This document discusses using data mining techniques to analyze student performance data from educational institutions. It proposes using clustering and classification algorithms like K-means and Naive Bayesian on data collected from sources like learning management systems and surveys. The goals are to classify students into performance levels, identify factors affecting performance, and make recommendations to help students improve. Clustering could group students and classification could predict performance based on attributes. Analyzing the data may provide insights to enhance guidance and outcomes. The paper presents this as a conceptual plan to apply data mining in education.