & Rasmuson B. 1985 Biological effects of high-frequency electromagnetic fields on Salmonella typhymurium and Drosophila melanogaster Bioelectromagnetics 6 405414 Hardell L., Näsman A., Pahlson A., Hallquist A. & Hansson Mild K. 1999 Use of cellular telephones and risk for brain tumours: A case-control study Int. J. Oncol. 15 113116 Occupation and Risk for Testicular Cancer: A Case-Control Study Int J Epidemiology 19,4 825831 1996 Hayes R.B., Morris Brown L., Pottern L.M., Gomez 1990 M., Kardaun J.W.P.F., Hoover R.N., O’Connell K.J., Sutzman R.E. & Javadpour N. Mobile Telecommunications and Health 45
  • 50. Heikkinen P., Kumlin T., Laitinen J.T., Komulainen H. & Juutilainen J. 1999 Chronic exposure to 50-Hz magnetic fields or 900-MHz electromagnetic Electrofields does not alter nocturnal 6-hydroxymelatonin sulfate secretion in Magnetobiology CBA/S mice 18, 1 33-42 Hentschel K., Neuschulz H., Freude G., Ullsperger 1999 P., Kaul G., Ruppe I., Eggert S., Enderlein G. & Keitel J. Einfluss von niederfrequent gepulsten Hochfrequenzfeldern auf den Menschen Schriftenreihe der BAA Fb 868 Hentschel K., Neuschulz H., Ruppe I., Eggert S., Freude G., Kaul G., Enderlein G. & Keitel J. Untersuchungen zum Einfluß von niederfrequent gepulsten elektromagnetischen Feldern von GSM-Mobiltelefonen auf den Menschen in Krause et al. 1999 Higashikubo R., Culbreth V.O., Spitz D.R., 1999 LaRegina M.C., Pickard W.F., Straube W.L., Moros E.G. & Roti Roti J.L. Radiofrequency electromagnetic fields have no effect on the in vivo proliferation of the 9L brain tumor Rad. Res. 152 665671 Hjollund N.H.I., Bonde J.P.E. & Skotte J. 1997 Semen analysis of personnel operating military radar equipment Reprod. Toxicol. 11,6 897 Hocking B., Gordon I.R., Grain H.L. & Hatfield G.E. 1996 Cancer Incidence and mortality and proximity to TV towers Med. J. Australia 165 601605 Holly E.A., Aston D.A., Ahn D.K. & Smith A.H. 1996 Intraocular melanoma linked to occupations and chemical exposures Epidemiology 7 (1) 55-61 ICNIRP 1998 Guidelines for limiting exposure to time-varying electric, magnetic. And electromagnetic fields (up to 300 GHz) Health Phys. 74 494522 Imaida K., Taki M, Yamaguchi T, Ito T, Watanabe S, Wake K, Aimoto A, Kamimura Y, Ito N & Shirai T. 1998a Lack of promoting effects of the electromagnetic near-field used for cellular phones (929.2 MHz) on rat liver carcinogenesis in a mediumterm liver bioassay Carcinogenesis 19 311314 Imaida K., Taki M., Watanabe S. Kamimura Y., Ito 1998b The 1.5 GHz electromagnetic near-field used for cellular phones does T., Yamaguchi T., Ito N. & Shirai T. not promote rat liver carcinogenesis in a medium-term liver bioassay Jpn. J. Cancer Res. 89 9951002 Inaba R., Shishido K.-I., Okada A. & Moroji T. 1992 Effects of whole body microwave exposure on rat brain contents of biogenic amines Eur. J. Appl. Physiol. 65 124128 Inalöz S.S., Dasdag S., Ceviz A. & Bilici A. 1997 Acceptable radiation leakage of microwave ovens on pregnant and newborn rat brains Clin. Exp. Obstet. Gynecol. 24 215219 Ivaschuk O.I., Jones R.A., Ishida-Jones T., Haggren W., Adey W.R. & Phillips J.L. 1997 Exposure of nerve growth factor-treated PC12 rat pheochromocytoma cells to a modulated radiofrequency field at 836.55 MHz Bioelectromagnetics 18 223229 Jensh R.P., Vogel W.H. & Brent R.L. 1983 An evaluation of the teratogenic potential of protracted exposure of pregnant rats to 2450 MHz microwave radiation: II Postnatal psychophysiologic analysis J. Toxicol. Environ. Health 11 37-59 46 1999 11791190 Mobile Telecommunications and Health
  • 51. Jensh R.P., Weinberg I. & Brent R.L. 1983a An evaluation of the teratogenic potential of protracted exposure of J. Toxicol. Environ. pregnant rats to 2450-MHz microwave radiation: I. Morphologic analysis Health at term 11 23-35 Källén B., Malmquist G. & Moritz U. 1982 Delivery outcome among physiotherapists in Sweden: is non-ionizing radiation a fetal hazard? Arch. Environ. Health 37 (2) 81-85 Kass G.E.N. & Orrenius S. 1999 Calcium signalling and cytotoxicity Env. Health Perspect. 107, S1 25-35 Kerbacher J.J., Meltz M.L. & Erwin D.N. 1990 Influence of radiofrequency radiation on chromosome aberrations in CHO cells and its interaction with DNA damaging agents Radiat. Res. 123 311319 Khillare B. & Behari J. 1998 Effect of amplitude-modulated radiofrequency radiation on reproduction pattern in rats ElectroMagnetobiology 17 (1) 43-55 Kirschvink J.L. 1996 Microwave absorption by magnetite: a possible mechanism for coupling Bioelectromagnetics nonthermal levels of radiation to biological systems 17 187194 Klitzing, L. von 1995 Low Frequency pulsed electromagnetic fields influence EEG of man Physica Medica 11 77-80 Kolodynski A.A. & Kolodynska V.V. 1996 Motor and psychological functions of school children living in the area of the Skrunda radio location station in Latvia Sci Total Environ 180 87-93 (51- Kowalczuk C.I., Saunders R.D. & Stapleton H.R. 1983 Sperm count and sperm abnormality in mice after exposure to 2.45 GHz Mutat. Res. microwave radiation 122 155161 Krause D., Mullins J.M., Penafiel L.M., Meister R. & Nardone R.M. 1991 Microwave exposure alters the expression of 2-5A-dependent RNAse Rad. Res. 127 164170 La Cara F., Scarfi M.R., D’Auria S., Massa R., d’ambrosio G., Franceschetti G., Rossi M. & De Rosa M. 1999 Different effects of microwave energy and conventional heat on the activity of a thermophilic beta-galactosidase from bacillus acidocaldarius Bioelectromagnetics 20 172176 Lagorio S., Rossi S., Vecchia P., De Santis M., 1997 Bastianini L., Fusilli M., Ferrucci A., Desideri E. & Comba P. Mortality of plastic-ware workers exposed to radiofrequencies Bioelectromagnetics 18 418421 Lai H. 1992 Research on the neurological effects of nonionizing radiation at the university of Washington Bioelectromagnetics 13 513526 Lai H. & Singh N.P. 1995 Acute low-intensity microwave exposure increases DNA single-strand breaks in rat brain cells Bioelectromagnetics 16 207210 Lai H. & Singh N.P. 1996 Single- and double-strand DNA breaks in rat brain cells after acute exposure to radiofrequency electromagnetic radiation Int. J. Radiat. Biol. 69 513521 Mobile Telecommunications and Health 47
  • 52. Lai H. & Singh N.P. 1997 Melatonin and a spin trap compound block radiofrequency Bioelectromagnetics electromagnetic radiation-induced DNA-strand breaks in rat brain cells 18 446454 Lai H., Carino M.A., Horita A. & Guy A.W. 1989a Low-level microwave irradiation and central cholinergic activity: a dose-response study Bioelectromagnetics 10 203208 Lai H., Carino M.A., Horita A. & Guy A.W. 1989b Low-level microwave irradiation and central cholinergic systems Pharmacol. Biochem. Behav. 33 131138 Lai H., Carino M.A., Horita A. & Guy A.W. 1990 Corticotropin-releasing factor antagonist blocks microwave-induced decreases in high-affinity choline uptake in the rat brain Brain Res. Bull. 25 609612 Lai H., Horita A. & Guy A.W. 1988 Acute low-level microwave exposure and central cholinergic activity: studies on irradiation parameters Bioelectromagnetics 9 355362 Lai H., Horita A. & Guy A.W. 1994 Microwave irradiation affects radial-arm maze performance in the rat Bioelectromagnetics 15 95104 Lai H., Horita A., Chou C.-K. & Guy A.W. 1987 Low-level microwave irradiations affect central cholinergic activity in the rat J. Neurochem. 48 (1) 40-45 Lancranjan I., Maicanescu M., Rafaila E., Klepsch I. & Popescu H.I. 1975 Gonadic function in workman with long-term exposure to microwaves Health Physics 29 381383 Larsen A.I. 1991b Congenital malformations and exposure to high-frequency electromagnetic radiation among Danish physiotherapists Scand. J. Environ. Health 17 318323 Larsen A.I., Olsen J. & Svane O. 1991a Gender specific reproductive outcome and exposure to high-frequency electromagnetic radiation among physiotherapists Scand. J. Environ. Health 17 324329 Lary J.M., Conover D.L. & Johnson P.H. 1983 Absence of embryotoxic effects from low-level (non-thermal) exposure Scand. J. Work of rats to 100 MHz radiofrequency radiation Environ. Health 9 120129 Lin R.S., Dischinger P.C., Cond J. & Farrell K.P. 1985 Occupational exposure to electromagnetic fields and the occurrence of J. Occup. Med. brain tumors 27, 6 413419 Lin-Liu S. & Adey W.R. 1982 Low frequency amplitude modulated microwave fields change calcium efflux rates from synaptosomes Bioelectromagnetics 3 309322 Litovitz T.A. 1998 Can electromagnetic fields modify the activity of ornithine decarboxylase (ODC)? What happens with the ‘coherence time’ effect? A reply to the comment by R. Glaser Bioelectrochem. Bioenerget. 46 303306 The role of coherence time in the effect of microwaves on Ornithine Decarboxylase activity Bioelectromagnetics 14 395403 Litovitz T.A., Krause D., Penafiel M., Elson E.C. & 1993 Mullins J.M. 48 Mobile Telecommunications and Health
  • 53. Litovitz T.A., Penafiel L.M., Farrel J.M., Krause D., Meister R. & Mullins J.M. 1997 Bioeffects induced by exposure to microwaves are mitigated by superposition of ELF noise Bioelectromagnetics 18 422430 Liu L.-M. & Cleary S.F. 1995 Absorbed energy distribution from radiofrequency electromagnetic Bioelectromagnetics radiation in a mammalian cell model: effect of membrane-bound water 16 160171 Lloyd D.C., Saunders R.D., Finnon P. & Kowalczuk 1984 C.I. No clastogenic effect from in vitro microwave irradiation of Go human lymphocytes Int J Radiat Biol 46 135141 Lloyd D.C., Saunders R.D., Moquet J.E. & Kowalczuk C.I. Absence of chromosomal damage in human lymphocytes exposed to microwave radiation with hyperthermia Bioelectromagnetics 7 235237 Lyle D.B., Schechter P., Adey W.R. & Lundak R.L. 1983 Suppression of T-lymphocyte cytotoxicity following exposure to sinusoidally amplitude-modulated fields Bioelectromagnetics 4 281292 Maes A., Collier M., Gorp U. van, Vandoninck S. & 1997 Verschaeve L. Cytogenetic effects of 935.2-MHz (GSM) microwaves alone and in combination with mitomycin C Mutat. Res. 393 151156 Maes A., Collier M., Slaets D. & Verschaeve L. 1995 Cytogenetic effects of microwaves from mobile communication frequencies (945 MHz) Electro- Magnetobiol. 14 91-98 Maes A., Collier M., Slaets D. & Vershaeve L. 1996 945 MHz microwaves enhance the mutagenic properties of mitomycin C Environ. Mol. Mutagen. 28 26-30 Maes A., Verschaeve L., Arroyo A., Wagter C. De & Vercruyssen L. 1993 In vitro cytogenetic effects of 2450 MHz waves on human peripheral blood lymphocytes Bioelectromagnetics 14 495501 Magras I.N. & Xenos T.D. 1997 RF radiation-induced changes in the prenatal development of mice Bioelectromagnetics 18 455461 Malyapa R., Ahern E.W., Straube W.L., Moros E.G., Pickard W.F. & Roti Roti J.L. 1997a Measurement of DNA damage after exposure to 2450 MHz electromagnetic radiation Radiat. Res. 148 608617 Malyapa R., Ahern E.W., Straube W.L., Moros E.G., Pickard W.F. & Roti Roti J.L. 1997b Measurement of DNA damage after exposure to electromagnetic radiation in the cellular phone communication frequency band (835.62 and 847.74 MHz) Radiat. Res. 148 618627 Malyapa R.S., Ahern E.W., Bi C., Straube W.L., LaRegina M., Pickard W.F. & Roti Roti J.L. 1998 DNA damage in rat brain cells after in vivo exposure to 2450 MHz electromagnetic radiation and various methods of euthanasia Radiat. Res. 149 637645 Manikowska E., Luciani J.M., Servantie B., Czerski 1979 P., Obenovitch J. & Stahl A. Effects of 9.4 GHz microwave exposure on meiosis in mice Experentia 35 (3) 388390 Manikowska-Czerska E, Czerski P. & Leach W.M. 1985 Effects of 2.45 GHz microwaves on meiotic chromosomes of male CBA/CAY mice J. Heredity 76 71-73 Mann K. & Röschke J. 1996 Effects of pulsed high-frequency electromagnetic fields on human sleep Neuropsychobiology 33 41-47 Mobile Telecommunications and Health 1986 49
  • 54. Mann K. & Röschke J. 1996 REM-Suppression unter dem Einfluß digitaler Funktelefone Wien. Med. Wschr. 146 285286 Mann K., Röschke J., Connemann B. & Beta H. 1998 No effects of pulsed high-frequency electromagnetic fields on heart rate variability during human sleep Neuropsychobiology 38 251256 Mann K., Wagner P., Brunn G., Hassan F., Hiemke 1997 C. & Röschke J. Effects of pulsed high-frequency electromagnetic fields on the neuroendocrine system Neuroendocrinology 67 139144 Marcickiewicz J., Chazan B., Niemiec T., Sokolska 1986 G., Troszynski M., Luczak M. & Szmigielski S. Microwave radiation enhances teratogenic effect of cytosine arabinoside in mice Biol. Neonate 50 75-82 Marec F., Ondracek J. & Brunnhofer V. 1985 The effect of repeated microwave irradiation on the frequency of sexlinked recessive lethal mutations in Drosophila melanogaster Mutat. Res. 157 163167 McKenzie D.R., Yin Y. & Morrell S. 1998 Childhood incidence of acute lymphoblastic leukemia and exposure to broadcast radiation in Sydney - a second look Aust. N. Z. J. Public Health 22 360367 Meltz M., Eagan P. & Erwin D.N. 1989 Absence of mutagenic interaction between microwaves and mitomycin C in mammalian cells Environ. Molec. Mutagen. 13 294303 Meltz M.L., Eagan P. & Erwin D.N. 1990 Proflavin and microwave radiation: absence of mutagenic interaction Bioelectromagnetics 11 149157 Meltz M.L., Walker K.A. & Erwin D.N. 1987 Radiofrequency (microwave) radiation exposure of mammalian cells during UV-induced DNA-repair synthesis Radiat. Res. 110 255266 Mickley A., Cobb B.L., Mason P. & Farrel S. 1998 Thermal tolerance reduces hyperthermia-induced disruption of working Physiol. Behav. memory: a role for endogenous opiates? 63 (5) 855865 Mickley G.A. & Cobb B.L. 1998 Thermal tolerance reduces hyperthermia-induced disruption of working Physiology & Behavior 63 memory: a role for endogenous opiates? 855865 Mickley G.A., Cobb B.L., Mason P.A. & Farrell S. 1994 Disruption of a putative working memory task and selective expression of brain c-fos following microwave-induced hyperthermia Physiol. Behav. 55 (6) 10291038 Milham S. 1985 Mortality in workers exposed to electromagnetic fields Environ. Health Perspect. 62 297300 Milham S. 1985 Silent keys: leukemia mortality in amateur radio operators Lancet 6. April 812 Milham S. 1988 Increased mortality in amateur radio operators due lymphatic and hematopoietic malignancies Am. J. Epidemiol. 127 (1) 50-54 Milhem S. 1982 Mortality from leukemia in workers exposed to electrical and magnetic New Engl. J. Med. fields 307 249 50 Mobile Telecommunications and Health
  • 55. Moriyama E., Salcman M. & Broadwell R.D. 1991 Blood-brain barrier alterations after microwave-induced hyperthermia is purely a thermal effect: I Temperature and power measurements Surg. Neurol. 35 177182 Moulder J.E., Erdreich L.S., Malyapa R.S., Merritt 1999 J., Pickard W.F & Vijayalaxmi Cell Phones and Cancer: What is the Evidence for a Connection Radiat. Res. 151 513531 Nawrot P.S., McRee D.I. & Galvin M.J. 1985 Teratogenic, biochemical, and histological studies with mice prenatally Radiat. Res. exposed to 2.45-GHz microwave radiation 102 35-45 Neubauer C., Phelan A.M., Kues H. & Lange D.G. 1990 Microwave irradiation of rats at 2.45 GHz activates pinocytotic-like uptake of tracer by capillary endothelial cells of cerebral cortex Bioelectromagnetics 11 261268 Novoselova E.G., Fesenko E.E., Makar V.R. & Sadovnikov V.B. 1999 Microwaves and cellular immunity II. Immunostimulating effects of microwaves and naturally occurring antioxidant nutrients Bioelectrochem. Bioenerget. 49 37-41 Oscar K.J. & Hawkins T.D. 1977 Microwave alteration of the blood-brain barrier system of rats Brain Res. 126 281293 Ouellet-Hellstrom R. & Stewart W.F. 1993 Miscarriages among female physical therapists who report using radioand microwave-frequency electromagnetic radiation Am. J. Epidemiol. 138 775786 Pazmany T., Szkladanyi A. und Szabo L.D. 1990 The Effect of 2.45 GHz Microwave Irradiation on Human Peripheral Lymphocytes Acta Biochim. Biophys. Hung. 25 157163 Penafiel L.M., Litovitz T., Krause D., Desta A. & Mullins J.M. 1997 Role of modulation on the effect of microwaves on ornithine decarboxylase activity in L929 cells Bioelectromagnetics 18 132141 Phelan A.M., Lange D.G., Kues H.A. & Lutty G.A. 1992 Modification of membrane fluidity in melanin-containing cells by low level microwave radiation. Bioelectromagnetics 13 131146 Phillips J.L., Ivaschuk O., Ishida-Jones T., Jones R. A, Campbell-Beachler M. & Haggren W. 1998 DNA damage in Molt-4 T-lymphoblastoid cells exposed to cellular telephone radiofrequency fields in vitro Bioelectrochem. Bioenerget. 45 103110 Postow E. & Swicord M.L. 1996 Modulated fields and ‘window’ effects. In: Polk C. & Postow E.: Handbook of Biological Effects of Electromagnetic Fields, 2nd. Ed. CRC Press, Boca Raton Prato F.S., Wills J.M., Roger J., Frappier H., Drost 1994 D.J., Lee T.-Y., Shivers R.R. & Zabel P. Blood-brain barrier permeability in rats is altered by exposure to magnetic fields associated with magnetic resonance imaging at 1.5 T Microscopy Res. Techn. 27 528534 Preece A.W., Iwi G., Davies-Smith A, Wesnes K., Butler S., Lim E & Varey A. 1999 Effect of a 915-MHz simulated mobile phone signal on cognitive function in man Int. J. Radiat. Biol 75 447456 Preston E., Vavasour E.J. & Assenheim H.M. 1979 Permeability of the blood-brain barrier to mannitol in the rat following Brain Research 2450 MHz microwave irradiation 174 109117 Effects of microwave exposure on the hamster immune system. II. Peritoneal macrophage function 4 141155 Rama Rao G., Cain C.A., Lockwood J. & Tompkins 1983 W.A.F. Mobile Telecommunications and Health Bioelectromagnetics 535580 51
  • 56. Raslear T.G., Akyel Y., Bates F., Belt M. & Lu S.T. 1993 Temporal bisection in rats: the effects of high-peak-power pulsed microwave irradiation Bioelectromagnetics 14 (5) 459478 Reiser H., Dimpfel W. & Schober F. 1995 The influence of electromagnetic fields on human brain activity Eur. J. Med. Res. 1: 27-32 1 27-32 Repacholi M.H. 1997 Radiofrequency field exposure and cancer: what do the laboratory studies suggest? Environ. Health Perspectives 105 (Suppl 6) 15651568 Repacholi M.H. 1998 Low-level exposure to radiofrequency electromagnetic fields: health effects and research needs Bioelectromagnetics 19 1-19 Repacholi M.H., Basten. A., Gebski V., Noonan D., 1997 Finnie J. & Harris A.W. Lymphomas in eµ-Pim 1 transgenic mice exposed to pulsed 900 MHz electromagnetic fields Radiat. Res. 147 631640 Robinette C.D., Silverman C. & Jablon S. 1980 Effects upon health of occupational exposure to microwave radiation (radar) Am. J. Epidemiol. 112 39-53 Röschke J. & K. Mann 1997 No short-term effects of digital mobile radio telephone on the awake human electroencephalogram Bioelectromagnetics 18 172176 Rothman K.J., Loughlin J.E., Funch D.P. & Dreyer 1996 N.A. Overall mortality of cellular telephone customers Epidemiology 7,3 303305 Saffer J.D. & Profenno L.A. 1992 Microwave-specific heating affects gene expression Bioelectromagnetics 13 75-78 Sagripanti J.-L. & Swicord M.L. 1986 DNA structural changes caused by microwave radiation Int. J. Radiat. Biol. 50 47-50 Sagripanti J.-L., Swicord M.L. & Davis C.C. 1987 Microwave effects on plasmid DNA Rad. Res. 110 219231 Salford L.G., Brun A., Eberhardt J.L. & Persson B.R.R. 1993 Permeability of the blood brain barrier induced by 915 MHz Bioelectrochem. electromagnetic radiation, continuous wave and modulated at 8, 16, 50 Bioenerg. and 200 Hz 30 293301 Salford L.G., Brun A., Persson B.R.R. & Eberhardt 1993 J. Experimental studies of brain tumour development during exposure to continuous and pulsed 915 MHz radiofrequency radiation 30 313318 Salford L.G., Brun A., Sturesson K., Eberhardt J.L. 1994 & Persson B.R.R. Permeability of the blood brain barrier induced by 915 MHz Micros. Res. Tech. electromagnetic radiation, continuous wave and modulated at 8, 16, 50 and 200 Hz 27 535542 Santini R., Hosni M., Deschaux P. & Packeon H. B16 melanoma development in black mice exposed to low-level microwave radiation 9 105107 52 1988 Bioelectrochem. Bioenerg. Bioelectromagnetics Mobile Telecommunications and Health
  • 57. Sarkar S., Ali S. & Behari J. 1994 Effect of low power microwave on the mouse genome: a direct DNA analysis Mutation Res. 320 141147 Saunders R.D. & Kowalczuk C.I. 1981 Effects of 2.45 GHz microwave radiation and heat on mouse spermatogenic epithelium Int. J. Radiat. Biol. 40 623632 Saunders R.D., Darby S.C. & Kowalczuk C.I. 1983 Dominant lethal studies in male mice after exposure to 2.45 GHz microwave radiation Mutat. res. 117 345356 Saunders R.D., Kowalczuk C.I., Beechey C.V. & Dunford R. 1988 Studies on the induction of dominant lethals and translocations in male Int. J. Radiat. Biol. mice after chronic exposure to microwave radiation 53 983992 Saunders R.D., Sienkiewicz Z.J. & Kowalczuk C.I. 1991 Biological effects of electromagnetic fields and radiation J. Radiol. Prot. 11, 1 27-42 Savitz D.A., Loomis D.P. & Tse C.K.J. 1998 Electrical occupations and neurodegenerative disease: analysis of U.S. mortality data Arch. Environ. Health Scarfi M.R., Lioi M.B., d’Ambrosio G., Massa R., Zeni O., Di Pietro R. & Di Berardino D. 1996 Genotoxic effects of mitomycin-C and microwave radiation on bovine lymphozytes Electro- and Magneto 15 (2) 99107 Scott G. 1992 Free radicals provide a mechanism for EMFs to promote cancer Electromagn. News 3 6-8 Shackelford R.E., Kaufmann W.K. & Paules R.S. 1999 Cell cycle control, checkpoint mechanisms, and genotoxic stress Environ. Health Perspect. 107, S1 5-24 Smialowicz R.J., Kinn J.B. & Elder J.A. 1979 Perinatal exposure of rats to 2450-MHz CW microwave radiation: Effects on lymphocytes Radio Sci. 14, 6S 147153 Smialowicz R.J., Rogers R.R., Garner R.J., Riddle 1983 M.M., Luebke R.W. & Rowe D.G. Microwaves (2.450 MHz) suppress murine natural killer cell activity Bioelectromagnetics 4 371381 Smulevich V.B., Solionova L.G. & Belyakova S.V. 1999 Parental occupation and other factors and cancer risk in children: II occupational factors Int. J. Cancer 83 (7) 718722 Somosy Z., Thuroczy G. & Kovacs J. 1993 Effects of modulated and continuous microwave irradiation on pyroantimonate precipitable calcium content in junctional complex of mouse small intestine Scanning Microscopy 7 12551261 71-74 Stagg R.B., Thomas W.J., Jones R.A. & Adey W.R. 1997 DNA synthesis and cell proliferation in C6 glioma and primary glial cells Bioelectromagnetics exposed to a 836.55 MHz modulated radiofrequency field 18 230236 Szmigielski S. 1996 Cancer morbidity in subjects occupationally exposed to high frequency Sci. Total Environ. (radiofrequency and microwave) electromagnetic 180 9-17 Szmigielski S., Szudinski A., Pietraszek A., Bielec M. & Wrembel J.K. 1982 Accelerated development of spontaneous and benzopyrene-induced skin cancer in mice exposed to 2450-MHz microwave radiation 3 179191 Mobile Telecommunications and Health Bioelectromagnetics 53
  • 58. Szudzinski A., Pietraszek A., Janiak M., Wrembel J., Kalczak M. & Szimgielski S. 1982 Acceleration of the development of benzopyrene-induced skin cancer in mice by microwave radiation Arch. Dermatol. Res. 274 303312 Thomas T.L., Stolley P.D., Stemhagen A., Fontham E.T.H., Bleecker M.L., Stewart P.A. & Hoover R.N. 1987 Brain tumor mortality risk among men with electrical and electronics jobs: a case-control study JNCI 79 233238 Thuroczy G., Kubinyi G., Bodo M., Bakos J. & Szabo L.D. 1994 Simultaneous response of brain electrical activity (EEG) and cerebral circulation (REG) to microwave exposure in rats Rev. Environ. Health 10, 2 135148 Toler J., Shelton W.W., Frei M.R., Merritt J.H. & Stedham M.A. 1997 Long-term, low-level exposure of mice prone to mammary tumors to a 435 MHz radiofrequency radiation Radiat. Res. 148 227234 Törnqvist S., Knave B., Ahlbom A. & Persson T. 1991 Incidence of leukemia and brain tumors in some ‘electrical occupations’ Br. J. Ind. Med. 48 597603 Tynes T., Andersen A. & Langmark F. 1992 Incidence of cancer in Norwegian workers potentially exposed to electromagnetic fields Am. J. Epidemiol. 136 (1) 81-88 Tynes T., Hannevik M., Anderson A., Visnes A.I. & 1996 Haldorsen T. Incidence of breast cancer in Norwegian female radio and telegraph operators Cancer Causes Contr. 7 197204 Vaagerö D., Ahlbom A., Olin R. & Sahlsten S. 1985 Cancer morbidity among workers in the telecommunications industry Br. J. Ind. Med. 42 (3) 191195 Varma M.M. & Traboulay E.A. 1977 Comparison of native and microwave irradiated DNA Experientia 33 16491650 Velizarov S., Raskmark P. & Kwee S. 1999 The effects of radiofrequency fields on cell proliferation are nonthermal Bioelectrochemistry 48 177180 Verschaeve L & Maes A. 1998 Genetic, carcinogenic and teratogenic effects of radiofrequency fields Mutat. Res. 410 141165 Verschaeve L. 1995 Can non ionizing radiation induce cancer? Cancer Journal 8:237 8 237249 Frequency of micronuclei in the peripheral blood and bone marrow of cancer-prone mice chronically exposed to 2450 MHz radiofrequency radiation Rad. Res. 147 495500 Vijayalaxmi, Mohan N., Meltz M.L. & Wittler M.A. 1997 b Proliferation and cytogenetic studies in human blood lymphocytes exposed in vitro to 2450-MHz radiofrequency radiation Int. J. Radiat. Biol. 72 751757 Vollrath L., Spessert R., Kratzsch T., Keiner M. & Hollmann H. Bioelectromagnetics 18 376387 Vijayalaxmi, Frei M.R., Dusch S.J., Guel V., Meltz 1997a M.L. & Jauchem J.R. 54 1997 No short-term effects of high-frequency electromagnetic fields on the mammalian pineal gland Mobile Telecommunications and Health
  • 59. Vorobyov V.V., Galchenko A.A., Kukushkin N.I. & Akoev I.G. 1997 Effects of weak microwave fields amplitude modulated at ELF on EEG of symmetric brain areas in rats Bioelectromagnetics 18 293298 Wagner P., Röschke J., Mann K., Hiller W. & Frank 1998 C. Human sleep under the influence of pulsed radiofrequency electromagnetic fields: a polysomnographic study using standardized conditions Bioelectromagnetics 19 199202 Wang B. & Lai H. 2000 Acute exposure to pulsed 2450-MHz microwaves affects water-maze performance of rats Bioelectromagnetics 21 52-56 Weyandt T.B., Schrader S.M., Turner T.W. & Simon S.D. 1996 Semen analysis of military personnel associated with military duty assignments Reprod. Toxicol. 10,6 521528 Williams W.M., Lu S.-T., Cerro M. del & Michaelson S.M. 1984b Effect of 2450 MHz microwave energy on the blood-brain barrier to hydrophilic molecules. D. Brain temperature and blood-brain barrier permeability to hydrophilic tracers Brain Res. Rev. 7 191212 Wolke S., Neibig U., Elsner R., Gollnick F. und Meyer R. 1996 Calcium homeostasis of isolated heart muscle cells exposed to pulsed high-frequency electromagnetic fields Bioelectromagnetics 17 144153 Wu R.Y., Chiang H., Shao B.J., Li N.G. & Fu Y.D. 1994 Effects of 2.45 GHz microwave radiation and phorbol ester 12-otetradecanoylphorbol-13-acetate on dimethylhydrazine-induced colon cancer in mice Bioelectromagnetics 15 531538 Yang H.K., Cain C.A., Lockwood J. § Tompkins W.A.F. 1983 Effects of microwave exposure on the hamster immune system. I. Natural killer cell activity Bioelectromagnetics 4 123139 Yao K.T.S. 1978 Microwave radiation-induced chromosomal aberrations in corneal epithelium of Chinese hamsters J. Hered. 69 409412 Yao K.T.S. 1982 Cytogenetic consequences of microwave irradiation on mammalian cells incubated in vitro J. Hered. 73 133138 The effects of radiofrequency (<30 MHz) radiation in humans Rev. Environ. Health 10 213215 Zhao Z., Zhang S., Zho H., Zhang S., Su J., & Li L. 1994   Mobile Telecommunications and Health 55
  • 60. Appendix A Studies of the effects of high frequency electromagnetic fields on the cellular level Abbreviations  neg.  negative finding  n.s.  not statistically significant  pos.  positive finding  s.s.  statistically significant  partly  some findings  #  disagreement with the conclusions of the authors  ?  unknown; not provided; unreliable  56 Mobile Telecommunications and Health
  • 61. Table A.1 Genotoxic effects of high frequency electromagnetic fields Frequency Modulation Power Flux Density / SAR Exposure duration Studies subject / Method Result Ref. 2,45 GHz cw 10 – 20 W/m2 0,6 – 1,2 W/kg 2h Rat, in vivo pos., s.s. Lai & Singh 1995 2,45 GHz PM, 500 Hz 10 – 20 W/m2 0,6 – 1,2 W/kg 2h Rat, in vivo pos., s.s. Lai & Singh 1995 2,45 GHz PM, cw 20 W/m2 1,2 W/kg 2h Rat, in vivo pos., s.s. Lai & Singh 1996 2,45 GHz PM, 500 Hz 20 W/m2 1,2 W/kg 2h Rat, in vivo pos., s.s. Lai & Singh 1996 2,45 GHz PM, 500 Hz 20 W/m2 1,2 W/kg 2h Rat, in vivo pos., s.s. Lai & Singh 1997 2,45 GHz cw 0,7 – 1,9 W/kg 2 h – 24 h Glioblastoma Cells (Human), in vitro neg.? Malyapa et al. 1997a 2,45 GHz cw 0,7 – 1,9 W/kg 2 h – 24 h Fibroblasts (Mouse), in vitro neg.? Malyapa et al. 1997a 836 – 848 MHz cw, FM, PM 0,6 W/kg 2 h – 24 h Glioblastoma Cells (Human), in vitro neg.? Malyapa et al. 1997b 0,6 W/kg 2 h – 24 h Fibroblasts (Mouse), in vitro neg.? Malyapa et al. 1997b 2h Rat (Brain), in vivo ? Malyapa et al. 1998 Direct DNA damage 836 – 848 MHz 2,45 GHz cw 1,2 W/kg 2 814 – 837 MHz PM, TDMA, 50 Hz 8 – 90 W/m 2,4 – 26 W/kg 1 h – 10,67 h T-Lymphoblasten pos., s.s. Phillips et al. 1998 2,45 GHz cw 10 W/m2 1,18 W/kg 120 d, 2 h/d – 200 d, 2 h/d Mouse (Brain, Testicles), in vivo pos., s.s. Sarkar et al. 1994 1,7 GHz cw 500 W/m2 30 min Mouse (Testicles), in vivo pos. Varma & Traboulay 1977 Mobile Telecommunications and Health 57
  • 62. Frequency Modulation Power Flux Density / SAR Exposure duration Studies subject / Method Result Ref. Influences on DNA synthesis and repair 350 MHz cw 10 – 100 W/m2 0,039 – 4,5 W/kg 1h–3h Fibroblasts (Human), in vitro unclear, partly pos. Meltz et al. 1987 350 MHz PM, 5,0 Hz 10 – 100 W/m2 0,039 – 4,5 W/kg 1h–3h Fibroblasts (Human), in vitro unclear, partly pos. Meltz et al. 1987 850 MHz cw 10 – 100 W/m2 1h–3h Fibroblasts (Human), in vitro unclear, partly pos. Meltz et al. 1987 850 MHz PM, 5,0 Hz 10 – 100 W/m2 1h–3h Fibroblasts (Human), in vitro unclear, partly pos. Meltz et al. 1987 1,2 GHz cw 10 – 100 W/m2 1h–3h Fibroblasts (Human), in vitro unclear, partly pos. Meltz et al. 1987 1,2 GHz PM, 80 kHz 10 – 100 W/m2 1h–3h Fibroblasts (Human), in vitro unclear, partly pos. Meltz et al. 1987 836,55 MHz PM, TDMA, 50 Hz 0,9 – 90 W/m2 0,00015 - 0,059 W/kg 4 h – 14 d Glioma-Cells (Rat), in vitro pos., s.s. Stagg et al. 1997 Chromosome aberrations 2,45 GHz cw ? ? Mouse (bone marrow), in vivo pos. Banerjee et al. 1983 2,45 GHz cw 400 W/m2 6 d, 30 min/d Rat, in vivo pos. Beechey et al. 1986 7,7 GHz cw 300 W/m2 15 - 60 min Fibroblasts (Chin. Hamster), in vitro pos., s.s. Garaj-Vrohac et al. 1990 7,7 GHz cw 5 W/m2 15 - 60 min Fibroblasts (Chin. Hamster), in vitro pos., s.s. Garaj-Vrohac et al. 1991 7,7 GHz cw 5 – 300 W/m2 10 min Lymphocytes (Human), in vitro pos., s.s. Garaj-Vrohac et al. 1992 0,4 MHz – 20 GHz cw, AM, PM Human, in vivo pos.#, n.s. Garson et al. 1991 Egg Cells (Chinese Hamster) pos., partly s.s. Kerbacher et al. 1990 2,45 GHz 58 PM, 25 kHz 2 490 W/m 33,8 W/kg 2h Mobile Telecommunications and Health
  • 63. Frequency Modulation Power Flux Density / SAR Exposure duration Studies subject / Method Result Ref. 2,45 GHz cw 104 – 193 W/kg 20 min Lymphocytes (Human), in vitro neg. Lloyd et al. 1984 2,45 GHz cw 4 – 200 W/kg 20 min Lymphocytes (Human) neg. Lloyd et al. 1986 2,45 GHz cw 75 W/kg 30 – 120 min Lymphocytes (Human), in vitro pos. Maes et al. 1993 954 MH PM, 217 Hz, GSM Occupational exposure Lymphocytes, Human, in vivo pos., s.s. Maes et al. 1995 954 MHz 217 Hz, GSM 15 W/m2 1,5 W/kg 2h Lymphocytes (Human), in vitro pos., s.s. Maes et al. 1995 935,2 MHz PM/GSM, 217 Hz 0,3 – 0,4 W/kg 2h Lymphocytes (Human), in vitro pos., n.s. Maes et al. 1997 9,4 GHz PM, 1000 Hz 1 – 100 W/m2 2 w, 3 d/w, 1 h/d Mouse, in vivo pos., s.s. Manikowska et al. 1979 2,45 GHz cw 0,05 – 20 W/kg 2 w, 6 d/w, 30 min/d Mouse, in vivo pos., s.s. Manikowska-Czerska et al. 1985 2,55 GHz cw 2W/kg 20 min DNA (E.coli), in vitro pos. Sagripanti & Swicord 1986 2,0 – 8,75 GHz cw 10 W/kg 5 min – 25 min DNA, in vitro pos., s.s. Sagripanti et al. 1987 2,45 GHz cw 100 W/m2 120 d 6 h/d Spermatogonia (Mouse), in neg. vivo Saunders et al. 1988 2,45 GHz cw 50 W/m2 12,46 W/kg 90 min Lymphocytes (Human), in vitro pos., n.s. Vijayalaxmi et al. 1997 2,45 GHz cw 750 W/m2 5 – 30 min Chinese Hamster (Corneal Epithelium), in vivo pos, s.s. Yao 1978 2,45 GHz cw 15,2 W/kg RH5- and RH16-Cells (Kangaroo-Rat), in vitro pos., s.s. Yao 1982 Mobile Telecommunications and Health 59
  • 64. Frequency Modulation Power Flux Density / SAR Exposure duration PM, 24,4 Hz Changing exposures on the pastures Studies subject / Method Result Ref. Micronuclei 154 – 162 MHz 2 Cow (Erythrocytes) in vivo pos., s.s. Balode 1996 10 min Lymphocytes (Human), in vitro pos., partly s.s. d'Ambrosio et al. 1995 2,45 GHz CW 530 W/m 90 W/kg 2,45 AM, 50 Hz, sin 530 W/m2 90 W/kg 10 min Lymphocytes (Human), in vitro pos., partly s.s. d'Ambrosio et al. 1995 1,25 – 1,35 GHz ?PM 0,1 – 200 W/m2 Occupational exposure Lymphocytes (Human), in vivo pos. Fucic et al. 1992 7,7 GHz cw 5 W/m2 15 - 60 min Fibroblasts (Chin. Hamster), in vitro pos., s.s. Garaj-Vrohac et al. 1991 7,7 GHz cw 5 – 300 W/m2 10 min Lymphocytes (Human), in vitro pos., s.s. Garaj-Vrohac et al. 1992 2,45 GHz cw 75 W/kg 30 – 120 min Lymphocytes (Human), in vitro pos. Maes et al. 1993 9,0 GHz cw 70 W/kg 10 min Lymphocytes (bovine), in vitro pos., s.s. Scarfi et al. 1996 2,45 cw 50 W/m2 12,46 W/kg 90 min Lymphocytes (Human), in vitro pos.#, n.s. Vijayalaxmi et al. 1997 b 2,45 cw 1,0 W/kg 18 mon Erythroczyten (Mouse blood / bone marrow) pos, s.s. Vijayalaxmi et al. 1997 a Sister chromatid exchange 380 MHz PM, 17,65 Hz 80 W/kg ? Lymphocytes (Human), in vitro neg. Antonopoulos et al. 1997 900 MHz PM/DCS, 217 Hz 208 W/kg ? Lymphocytes (Human), in vitro neg. Antonopoulos et al. 1997 1,8 GHz PM/GSM, 217 Hz 1700 W/kg ? Lymphocytes (Human), in vitro neg. Antonopoulos et al. 1997 2,45 GHz cw ? ? Mouse (bone marrow), in vivo neg. Banerjee et al. 1983 60 Mobile Telecommunications and Health
  • 65. Frequency Modulation Power Flux Density / SAR Exposure duration Studies subject / Method Result Ref. 2 2,45 GHz PM, 25 kHz 490 W/m 33,8 W/kg 2h Egg Cells (Chinese Hamster), in vitro neg. Ciaravino et al. 1987 2,45 GHz PM, 25 kHz 490 W/m2 33,8 W/kg 2h Egg Cells (Chinese Hamster), in vitro neg. Ciaravino et al. 1991 2,45 GHz cw 104 – 193 W/kg 20 min Lymphocytes (Human), in vitro, Add. caffeine pos., s.s.# Lloyd et al. 1984 2,45 GHz cw 75 W/kg 30 – 120 min Lymphocytes (Human), in vitro neg. Maes et al. 1993 954 MHz PM/GSM, 217 Hz 1,5 W/kg 2h Lymphocytes (Human), in vitro pos., s.s. Maes et al. 1996 935,2 MHz PM/GSM, 217 Hz 0,3 – 0,4 W/kg 2h Lymphocytes (Human), in vitro pos., partly s.s. Maes et al. 1997 2,45 GHz cw 100 W/m2 120 d 6 h/d Spermatogonia (Mouse), in neg. vivo Saunders et al. 1988 2,45 GHz AM, 100 Hz 40 – 80 W/kg 2 h –6 h Escherichia coli, in vitro partly pos., s.s. Anderstam et al. 1983 2,45 GHz AM, 100 Hz 40 – 80 W/kg 4h–7h Salmonella typhimurium, in vitro neg. Anderstam et al. 1983 3,07 GHz PM, 500 Hz 95 W/kg 1h Escherichia coli, in vitro neg. Anderstam et al. 1983 3,07 GHz PM, 500 Hz 75 - 100 W/kg 2 h – 2,5 h Salmonella typhimurium, in vitro neg. Anderstam et al. 1983 9,4 GHz cw 600 W/m2 23 W/kg 30 – 120 min Escherichia coli, in vitro neg. Dardalhon et al. 1981 9,4 GHz cw 600 W/m2 23 W/kg 30 – 120 min Saccharomyces cerevisiae, partly pos., s.s. in vitro Dardalhon et al. 1981 9,4 GHz cw 10 – 600 W/m2 330 min Saccharomyces cerevisiae, pos. in vitro Dardalhon et al. 1985 Mutations Mobile Telecommunications and Health 61
  • 66. Frequency Modulation Power Flux Density / SAR Exposure duration Studies subject / Method Result Ref. 2,45 GHz AM, 100 Hz 130 W/kg 5,7 h Salmonella typhimurium, in vitro partly pos, s.s. Hamnerius et al. 1985 3,10 GHz PM, 500 Hz 90 W/kg 6h Salmonella typhimurium, in vitro partly pos., n.s. Hamnerius et al. 1985 2,45 GHz AM, 100 Hz 110 W/kg 6h Drosophila melanogaster, in vivo neg. Hamnerius et al. 1985 3,10 GHz PM, 500 Hz 60 W/kg 6h Drosophila melanogaster, in vivo neg. Hamnerius et al. 1985 2,375 MHz cw 150.000 – 250.000 W/m2 25 – 300 min Drosophila melanogaster, in vivo partly pos., s.s. Marec et al. 1985 2,45 PM, 25 kHz 480 W/m2 30 W/kg bis 63 h Leukaemia-Cells (Mouse), in vitro pos./neg., partly s.s. Meltz et al. 1989 2,45 GHz PM, 25 kHz 650 – 870 W/m2 40 – 40,8 W/kg 4h Leukaemia-Cells (Mouse), in vitro neg. Meltz et al. 1990   62 Mobile Telecommunications and Health
  • 67. Table A.2 Effects of high frequency electromagnetic fields on cellular processes Frequency Modulation Power Flux Density SAR Exposure Duration Examines Subject Method Result Ref. Gene transcription and gene translation 890 – 915 GHz PM/GSM, 217 Hz 0,3 – 7,5 W/kg 4h Brain (Rat), in vivo pos., partly s.s. Fritze et al. 1997 a 835,62 MHz FM/cw 0,6 W/kg 4d Fibroblasts (Mouse), in vitro partly pos., s.s. Goswami et al. 1999 847,74 MHz PM/CDMA, 50 Hz 0,6 W/kg 4d Fibroblasts (Mouse), in vitro partly pos., s.s. Goswami et al. 1999 836,55 MHz 2 PM/TDMA, 50 Hz 0,9 – 90 W/m 0,00026 – 0,026 W/kg 20 – 100 min Pheochromocytoma Cells (Rat), in vitro pos., s.s. Ivaschuk et al. 1997 380 MHz PM, 17,65 Hz 80 W/kg ? Lymphocytes (Human), in vitro neg. Antonopoulos et al. 1997 900 MHz PM/DCS, 217 Hz 208 W/kg ? Lymphocytes (Human), in vitro neg. Antonopoulos et al. 1997 1,8 GHz PM/GSM, 217 Hz 1700 W/kg ? Lymphocytes (Human), in vitro neg. Antonopoulos et al. 1997 Cell-Cycle 2 2,45 GHz PM, 25 kHz 490 W/m 33,8 W/kg 2h Egg Cells (Chinese Hamster), in vitro neg. Ciaravino et al. 1991 2,45 GHz cw 5 – 25 W/kg 2h Egg Cells (Chinese Hamster), in vitro pos., s.s. Cleary et al. 1996 9,4 GHz PM, 1,0 kHz 1 – 100 W/m2 2,45 GHz 2,45 GHz 2,45 GHz cw cw cw 2 w 5 d/w 1 h/d Mouse, in vivo pos., s.s. Manikowska et al. 1979 100 W/m 2 6x1 h Lymphocytes (Human), in vitro neg. Pazmany et al. 1990 100 W/m 2 3x1 h Lymphocytes (Human), in vitro neg. Pazmany et al. 1990 100 W/m 2 5h Lymphocytes (Human), in vitro pos., s.s. Pazmany et al. 1990   Mobile Telecommunications and Health 63
  • 68. Table A.3 Effects of high frequency electromagnetic fields on cell transformation and cell proliferation Frequency Modulation Power Flux Density SAR Exposure Duration Studied Subject Method Result Ref. Cell Transformations (including neoplastic) 2,45 GHz PM, 120 Hz 4,4 W/kg 24 h Fibroblasts (Mouse), in vitro partly pos., s.s. Balcer-Kubiczek & Harrison 1985 2,45 GHz PM, 120 Hz 4,4 W/kg 24 h Fibroblasts (Mouse), in vitro partly pos., s.s. Balcer-Kubiczek & Harrison 1989 2,45 GHz PM, 120 Hz 0,1 – 4,4 W/kg 24 h Fibroblasts (Mouse), in vitro partly pos., s.s. Balcer-Kubiczek & Harrison 1991 2,45 GHz cw 0,8 – 12,3 W/kg 5d Lymphocytes (Human), in vitro neg. Czerska et al. 1992 2,45 GHz PM, 1000 Hz 0,8 – 12,3 W/kg 5d Lymphocytes (Human), in vitro pos., s.s. Czerska et al. 1992 2,45 GHz cw 50 W/m2 Lymphocytes (Mouse) pos. Smialowicz et al. 1979 Cell Communication 836,55 MHz PM, TDMA, 50 Hz 0,3 – 30 W/m2 0,00015 - 0,015 W/kg 28 d Fibroblasts (Mouse), in vitro partly pos., s.s. Cain et al. 1997 Cell Proliferation 2,45 GHz AM, 100 Hz 40 – 80 W/kg 2 h –6 h Escherichia coli, in vitro partly pos., s.s. Anderstam et al. 1983 2,45 GHz AM, 100 Hz 40 – 80 W/kg 4h–7h Salmonella typhimurium, in vitro partly pos., s.s. Anderstam et al. 1983 3,07 GHz PM, 500 Hz 95 W/kg 1h Escherichia coli, in vitro partly pos., s.s. Anderstam et al. 1983 3,07 GHz PM, 500 Hz 75 - 100 W/kg 2 h – 2,5 h Salmonella typhimurium, in vitro partly pos., s.s. Anderstam et al. 1983 900 MHz PM/GSM, 217 Hz 0,55 – 2,0 W/m2 0,075 – 0,270 W/kg 10 d 2 h/d Lymphocytes (Rat, (Sprague-Dawley), in vivo neg. Chagnaud & Veyret 1999 2,45 cw 5 – 50 W/kg 2h Blut (Human), Lymphocytes, in vitro pos., s.s. Cleary et al. 1990 a 2,45 cw 5 – 75 W/kg 2h Glioma-Cells, in vitro pos. s.s. Cleary et al. 1990 b 64 Mobile Telecommunications and Health
  • 69. Frequency Modulation Power Flux Density SAR Exposure Duration Studied Subject Method Result Ref. 2,45 GHz cw 5 – 50 W/kg 2h T-Lymphocytes (Mouse, CTLL-2), in vitro pos., s.s. Cleary et al. 1996 2,45 GHz PM/PCS, 50 Hz 5 W/kg 2h T-Lymphocytes (Mouse, CTLL-2), in vitro pos., s.s. Cleary et al. 1996 2,45 GHz ? ? 15 s – 5 h Myeloma- and HybridomaCells (Mouse), in vitro ?, Methode fragwürdig Dorp et al. 1998 150 MHz AM, 72 Hz, 217 Hz, 1100 Hz 1,6 kV/m 5,4 µT Escherichia coli, in vitro pos., partly s.s. Grospietsch et al. 1995 2,45 GHz AM, 100 Hz 130 W/kg 5,7 h Salmonella typhimurium, pos, s.s. Hamnerius et al. 1985 3,10 GHz PM, 500 Hz 90 W/kg 6h Salmonella typhimurium, pos., s.s. Hamnerius et al. 1985 836,55 MHz PM, TDMA, 50 Hz 0,9 – 90 W/m2 0,00015 - 0,059 W/kg 4 h – 14 d Glioma-Cells (Rat), in vitro neg. Stagg et al. 1997 960 MHz PM, GSM, 217 Hz 0,0021 W/kg 30 min transform. EpithelAmnion-Cells (Human), in vitro Velizarov et al. 1999 pos., (s.s)   Mobile Telecommunications and Health 65
  • 70. Appendix B Studies of the effects of high frequency electromagnetic fields on the central nervous system (Blood-Brain-Barrier) Abbreviations  neg.  negative finding  n.s.  not statistically significant  pos.  positive finding  s.s.  statistically significant  partly  some findings  #  disagreement with the conclusions of the authors  ?  unknown; not provided; unreliable  66 Mobile Telecommunications and Health
  • 71. Table B.1 Effects of high frequency electromagnetic fields on the central nervous system Frequency Modulation Power Flux Density / SAR Exposure duration Studies subject / Method Result Ref. 2 2h Rat (Wistar) pos. Albert 1979 2h Hamster (Chin.) pos., s.s. Albert & Kerns 1981 4h Rat (Wistar) pos., partly s.s. Fritze et al. 1997 b 4h Rat (Tac:N(SD)sBR) partly pos, n.s. Gruenau et al. 1982 4h Rat (Tac:N(SD)sBR) partly pos, n.s. Gruenau et al. 1982 30 min – 2 h Rat (Sprague Dawley) pos., s.s. Neubauer et al. 1990 2,8 GHz cw 100 W/m 2,45 GHz cw 100 W/m2 2,5 W/kg 900 MHz PM/GSM, 217 Hz 0,3 – 7,5 W/kg 2,8 GHz cw 100 – 400 W/m 2,8 GHz PM, 500 Hz 2 10 – 150 W/m2 2 2,45 GHz PM, 100 Hz 100 W/m 2 W/kg 1,3 GHz cw 3 – 30 W/m2 20 min Rat (Wistar) pos., s.s. Oscar & Hawkins 1977 1,3 GHz PM, 5 Hz 0,3 – 0,5 W/m2 20 min Rat (Wistar) pos., s.s. Oscar & Hawkins 1977 20 min Rat (Wistar) pos., s.s. Oscar & Hawkins 1977 30 min Rat (Sprague-Dawley) partly pos., s.s. Preston et al. 1979 1,3 GHz PM, 1000 Hz 1 – 10 W/m 2 2 2,45 GHz cw 1,0 – 300 W/m 915 MHz cw 0,3 – 5,0 W/kg 2h Rat (Fischer 344) pos., s.s. Salford et al. 1994 915 MHz PM, 8 Hz 0,016 – 0,16 W/kg 2h Rat (Fischer 344) pos., s.s. Salford et al. 1994 915 MHz PM, 16 Hz 0,03 – 2,1 W/kg 2h Rat (Fischer 344) pos., s.s. Salford et al. 1994 915 MHz PM, 50 Hz 0,3 – 5,0 W/kg 2h Rat (Fischer 344) pos., s.s. Salford et al. 1994 915 MHz PM, 200 Hz 0,4 – 2,9 W/kg 2h Rat (Fischer 344) pos., s.s. Salford et al. 1994   Mobile Telecommunications and Health 67
  • 72. Appendix C Studies of the Carcenogenic Effects of High Frequency Electromagnetic Fields in Animal Experiments Abbreviations  neg.  negative finding  n.s.  not statistically significant  pos.  positive finding  s.s.  statistically significant  partly  some findings  #  disagreement with the conclusions of the authors  ?  unknown; not provided; unreliable  68 Mobile Telecommunications and Health
  • 73. Table C.1 Animal experiments regarding the carcenogenic effects of high frequency electromagnetic fields Frequency Modulation Power Flux Density / SAR Exposure duration Studies subject / Method Result Ref. 836,55 MHz PM/TDMA, 50 Hz 0,74 – 1,6 W/kg 24 mon 4 d/w 2 h/d Rat (Fischer 344) neg. Adey et al. 1999 900 MHz PM/GSM, 217 Hz 0,55 – 2,0 W/m2 2 w, 2 h/d Rat, Cancer, total neg. Chagnaud et al. 1999 2,45 GHz PM, 800 Hz 0,15 – 0,4 25 mon Rat, Cancer, total pos., s.s. Chou et al. 1992 2,45 GHz cw 0,3 W/kg 18 mon, 7 d/w, 20 h/d Mouse (C3H/HeJ), Cancer, total neg. Frei et al. 1998 a 2,45 GHz cw 1,0 W/kg 78 w, 7 d/w, 20 h/d Mouse (C3H/HeJ), Cancer, total partly pos., n.s. Frei et al. 1998 b 835,62 MHz FM, cw 0,75 W/kg 150 d, 5 d/w, 4 h/d Rat (Fischer 344), B16 Melanoma partly pos., n.s. Higashikubo et al. 1999 835,62 MHz PM/CDMA, 50 Hz 0,75 W/kg 150 d, 5 d/w, 4 h/d Rat (Fischer 344), B16 Melanoma neg. Higashikubo et al. 1999 929,2 MHz PM/TDMA, 50 Hz 0,58 – 0,8 6 w, 5 d/w, 90 min/d Rat (Fischer 344), Liver cancer neg. Imaida et al 1998 a 1,439 GHz PM/TDMA, 50 Hz 0,453 - 0,680 W/kg 6 w, 5 d/w, 90 min/d Rat (Fischer 344), Liver cancer neg. Imaida et al. 1998 b 900 MHz PM/GSM, 217 Hz 2,6 – 13 W/m2 0,008 – 4,2 W/kg 18 mon 30 min/d Mouse (transgenic Eµ-Pim1), Lyphomas pos., s.s. Repacholi et al. 1997 915 MHz PM, 4 – 217 Hz 0,0077 – 1,0 W/kg 2-3 w 5d/w 7h/d Rat (Fischer 344), Brain Tumor partly pos., n.s. Salford et al. 1993 2,45 GHz cw 10 W/m2 1,2 W/kg max. 46 w, 6 d/w, 2,5 h/d Mouse (C57BL/6J), B16 Melanoma partly pos., n.s. Santini et al. 1988 2,45 GHz PM, 25 Hz 10 W/m2 1,2 W/kg max. 46 w, 6 d/w, 2,5 h/d Mouse (C57BL/6J), B16 Melanoma partly pos., n.s. Santini et al. 1988 2,45 GHz cw 50 – 150 W/m2 2 – 8 W/kg 12 mon 6d/w, 2h/d Mouse (C3H/HeA), Cancer, total pos., s.s. Szmigielski et al. 1982 2,45 GHz cw 50 – 150 W/m2 2 – 8 W/kg 5 mon 6d/w, 2h/d Mouse (Balb/c), Skin Cancer pos., s.s. Szmigielski et al. 1982 Mobile Telecommunications and Health 69
  • 74. 2,45 GHz cw 50 – 150 W/m2 6 mon, 2 h/d Mouse (Balb/c), Hautcancer pos., s.s. Szudinski et al. 1982 435 MHz PM, 1,0 kHz 10 W/m2 0,32 W/kg 21 mon Mouse (C3H/HeJ), Chest tumors, Ovarian tumors partly pos., s.s. Toler et al. 1997 2,45 GHz cw 100 W/m2 11 W/kg 5 mon, 6 d/w, 3 h/d Mouse (Balb/c), Intestinal cancer partly pos., n.s. Wu et al. 1994   70 Mobile Telecommunications and Health
  • 75. Appendix D Epidemiological Studies of the health Risks of HF EMFs   Mobile Telecommunications and Health 71
  • 76. Table D.1 Overview of the results of epidemiological studies regarding exposures in the high frequency spectrum and health risks Column 1: studied illness  Column 2: Exposure situation  Column 3: Reliability of the exposure classification:   ‐ 3: Source of exposure and quantity clearly identified,   ‐ 2: Method of exposure clearly identified  ‐ 1: HF‐exposure probable  Column 4: Relative Risk (R.R.), Explanations see text   Column 5: Statistical significance of the findings:   ‐ s.s.: statistically significant(R.R.=1 outside of  95 %‐trust interval, or. p<0,05  ‐ n.s.: statistically not significant  Column 6: Literatur reference  Column 7: Comments:   ‐ R: Values in the Column R.R. obtained by conversion (reciprocal value, proportion) of other numerical values or via the interpretation of  diagrams  ‐ *: Paper listed in the literature references of Appendix E    72 Mobile Telecommunications and Health
  • 77. Illness Exposure Exp. class. R.R. stat. Sign. References C All illnesses, morbidity MW, Radar, Military 2 1,18 n.s. Robinette et al. 1980 R* All Illnesses, morbidity MW, mobile telecommunications 3 0,93 n.s. Rothman et al. 1996 Cancer, total, morbidity MW, Radar, Military 2 1,50 n.s. Robinette et al 1980 R* Cancer, total, Incidence RF, Radio, women 2 1,2 s.s. Tynes et al. 1996 * Cancer, total, Incidence RF/MW, Military 2 2,07 s.s. Szmigielski 1996 * Cancer, total, Incidence HF, Radio and TV transmitters, local residents 3 1,09 s.s. Dolk et al. 1997 a * Cancer, total, Incidence HF, place of work 1 2,0 n.s. Lagorio et al. 1997 Cancer, total, Incidence RF/MW, Radar and Radio, Police 2 0,96 n.s. Finkelstein 1998 * Multiple Myelome HF, Radio and TV transmitter, local residents 3 1,23 n.s. Dolk et al. 1997 a * All Illnesses Cancer, total Brain tumors, total and tumors of the nervous system, total Brain-Tumors, total, Morbidity HF, Place of work 1 1,54 n.s. Lin et al. 1985 Brain-Tumors, Glioblastomas and Astrocytoma, Morbidity HF, Place of work 1 2,15 s.s. Lin et al. 1985 Brain-Tumors, total, Morbidity HF, Place of work, Men 1 0,38 n.s. Milham 1985 Brain-Tumors, total, Morbidity RF/MW, Place of work, Men 2 2,3 s.s. Thomas et al. 1987 Brain-Tumors, total, Morbidity RF, Amateur Radio Users 2 1,39 n.s. Milham 1988 Brain-Tumors, total, Incidence HF, Place of work 1 2,9 s.s. Törnqvist et al. 1991 Brain-Tumors, Glioblastomas, Incidence HF, Place of work 1 3,4 s.s. Törnqvist et al. 1991 Brain-Tumors, total, Incidence RF, Place of work, Men 2 0,61 n.s. Tynes et al. 1992 Brain-Tumors, total, Incidence RF, Radio, Women 2 1,0 Brain-Tumors, total, Incidence HF, Place of work, Men 1 2,4 s.s. Beall et al. 1996 Brain-Tumors, total, Incidence RF/MW, Military 2 1,39 s.s. Grayson 1996 Mobile Telecommunications and Health Tynes et al. 1996 * * * 73
  • 78. Illness Exposure Exp. class. R.R. stat. Sign. References C Brain-Tumors, total, Morbidity HF/MW, TV transmitters and others residents (adults) 3 0,89 n.s. Hocking et al. 1996 * Brain-Tumors, total, Incidence HF/MW, TV and other transmitters, Local residents/ Adults 3 0,82 n.s. Hocking et al. 1996 * Brain-Tumors, total, Morbidity HF/MW, TV and other transmitters, Local residents/child. 3 1,0 Hocking et al. 1996 * Brain-Tumors, total, Incidence HF/MW, TV and other transmitters, Local residents/child. 3 1,3 n.s. Hocking et al. 1996 * Tumors des Nervensystems einschl. Hirntumors, Incidence RF/MW, Military 2 1,91 s.s. Szmigielski 1996 * Brain-Tumors, total, Incidence HF, Sender Radio and Fernsehen, Local residents 3 1,29 n.s. Dolk et al. 1997 a * Brain-Tumors, maligne, Incidence HF, Sender Radio and Fernsehen, Local residents 3 1,31 n.s. Dolk et al. 1997 a * Brain-Tumors, total, Incidence RF/MW, Radar and Radio, Police 2 0,84 n.s. Finkelstein 1998 * Brain-Tumors, total, Incidence MW, Mobil telecommunications, Mobile phones 3 1,20 n.s. Hardell et al. 1999 * Brain-Tumors, Expos.seite, Incidence MW, Mobilradio, Handy 3 R 2,45 n.s. L 2,40 n.s. Hardell et al. 1999 * MW, Radar, Military 1 2,1 s.s. Holly et al. 1995 Cancer der Atmungsorgane, Morbidity MW, Radar, Military 2 2,59 s.s. Robinette et al. 1980 Lungencancer, Morbidity HF, Place of work, Men 1 0,80 n.s. Milham 1985 Lungencancer, Incidence RF, Radio, Women 2 1,2 n.s. Tynes et al. 1996 * Lungencancer, Incidence HF, Sender Radio and Fernsehen, Local residents 3 1,01 n.s. Dolk et al. 1997 a * Lungencancer, Incidence RF/MW, Radar and Radio, Police 2 0,66 s.s. Finkelstein 1998 * HF, Place of work 1 2,9 n.s. Demers et al. 1991 Cancer, Eyes Melanome, Augen, Incidence Cancer of the respiratory system, lung cancer R* Chest cancer, Men Brustcancer, Mönner, Incidence 74 Mobile Telecommunications and Health
  • 79. Illness Exposure Brustcancer, Men, Incidence Exp. class. R.R. stat. Sign. References C HF, Sender Radio and Fernsehen, Local residents 3 1,64 n.s. Dolk et al. 1997 a * Brustcancer, Women, Morbidity HF, Place of work 2 1,15 s.s. Cantor et al. 1995 * Brustcancer, Women, Incidence RF, Radio, Women 2 1,5 s.s. Tynes et al. 1996 * Brustcancer, Women, Incidence HF, Sender Radio and Fernsehen, Local residents 3 1,08 n.s. Dolk et al. 1997 a * Cancer des lymphat. and des blutbild. Systems, Morbidity MW, Radar, Military 2 1,98 n.s. Robinette et al. 1980 R* Cancer des lymphat. and des blutbild. Systems, Morbidity HF, Place of work, Men 1 1,37 n.s. Milham 1985 Cancer des lymphat. and des blutbild. Systems, Incidence HF, Sender Radio and Fernsehen, Local residents 3 1,21 n.s. Dolk et al. 1997 a * Cancer des lymphat. and des blutbild. Systems, Incidence RF/MW, Military 2 6,31 s.s. Szmigielski 1996 * Leukaemia, total, Morbidity HF, Place of work 1 1,11 n.s. Milham 1982 Leukaemia, total, Morbidity RF, Amateur radio user 2 1,91 s.s. Milham 1985 a Leukaemia, total, Morbidity HF, Place of work, Men 1 1,02 n.s. Milham 1985 b Leukaemia, total, Morbidity RF Amateur radio user 2 1,24 n.s. Milham 1988 Leukaemia, total, Incidence HF, Military 1 2,4 s.s. Garland et al. 1990 Leukaemia, total, Incidence HF, Place of work 1 0,8 n.s. Törnqvist et al. 1991 Leukaemia, total, Incidence RF, Place of work, Men 2 2,85 s.s. Tynes et al. 1992 Leukaemia, total, Incidence RF, Radio, Women 2 1,1 n.s. Tynes et al. 1996 * Leukaemia, total, Morbidity RF/MW, TV and other transmitters, Local residents/ Adults 3 1,17 n.s. Hocking et al. 1996 * Leukaemia, total, Morbidity RF/MW, TV and other transmitters, Local residents/ children. 3 2,32 s.s. Hocking et al. 1996 * Leukaemia, total, Incidence RF/MW, TV and other transmitters , Local residents/ 3 1,24 s.s. Hocking et al. 1996 * Breast cancer, Women Cancer of the lymphatic and blood forming systems, total Leukaemia, total Mobile Telecommunications and Health 75
  • 80. Illness Exposure Exp. class. R.R. stat. Sign. References C Adults Leukaemia, total, Incidence RF/MW, TV and other transmitters, Local residents/ Children. 3 1,58 s.s. Hocking et al. 1996 * Leukaemia, total, Incidence HF, Sender Radio and Fernsehen, Local residents 3 1,83 s.s. Dolk et al. 1997 a * Leukaemia and Non-Hodgkin-Lymphoma, total, Incidence HF, Sender Radio and Fernsehen, Local residents 3 1,25 n.s. Dolk et al. 1997 a * Leukaemia, total, Incidence RF/MW, Radar and Radio, Police 2 0,6 n.s. Finkelstein 1998 * Leukaemia, total, Incidence RF/MW, TV and other transmitters, Local residents/ children. 3 1,47 n.s. McKenzie et al. 1998 * Acute Leukaemia, total, Morbidity HF, Place of work 1 2,39 n.s. Milham 1982 Acute Leukaemia, total, Morbidity HF, Place of work, Men 1 2,12 n.s. Milham 1985 Acute Unspez. Leukaemia, Morbidity RF, Amateur radio users 2 1,76 n.s. Milham 1988 Acute Leukaemia, total, Incidence HF, TV and Radio transmitters, Local residents 3 1,86 n.s. Dolk et al. 1997 a Lymphat. Leukaemia, total, Morbidity RF, Amateur radio users 2 0,77 n.s. Milham 1985 Lymphat. Leukaemia, total, Morbidity RF, Amateur radio users 2 1,03 n.s. Milham 1988 Lymphat. Leukaemia, total, Morbidity RF/MW, TV and other transmitters, Local residents/ Adults 3 1,39 s.s. Hocking et al. 1996 * Lymphat. Leukaemia, total, Morbidity RF/MW, TV and other transmitters, Local residents/ children. 3 2,74 s.s. Hocking et al. 1996 * Lymphat. Leukaemia, total, Incidence RF/MW, TV and other transmitters, Local residents/ Adults 3 1,32 s.s. Hocking et al. 1996 * Lymphat. Leukaemia, total, Incidence RF/MW, TV and other transmitters, Local residents/ children 3 1,55 s.s. Hocking et al. 1996 * Acute Leukaemia, total * Lymphat. Leukaemia, total 76 Mobile Telecommunications and Health
  • 81. Illness Exposure Exp. class. R.R. stat. Sign. References C Lymphat. Leukaemia, total, Incidence RF/MW, TV and other transmitters, Local residents /children. 3 1,53 n.s. McKenzie et al. 1998 * Acute Lymphat. Leukaemia, Morbidity RF, Amateur radio users 2 1,20 n.s. Milham 1988 Acute Lymphat. Leukaemia, Incidence HF, Sender Radio and Fernsehen, Local residents 3 3,57 n.s. Dolk et al. 1997 a Chron. Lymphat. Leukaemia, Morbidity RF, Amateur radio users 2 1,43 n.s. Milham 1985 Chron. Lymphat. Leukaemia, Morbidity RF, Amateur radio users 2 1,09 n.s. Milham 1988 Chron. Lymphat. Leukaemia, Incidence HF, Place of work 1 1,3 n.s. Törnqvist et al. 1991 Chron. Lymphat. Leukaemia, Incidence HF, Sender Radio and Fernsehen, Local residents 3 2,56 s.s. Dolk et al. 1997 a Myelo. Leukaemia, total, Morbidity RF, Amateur radio users 2 2,81 s.s. Milham 1985 Myelo. Leukaemia, total, Morbidity RF, Amateur radio users 2 1,40 n.s. Milham 1988 Myelo. Leukaemia, total, Morbidity RF/MW, TV and other transmitters, Local residents/ Adults 3 1,01 n.s. Hocking et al. 1996 * Myelo. Leukaemia, total, Morbidity RF/MW, TV and other transmitters, Local residents/child. 3 1,77 n.s. Hocking et al. 1996 * Myelo. Leukaemia, total, Incidence RF/MW, TV and other transmitters, Local residents/ Adults 3 1,09 n.s. Hocking et al. 1996 * Myelo. Leukaemia, total, Incidence RF/MW, TV and other transmitters, Local residents/child. 3 1,73 n.s. Hocking et al. 1996 * Acute Myelo. Leukaemia, Morbidity RF, Amateur radio users 2 2,89 s.s. Milham 1985 Acute Myelo. Leukaemia, Morbidity RF, Amateur radio users 2 1,76 s.s. Milham 1988 Acute Myelo. Leukaemia, Incidence HF, Place of work 1 2,1 n.s. Törnqvist et al. 1991 Acute Myelo. Leukaemia, Incidence HF, Radio, TV, Local residents 3 1,02 n.s. Dolk et al. 1997 Acute Lymphat. Leukaemia * Chron. Lymphat. Leukaemia * Myelo. Leukaemia, total Acute Myelo. Leukaemia Mobile Telecommunications and Health * 77
  • 82. Illness Exposure Exp. class. R.R. stat. Sign. References C Chron. Myelo. Leukaemia, Morbidity RF, Amateur radio users 2 2,67 s.s. Chron. Myelo. Leukaemia, Morbidity RF, Amateur radio users 2 0,86 Chron. Myelo. Leukaemia, Incidence HF, Radio and TV transmitters, Local residents 3 1,23 n.s. Dolk et al. 1997 * Leukaemia, non-lymph. and non-myelo., Morbidity RF/MW, TV and other transmitters, Local residents/ Adults 3 1,57 s.s. Hocking et al. 1996 * Leukaemia, non-lymph. and non-myelo., Morbidity RF/MW, TV and other transmitters, Local residents/child. 3 1,45 n.s. Hocking et al. 1996 * Leukaemia, non-lymph. and non-myelo., Incidence RF/MW, TV and other transmitters, Local residents/ Adults 3 1,67 s.s. Hocking et al. 1996 * Leukaemia, non-lymph. and non-myelo., Incidence RF/MW, TV and other transmitters, Local residents/child. 3 1,65 n.s. Hocking et al. 1996 * Lymphosarkome, Morbidity HF, Place of work, Men 1 0,73 n.s. Milham 1985 Lymphome, excl. Lymphosarkoma, Morbidity HF, Place of work, Men 1 3,42 n.s. Milham 1985 Hodgkin-Syndrome, Morbidity RF, Amateur radio users 2 1,23 n.s. Milham 1988 Other malignant illness of the lymphat. tissues, Morbidity RF, Amateur radio users 2 1,62 s.s. Milham 1988 Lymphomas, total, Incidence RF, Radio, Women 2 1,3 n.s. Tynes et al. 1996 * Hodgkin-Syndrome, Incidence RF/MW, Radar and Radio, Police 2 0,84 n.s. Finkelstein 1998 * Non-Hodgkin-Lymphoma, Incidence HF, Radio and TV transmitters, Local residents 3 0,66 n.s. Dolk et al. 1997 a * Testicular cancer, Incidence RF/MW, Place of work 2 3,1 s.s. Hayes et al. 1990 Germ cell-Carcinoma, Seminoma RF/MW, Place of work 2 2,8 n.s. Hayes et al. 1990 Germ cell-Carzinome, others RF/MW, Place of work 2 3,2 s.s. Hayes et al. 1990 Chron. Myelo. Leukaemia Milham 1985 Milham 1988 Leukaemia, non-lymph. and non-myelo. Lymphomas, Hodgkin-Syndrome Testicular cancer 78 Mobile Telecommunications and Health
  • 83. Illness Exposure Exp. class. R.R. stat. Sign. References C Testicular cancer, Incidence MW, Radar, Police 2 6,9 s.s. Davis & Mostofi 1993 * Testicular cancer, Incidence RF/MW, Radar and Radio, Police 2 1,33 s.s. Finkelstein 1998 * RF, Radio, Women 2 1,9 s.s. Tynes et al. 1996 * Skin Cancer, Malignant Melanoma, Incidence RF, Radio, Women 2 0,9 n.s. Tynes et al. 1996 * Skin Cancer, total, Incidence RF/MW, Military 2 1,67 n.s. Szmigielski 1996 * Skin cancer, Malignant Melanoma, Incidence HF, Radio and TV transmitters, Local residents 3 1,43 n.s. Dolk et al. 1997 a * Skin cancer, Malignant Melanoma, Incidence RF/MW, Radar and Radio, Police 2 1,37 s.s. Finkelstein 1998 * Cardio vascular diseases, Morbidity MW, Radar, Military 2 1,09 n.s. Robinette et al. 1980 R* Cardio vascular diseases, Morbidity RF, Amateur radio users 2 0,70 s.s. Milham 1988 Abnorm. Hearbeat rate variability RF/AM, Radio transmitters, Place of work 2 1,6 s.s. Bortkiewicz et al. 1996 * Abnormal ECG MW 2 2,9 ? Zhao et al. 1994 R Cardio vascular complaints MW 2 3,2 ? Zhao et al. 1994 R reduced Fertility, reduced Sperm count MW, Place of work 2 1,20 s.s. Lancranjan et al. 1975 R reduced Fertility, immob. Spermatozoa MW, Place of work 2 1,39 s.s. Lancranjan et al. 1975 R reduced Fertility, normal Spermatozoa MW, Place of work 2 1,18 s.s. Lancranjan et al. 1975 R reduced. Fertility, reduced Sperm count MW, Military 2 2,70 s.s. Weyandt et al. 1996 R reduced Fertility, reduced sperm count MW, Radar 2 1,54 n.s. Hjollund et al. 1997 R reduced Fertility, immob. Spermatozoa MW, Radar 2 1,58 n.s. Hjollund et al. 1997 R reduced Fertility, reduced Sperm count MW, Radar 2 1,10 n.s. Schrader et al 1998 R Cancer of the uterus Cancer of the uterus, Incidence Skin cancer Heart and cardio vascular diseases Infertility, reduced fertility, Men Mobile Telecommunications and Health 79
  • 84. Illness Exposure Exp. class. R.R. stat. Sign. References C KW, Place of work, Physiotherapie, Mothers 2 1,7 n.s. Larsen et al. 1991 a * Infertility, reduced. fertility, Women reduced. fertilityt Miscarriages, Stillbirths, Malformations and other abnormalities of newborns Malformations and perinatal death KW, Place of work, Mother 2 2,36 s.s. Källén et al 1982 Miscarriage MW, Place of work, Mother 2 1,28 s.s. Ouellet-Hellstrom & Stewart 1993 * Miscarriage KW, Place of work, Mother 2 1,07 n.s. Ouellet-Hellstrom & Stewart 1993 * Tumors of the nervous system HF, Place of work, fathers 1 2,01 n.s. Cole Johnson & Spitz 1989 Cancer, total, Incidence Radar, Place of work, fathers 2 2,3 s.s. Smulevich et al. 1999 * Alzheimer’s, Morbidity HF, Place of work 1 1,5 n.s. Savitz et al. 1998 * Parkinson’s Disease HF, Place of work 1 - Savitz et al. 1998 * Amyotrophic Lateral Sklerosis HF, Place of work 1 - Savitz et al. 1998 * Cancer, Offspring (parental exposure) Neurodegenerative Diseases Disturbances of motoric and psychological reactions, Unwellness Reduced stamina, Boys MW, Radar 2 1,38 s.s. Kolodynski & Kolodynska 1996 R* Reduced stamina, Girls MW, Radar 2 1,38 s.s. Kolodynski & Kolodynska 1996 R* reduced memory, Boys MW, Radar 2 1,09 s.s Kolodynski & Kolodynska 1996 R* Reduced memory, Girls MW, Radar 2 1,12 s.s Kolodynski & Kolodynska 1996 R* Reduced concentration, Boys MW, Radar 2 1,23 s.s. Kolodynski & Kolodynska 1996 R* 80 Mobile Telecommunications and Health
  • 85. Illness Exposure Exp. class. R.R. stat. Sign. References C Reduced Concentration, Girls MW, Radar 2 1,20 s.s. Kolodynski & Kolodynska 1996 R* Extended reaction time, Boys MW, Radar 2 1,07 n.s. Kolodynski & Kolodynska 1996 R* Extended reaction time, Girls MW, Radar 2 1,12 s.s. Kolodynski & Kolodynska 1996 R* Unwellness. ('Neurosis') MW 2 3,2 ? Zhao et al. 1994 R   Mobile Telecommunications and Health 81
  • 86. Appendix E (only available in German) Extracts of our database (EMFbase)  Important  research  papers  relevant  to  the  assessment  of  health  risks  resulting  from  exposure  to  the  electromagnetic  fields  of  mobile  telecommunications under the aspect of precautionary health protection      82 Mobile Telecommunications and Health